Strong Uniform Consistency of the Product Limit Estimator under Variable Censoring

Antonia Földes*

Mathematical Institute, Reáltanoda u 13-15, 1053 Budapest, Hungary

1. Introduction

Let $X_{1}, \ldots, X_{N} \ldots$ be an i.i.d. sequence of random variables, with continuous distribution function $F(x)$, and let Y_{1}, \ldots, Y_{N} be another sequence of independent random variables with right continuous distribution functions $G_{1}(x), \ldots, G_{N}(x) \ldots$. We suppose that $\left\{X_{i}\right\}$ and $\left\{Y_{i}\right\}$ are mutually independent.

Let

$$
\begin{aligned}
& Z_{i}=\min \left\{X_{i}, Y_{i}\right\} \quad \text { and } \quad \delta_{i}=\left[X_{i} \leqq Y_{i}\right] \quad i=1,2, \ldots \\
& ([A] \text { denotes the indicator of the event } A) .
\end{aligned}
$$

As it is well known, for this problem the $F_{N}^{*}(x)$ product limit estimator of Kaplan Meier [6] is maximum likelihood estimator. For i.i.d. Y_{i}-s it was recently proved [3], that if $F(x)$ is continuous and $G\left(T_{F}\right)<1$ where $T_{F}=\{\sup x ; F(x)<1\}$ then

$$
\begin{equation*}
P\left(\sup _{-\infty<x<+\infty}\left|F_{N}^{*}(x)-F(x)\right|=O\left(\sqrt{\frac{\log \log N}{N}}\right)\right)=1 \tag{1.1}
\end{equation*}
$$

The case of variable censoring (i.e. Y_{i}^{\prime} 's have different distributions) was discussed in [2].

Let $P\left(Z_{i}<x\right)=H_{i}(x), \bar{F}(x)=1-F(x)$ and define $\bar{G}_{i}(x), \bar{H}_{i}(x)\left(=\bar{F}(x) \bar{G}_{i}(x)\right)$ similarly. Denote

$$
\begin{gathered}
M_{N}(t)=\sum_{k=1}^{N}\left[Z_{k}>t\right], \quad m_{N}(t)=E\left(M_{N}(t)\right)=\bar{F}(t) \sum_{k=1}^{N} \bar{G}_{k}(t), \\
\bar{G}(N, t)=\sum_{k=1}^{N} \bar{G}_{k}(t)
\end{gathered}
$$

[^0]Recently Gill [5] proved that $\sup _{-\infty<u \leqq t}\left|F_{N}^{*}(u)-F(u)\right| \underset{P}{\longrightarrow} 0$ if $M_{N}(t) \underset{P}{\longrightarrow}+\infty$ and $F\left(t^{-}\right)<1$ (where $\underset{P}{\longrightarrow}$ denotes stochastic convergence).

We shall prove the following
Theorem 1. Suppose that F is continuous and

$$
\begin{equation*}
\frac{\log N}{\bar{G}\left(N, T_{F}\right)} \rightarrow 0 \tag{1.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
P\left(\sup _{-\infty<u<+\infty}\left|F_{N}^{*}(u)-F(u)\right|=O\left(\sqrt{\frac{\log N}{\bar{G}\left(N, T_{F}\right)}}\right)\right)=1 \tag{1.3}
\end{equation*}
$$

Remark. To get a better insight into the meaning of the theorem, denote by $G_{(N)}(t)=\frac{1}{N} \sum_{i=1}^{N} G_{i}(t)$ the average of the censoring distributions. Then condition (1.2) implies that $T_{F}<T_{G(N)}$ for all but finitely many N (in particular $T_{F}<\infty$). Theorem 1 can also be stated as

$$
\overline{\lim }_{N \rightarrow \infty} \sqrt{1-G_{(N)}\left(T_{F}\right)} \sqrt{\frac{N}{\log N}} \sup _{-\infty<u<+\infty}\left|F_{N}^{*}(u)-F(u)\right| \leqq K \quad \text { a.s. . }
$$

Consequently if $\varlimsup_{N \rightarrow \infty} G_{(N)}\left(T_{F}\right)<1$ then the rate is $O(\sqrt{\log N / N})$, if not, then the $\sqrt{1-G_{(N)}\left(T_{F}\right)}$ factor worsen this rate.

Corollary 1. Suppose that $F(t)$ is continuous in $(-\infty, t]$, and $\log N / \bar{G}(N, t) \rightarrow 0$, then

$$
P\left(\sup _{-\infty<u \leqq t}\left|F_{N}^{*}(u)-F(u)\right|=O\left(\sqrt{\frac{\log N}{\bar{G}(N, t)}}\right)\right)=1 .
$$

Corollary 2. If $F(t)$ is continuous and $\lim \left(\bar{G}\left(N, T_{F}\right) / N^{\alpha}\right)=a>0$, for any $0<\alpha \leqq 1$, then

$$
P\left(\sup _{-\infty<u<\infty}\left|F_{N}^{*}(u)-F(u)\right|=O\left(\sqrt{\frac{\log N}{N^{\alpha}}}\right)\right)=1
$$

Our technic is similar to the paper [3]. Theorem 1 gives a much stronger result under less restrictive conditions than the above mentioned theorem in [2]. It is important to emphasize that in course of proving Theorem 1 we need some theorems on strong uniform behaviour of empirical distributions of nonidentically distributed random variables, which seems to be new.

2. Definitions, notations

In what follows we list some more notations.

$$
\begin{gather*}
\beta_{i}(t)=\left[Z_{i} \leq t, \delta_{i}=1\right] \quad i=1,2, \ldots, \tag{2.1}\\
B_{N}(t)=\sum_{i=1}^{N} \beta_{i}(t), \quad b_{N}(t)=E\left(B_{N}(t)\right)=\sum_{i=1}^{N} \int_{-\infty}^{t} \bar{G}_{i}\left(u^{-}\right) d F(u), \tag{2.2}\\
\tau_{N}(\omega)=\max _{j \leqq N}\left\{Z_{j}(\omega)\right\} . \tag{2.3}
\end{gather*}
$$

The definition of the product limit estimator $F_{N}^{*}(t)$ (in case of continuous F), and its' modification $F_{N}^{0}(t)$ are the following

$$
\begin{aligned}
& \bar{F}_{N}^{*}(t)= \begin{cases}\prod_{j=1}^{N}\left(\frac{M_{N}\left(Z_{j}\right)}{M_{N}\left(Z_{j}\right)+1}\right)^{\beta_{j}(t)} & \text { if } t \leqq \tau_{N}(\omega) \\
0 & \text { if } t>\tau_{N}(\omega)\end{cases} \\
& \bar{F}_{N}^{0}(t)= \begin{cases}\prod_{j=1}^{N}\left(\frac{M_{N}\left(Z_{j}\right)+1}{M_{N}\left(Z_{j}\right)+2}\right)^{\beta_{j}(t)} & \text { if } t \leqq \tau_{N}(\omega) \\
0 & \text { if } t>\tau_{N}(\omega)\end{cases}
\end{aligned}
$$

3. Uniform Properties of Empirical Distribution of Nonidentically Distributed Random Variables

Our basic tool is the following exponential bound (see Petrov [7] p. 52).
Lemma 3.1. Let ξ_{1}, \ldots, ξ_{N} be a sequence of independent random variables. S_{N} $=\sum_{i=1}^{N} \xi_{i}$. Suppose that there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ and U positive real numbers such that

$$
\begin{equation*}
E\left(e^{u \xi_{k}}\right) \leqq e^{(1 / 2) \lambda_{k} u^{2}} \quad k=1,2, \ldots, N \text { for } 0 \leqq u \leqq U \text {. } \tag{3.1}
\end{equation*}
$$

Let $\Lambda=\sum_{k=1}^{N} \lambda_{k}$. Then

$$
\begin{array}{ll}
P\left(S_{N}>x\right) \leqq \exp \left\{-\frac{x^{2}}{2 \Lambda}\right\} & \text { if } 0 \leqq x \leqq \Lambda U, \\
P\left(S_{N}>x\right) \leqq \exp \left\{-\frac{U x}{2}\right\} & \text { if } x \geqq \Lambda U, \\
P\left(\left|S_{N}\right|>x\right) \leqq 2 \exp \left\{-\frac{x^{2}}{2 \Lambda}\right\} & \text { if } 0 \leqq x \leqq \Lambda U, \\
P\left(\left|S_{N}\right|>x\right) \leqq 2 \exp \left\{-\frac{U x}{2}\right\} & \text { if } x>\Lambda U . \tag{3.5}
\end{array}
$$

Remark 3.2. Let $\left\{\alpha_{i}\right\}_{i=1}^{\infty}$ be a sequence of independent Bernoulli variables $P\left(\alpha_{i}\right.$ $=1)=a_{i}, P\left(\alpha_{i}=0\right)=1-a_{i}$. Let $A_{N}=\sum_{i=1}^{N} a_{i}$. Denote $\xi_{i}=\alpha_{i}-a_{i}, E\left(\xi_{i}\right)=0, i=1,2, \ldots$

$$
\begin{equation*}
E\left(e^{u \check{\zeta}_{i}}\right) \leqq E\left(1+u \xi_{i}+u^{2} \xi_{i}^{2}\right)=1+u^{2} E\left(\xi_{i}^{2}\right) \leqq \exp \left(u^{2} E\left(\xi_{i}^{2}\right)\right) \tag{3.6}
\end{equation*}
$$

if only

$$
\left|u \xi_{i}\right|=\left|u\left(\alpha_{i}-a_{i}\right)\right| \leqq \frac{1}{2} .
$$

As $\left|\alpha_{i}-a_{i}\right| \leqq 1$ and $E\left(\xi_{i}^{2}\right)=a_{i}\left(1-a_{i}\right) \leqq a_{i}, E\left(e^{u \xi_{i}}\right) \leqq \exp \left\{u^{2} a_{i}\right\}$ if $0 \leqq u \leqq \frac{1}{2}$. Using the notations of Lemma 3.1 we got

$$
\begin{equation*}
U=\frac{1}{2}, \quad \lambda_{i} \geqq 2 a_{i} \quad i=1,2, \ldots \quad A \geqq 2 A_{N} . \tag{3.7}
\end{equation*}
$$

In what follows we prove some uniform properties of $M_{N}(u)$. (Though we use the same $M_{N}(u)$ notation here as in the rest of the paper for the empirical of $Z_{i}=\min \left(X_{i}, Y_{i}\right)$, in these 2 theorems we do not suppose anything about the minimum structure of $Z_{i}\left\{Z_{i}\right\}$ are independent but non-identically distributed.)
Theorem 2. (i) If $\frac{2}{\sqrt{m_{N}(t)}}<\varepsilon<\sqrt{m_{N}(t)}$, and $m_{N}(t) \geqq 1$ then

$$
\begin{equation*}
P\left(\sup _{-\infty<u \leqq t}\left|\frac{M_{N}(u)-m_{N}(u)}{\sqrt{m_{N}(u)}}\right|>\varepsilon\right) \leqq 4 N \exp \left\{-2^{-7} \varepsilon^{2}\right\} \tag{3.8}
\end{equation*}
$$

(ii) If $\frac{\log N}{m_{N}(t)} \rightarrow 0$, then

$$
\begin{equation*}
P\left(\sup _{-\infty<u \leqq t}\left|\frac{M_{N}(u)-m_{N}(u)}{\sqrt{m_{N}(u)}}\right|=O(\sqrt{\log N})\right)=1 \tag{3.9}
\end{equation*}
$$

Proof. For fixed N and t let $-\infty=u_{0}<u_{1}<\ldots<u_{k(N)}=t$ be a partition of $(-\infty, t]$ such that

$$
\begin{gather*}
\delta_{N}(i)=m_{N}\left(u_{i-1}\right)-m_{N}\left(u_{i}^{-}\right) \leqq 1 \quad i=1,2, \ldots, k(N), \text { and } k(N) \leqq N-1 \tag{3.10}\\
\left(m_{N}(u) \text { is right continuous, hence } m_{N}(u)=m_{N}\left(u^{+}\right)\right) .
\end{gather*}
$$

Since $m_{N}(u)$ is monotone decreasing and $m_{N}(-\infty)=N$, such partition always exists.

$$
\begin{align*}
& P\left(\sup _{-\infty<u \leqq t}\left|\frac{M_{N}(u)-m_{N}(u)}{\sqrt{m_{N}(u)}}\right|>\varepsilon\right) \leqq \sum_{i=1}^{k(N)} P\left(\sup _{u_{i-1} \leqq u<u_{i}}\left|\frac{M_{N}(u)-m_{N}(u)}{\sqrt{m_{N}(u)}}\right|>\varepsilon\right) \\
& \quad \leqq \sum_{i=1}^{k(N)} P\left(\left.\frac{\sup _{i-1} \leqq u<u_{i}}{\sqrt{m_{N}\left(u_{i}^{-}\right)}}(u)-m_{N}(u) \right\rvert\,\right. \\
& \quad \leqq \varepsilon)+P\left(\frac{\left|M_{N}(t)-m_{N}(t)\right|}{\sqrt{m_{N}(t)}}>\varepsilon\right) \\
& \quad \sum_{i=1}^{k(N)}\left\{P\left(\left|M_{N}\left(u_{i-1}\right)-m_{N}\left(u_{i-1}\right)\right|>\frac{\varepsilon \sqrt{m_{N}\left(u_{i}^{-}\right)}-\delta_{N}(i)}{2}\right)\right. \tag{3.11}\\
& \left.\quad+P\left(\left|M_{N}\left(u_{i}^{-}\right)-m_{N}\left(u_{i}^{-}\right)\right|>\frac{\varepsilon \sqrt{m_{N}\left(u_{i}^{-}\right)}-\delta_{N}(i)}{2}\right)\right\}+P\left(\frac{\left|M_{N}(t)-m_{N}(t)\right|}{\sqrt{m_{N}(t)}}>\varepsilon\right) .
\end{align*}
$$

In the last line of (3.11) we used the monotonicity of $M_{N}(u)$ and $m_{N}(u)$.

Let $\frac{2}{\sqrt{m_{N}(t)}}<\varepsilon<\sqrt{m_{N}(t)}$. Under condition (i) on ε

$$
0 \leqq \frac{\varepsilon \sqrt{m_{N}\left(u_{i}^{-}\right)}-\delta_{N}(i)}{2} \leqq \frac{m_{N}\left(u_{i}^{-}\right)}{2} \leqq m_{N}\left(u_{i-1}\right)
$$

We estimate both terms of (3.11) by Lemma 3.1. Using (3.7) and condition (i)

$$
\begin{aligned}
& P\left(\left|M_{N}\left(u_{i-1}\right)-m_{N}\left(u_{i-1}\right)\right|>\frac{\varepsilon \sqrt{m_{N}\left(u_{i}^{-}\right)}-\delta_{N}(i)}{2}\right) \\
& \quad+P\left(\left|M_{N}\left(u_{i}^{-}\right)-m_{N}\left(u_{i}^{-}\right)\right|>\frac{\varepsilon \sqrt{m_{N}\left(u_{i}^{-}\right)}-\delta_{N}(i)}{2}\right) \\
& \quad \leqq 4 \exp \left\{-\frac{\left(\varepsilon \sqrt{m_{N}\left(u_{i}^{-}\right)}-\delta_{N}(i)\right)^{2}}{4 \cdot 4 \cdot m_{N}\left(u_{i-1}\right)}\right\} \leqq 4 \exp \left\{-\frac{\varepsilon^{2} m_{N}\left(u_{i}^{-}\right)}{2^{6} m_{N}\left(u_{i-1}\right)}\right\} .
\end{aligned}
$$

From $m_{N}(t) \geqq 1$ follows that $2 m_{N}\left(u_{i}^{-}\right) \geqq m_{N}\left(u_{i-1}\right)$ hence $\frac{m_{N}\left(u_{i}^{-}\right)}{m_{N}\left(u_{i-1}\right)} \geqq \frac{1}{2}$. Con-
sequently

$$
\begin{aligned}
P\left(\sup _{-\infty<u \leqq t}\left|\frac{M_{N}(u)-m_{N}(u)}{\sqrt{m_{N}(u)}}\right|>\varepsilon\right) & \leqq k(N) \cdot 4 \cdot \exp \left\{-2^{-7} \varepsilon^{2}\right\}+2 \exp \left(-\frac{\varepsilon^{2}}{4}\right) \\
& \leqq 4 N \exp \left\{-2^{-7} \varepsilon^{2}\right\}
\end{aligned}
$$

which proves (i).
Leting $\varepsilon_{N}=\sqrt{2^{9} \log N}$, we obtain, that if $\left(\log N / m_{N}(t)\right) \rightarrow 0$, then (3.9) holds by Borel-Cantelli.

Theorem 3. Suppose that for the point $t, m_{N}(t) \geqq 2$. Then for an arbitrary $\lambda \geqq 2$,

$$
\begin{equation*}
P\left(\sup _{-\infty<u \leqq t} \frac{m_{N}(u)}{M_{N}(u)}>\lambda\right) \leqq N \exp \left\{-2^{-4}\left(1-\frac{1}{\lambda}\right)^{2} m_{N}(t)\right\} . \tag{3.12}
\end{equation*}
$$

Proof. For fixed N and t let $-\infty=u_{0}<u_{1}<\ldots<u_{k(N)}=t$ be the same partition of $(-\infty, t]$ as in Theorem 2. As both $m_{N}(u)$ and $M_{N}(u)$ are monotone decreasing

$$
\begin{aligned}
& P\left(\sup _{-\infty<u \leqq t} \frac{m_{N}(u)}{M_{N}(u)}>\lambda\right) \leqq \sum_{i=1}^{k(N)} P\left(\sup _{u_{i-1} \leqq u<u_{i}} \frac{m_{N}(u)}{M_{N}(u)}>\lambda\right)+P\left(\frac{m_{N}(t)}{M_{N}(t)}>\lambda\right) \\
& \\
& \leqq \sum_{i=1}^{k(N)} P\left(\frac{m_{N}\left(u_{i-1}\right)}{M_{N}\left(u_{i}^{-}\right)}>\lambda\right)+P\left(\frac{m_{N}(t)}{M_{N}(t)}>\lambda\right), \\
& \begin{aligned}
P\left(\frac{m_{N}\left(u_{i-1}\right)}{M_{N}\left(u_{i}^{-}\right)}>\lambda\right)= & P\left(\frac{m_{N}\left(u_{i-1}\right)}{\lambda}>M_{N}\left(u_{i}^{-}\right)\right) \\
= & P\left(\frac{m_{N}\left(u_{i-1}\right)}{\lambda}-m_{N}\left(u_{i}^{-}\right)>M_{N}\left(u_{i}^{-}\right)-m_{N}\left(u_{i}^{-}\right)\right) \\
& =P\left(m_{N}\left(u_{i}^{-}\right)-M_{N}\left(u_{i}^{-}\right)>m_{N}\left(u_{i}^{-}\right)-\frac{m_{N}\left(u_{i-1}\right)}{\lambda}\right) .
\end{aligned}
\end{aligned}
$$

By condition $m_{N}(t) \geqq 2$ and (3.10) we get that $2 m_{N}\left(u_{i-1}\right)<3 m_{N}\left(u_{i}^{-}\right)$. Hence as $\lambda>2$,

$$
m_{N}\left(u_{i}^{-}\right)-\frac{m_{N}\left(u_{i-1}\right)}{\lambda} \geqq m_{N}\left(u_{i}^{-}\right)\left(1-\frac{3}{2 \lambda}\right) \geqq \frac{m_{N}\left(u_{i}^{-}\right)(\lambda-1)}{2 \lambda} .
$$

Consequently

$$
\begin{aligned}
P\left(\frac{m_{N}\left(u_{i-1}\right)}{M_{N}\left(u_{i}^{-}\right)}>\lambda\right) & \leqq p\left(m_{N}\left(u_{i}^{-}\right)-M_{N}\left(u_{i}^{-}\right)>\frac{m_{N}\left(u_{i}^{-}\right)(\lambda-1)}{2 \lambda}\right. \\
& \leqq \exp \left\{-\frac{m_{N}^{2}\left(u_{i}^{-}\right)(\lambda-1)^{2}}{4 \lambda^{2} \cdot 4 m_{N}\left(u_{i}^{-}\right)}=\exp \left\{-2^{-4}\left(1-\frac{1}{\lambda}\right)^{2} m_{N}\left(u_{i}^{-}\right)\right\}\right. \\
& \leqq \exp \left\{-2^{-4}\left(1-\frac{1}{\lambda}\right)^{2} m_{N}(t)\right\}
\end{aligned}
$$

where we applied again Lemma 3.1 and (3.7). It is easy to see by a similar but somewhat simpler argument, that

$$
P\left(\frac{m_{N}(t)}{M_{N}(t)}>\lambda\right) \leqq \exp \left\{-2^{-2}\left(1-\frac{1}{\lambda}\right)^{2} m_{N}(t)\right\}
$$

Being $k(N) \leqq N-1$, (3.12) follows.
This theorem is a generalization of Lemma 1 of Wellner [10], which deals with i.i.d. r.v.-s.

4. Lemmas

Suppose throughout the rest that F is continuous.

Lemma 4.1.

$$
\begin{equation*}
\sup _{-\infty<u \leqq t}\left|F_{N}^{*}(u)-F_{N}^{0}(u)\right| \leqq \int_{-\infty}^{t} \frac{1}{\left(M_{N}(u)+1\right)^{2}} d B_{N}(u) . \tag{4.1}
\end{equation*}
$$

Proof. The same as Lemma 2.2. in [3]. Let

$$
\begin{equation*}
R_{N}(u)=\int_{-\infty}^{u} \frac{1}{M_{N}(s)} d B_{N}(s), \quad \text { and } \quad R(u)=\int_{-\infty}^{u} \frac{1}{m_{N}(s)} d b_{N}(s) \tag{4.2}
\end{equation*}
$$

Observe that for $u<T_{F}$

$$
\begin{equation*}
R(u)=\int_{-\infty}^{u} \frac{1}{m_{N}(s)} d b_{N}(s)=\int_{-\infty}^{u} \frac{\bar{G}\left(N, s^{-}\right)}{\bar{G}(N, s) \bar{F}(s)} d F(s)=-\log \bar{F}(u) \tag{4.3}
\end{equation*}
$$

By Taylor expansion, as in [3] (formulae (2.1)-(2.3), (2.9)-(2.10)) we get that

$$
\begin{align*}
\left|\bar{F}_{N}^{*}(u)-\bar{F}(u)\right| \leqq & \left|\bar{F}_{N}^{*}(u)-\bar{F}^{0}(u)\right|+\left|\log \bar{F}_{N}^{0}(u)+R_{N}(u)\right| \\
& +\bar{F}(u)\left|R_{N}(u)-R(u)\right|+\frac{1}{2} \bar{F}(u) \exp \left|R_{N}(u)-R(u)\right| \cdot\left|R_{N}(u)-R(u)\right|^{2} . \tag{4.4}
\end{align*}
$$

Observe that

$$
\begin{align*}
R_{N}(u)-R(u) & =\int_{-\infty}^{u} \frac{1}{M_{N}(s)} d B_{N}(s)-\int_{-\infty}^{u} \frac{1}{m_{N}(s)} d b_{N}(s) \\
& =\int_{-\infty}^{u}\left(\frac{1}{M_{N}(s)}-\frac{1}{m_{N}(s)}\right) d B_{N}(s)+\int_{-\infty}^{u} \frac{1}{m_{N}(s)} d\left(B_{N}(s)-b_{N}(s)\right) . \tag{4.5}
\end{align*}
$$

Suppose that $\frac{\log N}{\bar{G}\left(N, T_{F}\right)} \rightarrow 0$ (hence T_{F} is finite), and consider the following sequence of points: $T_{1}, T_{2}, \ldots, T_{N} \ldots$ defined by the equation

$$
\begin{equation*}
\bar{F}\left(T_{N}\right)=\sqrt{\frac{\log N}{\bar{G}\left(N, T_{F}\right)}} \tag{4.6}
\end{equation*}
$$

(This sequence is well-defined if $N \geqq N^{*}$ by the above condition.)
Lemma 4.2. If T_{N} is defined by (4.6) and (1.2) holds then for almost all ω there exists an $N_{0}(\omega)$ such that if $N>N_{0}(\omega)$ then

$$
\begin{equation*}
\frac{1}{M_{N}(u)} \leqq \frac{2}{m_{N}(u)} \quad \text { for all } \quad u \leqq T_{N} . \tag{4.7}
\end{equation*}
$$

Proof. We apply Theorem 3 for the points $T_{N}\left(N<N^{*}\right)$.
By condition (1.2) we may choose an N_{1} (independent from ω) such that for $N \geqq N_{1} \bar{G}\left(N, T_{F}\right)>2^{16} \log N$. Then for $N \geqq N_{1}$

$$
m_{N}\left(T_{N}\right)=\bar{G}\left(N, T_{N}\right) \bar{F}\left(T_{N}\right)=\sqrt{\frac{\log N}{\bar{G}\left(N, T_{F}\right)}} \bar{G}\left(N, T_{N}\right) \geqq \sqrt{\log N \bar{G}\left(N, T_{F}\right)} \geqq 2^{8} \log N
$$

hence the condition of Theorem 3 is satisfied. Leting $\lambda=2$, the result follows by standard Borel-Cantelli argument.
Lemma 4.3. If T_{N} is defined by (4.6) and (1.2) holds then for almost all ω there exists an $N_{0}(\omega)$ such that, if $N \geqq N_{0}(\omega)$ then

$$
\begin{equation*}
\sup _{-\infty<u \leqq T_{N}}\left|\frac{M_{N}(u)-m_{N}(u)}{\sqrt{m_{N}(u)}}\right| \leqq \sqrt{2^{9} \log N} . \tag{4.8}
\end{equation*}
$$

Proof. Apply Theorem 2 with $\varepsilon_{N}=\sqrt{2^{9} \log N}$. (As in Lemma 4.2 it's easy to check that the conditions of Theorem 2 holds if N is big enough.) \square

Lemma 4.4. Suppose that (1.2) holds, T_{N} is defined by (4.6) and let $1 \leqq \alpha \leqq 2$ arbitrary.

Then for almost all ω there exists an $N_{0}(\omega)$ such that, for $N>N_{0}(\omega)$,

$$
\begin{equation*}
\sup _{-\infty \leqq t \leq r}\left|\int_{-\infty}^{t} \frac{1}{m_{N}^{\alpha}(u)} d\left(B_{N}(u)-b_{N}(u)\right)\right| \leqq \frac{12 \sqrt{\log N}}{\left(m_{N}(T)\right)^{\frac{1}{2}(2 \alpha-1)}} \tag{4.9}
\end{equation*}
$$

for any $T \leqq T_{N}$.

Proof. We prove the statement in two steps. At first we give an exponential bound for fix t and then estimate the sup in $(-\infty, T]$. First observe, that

Moreover

$$
\begin{equation*}
\int_{-\infty}^{u} \frac{1}{m_{N}^{\alpha}(s)} d B_{N}(s)=\sum_{j=1}^{N} \frac{\beta_{j}(u)}{m_{N}^{\alpha}\left(Z_{j}\right)}=\sum_{j=1}^{N} \frac{\beta_{j}(u)}{\left(\sum_{k=1}^{N} \bar{H}_{k}\left(Z_{j}\right)\right)^{\alpha}} . \tag{4.10}
\end{equation*}
$$

$$
\int_{-\infty}^{u} \frac{1}{m_{N}^{\alpha}(s)} d b_{N}(s)=\sum_{j=1}^{N} \int_{-\infty}^{u} \frac{\bar{G}_{j}\left(s^{-}\right)}{\left(\sum_{k=1}^{N} \bar{H}_{k}(s)\right)^{\alpha}} d F(s)=\sum_{j=1}^{N} E\left(\frac{\beta_{j}(u)}{\left(\sum_{k=1}^{N} \bar{H}_{k}\left(Z_{j}\right)\right)^{\alpha}}\right) .
$$

Hence introducing the notations

$$
\begin{gather*}
\xi_{j}(u)=\frac{\beta_{j}(u)}{\left(\sum_{k=1}^{N} \bar{H}_{k}\left(Z_{j}\right)\right)^{\alpha}} \text { and } \quad \xi_{j}^{*}(u)=\xi_{j}(u)-E\left(\xi_{j}(u)\right), \tag{4.11}\\
\int_{-\infty}^{u} \frac{1}{m_{N}^{\alpha}(s)} d\left(B_{N}(s)-b_{N}(s)\right)=\sum_{j=1}^{N} \xi_{j}^{*}(u) \tag{4.12}
\end{gather*}
$$

where $\xi_{j}^{*}(u) j=1, \ldots, N$ are independent nonidentically distributed zero mean random variables. At first we estimate the probability $P\left(\left|\sum_{N}^{N} \xi_{j}^{*}(t)\right|>\varepsilon\right)$ by Lemma 3.1 and then we estimate $P\left(\sup _{-\infty<t \leqq u}\left|\sum_{1}^{N} \xi_{j}^{*}(t)\right|>\varepsilon\right)$. Using the elementary
inequality

$$
\begin{gathered}
e^{x} \leqq 1+x+\frac{x^{2}}{2} \text { if }|x| \leqq \frac{1}{2}, \\
\left.E\left(e^{u \zeta_{j}^{*}(t)}\right) \leqq E\left(1+u \xi_{j}^{*}(t)+u^{2} \xi_{j}^{* 2}(t)\right)=1+u^{2} E\left(\xi_{j}^{* 2}(t)\right) \leqq e^{u^{2} E\left(\xi_{j}^{2}\right.}(t)\right)
\end{gathered}
$$

if

$$
\begin{equation*}
\left|u \xi_{j}^{*}(t)\right| \leqq \frac{1}{2} . \tag{4.13}
\end{equation*}
$$

Observe that for $t \leqq T$

$$
\begin{equation*}
0 \leqq \xi_{j}(t)=\frac{\beta_{j}(t)}{\left(\sum_{k=1}^{N} \bar{H}_{k}\left(Z_{j}\right)\right)^{\alpha}} \leqq \frac{\beta_{j}(T)}{\left(\sum_{k=1}^{N} \bar{H}_{k}\left(Z_{j}\right)\right)^{\alpha}} \tag{4.14}
\end{equation*}
$$

Moreover, if $Z_{j} \leqq T$ then $\beta_{j}(T) \leqq 1$ and $\bar{H}_{k}\left(Z_{j}\right) \geqq \bar{H}_{k}(T)$. On the other hand if $Z_{j}>T$ then $\beta_{j}(T)=0$. Consequently

$$
0 \leqq \xi_{j}(t) \leqq \frac{1}{\left(\sum_{k=1}^{N} \bar{H}_{k}(T)\right)^{\alpha}}=\frac{1}{\left(m_{N}(T)\right)^{\alpha}} \quad \text { for any } t \leqq T
$$

Hence (4.13) valid if $0 \leqq u \leqq \frac{\left(m_{N}(T)\right)^{\alpha}}{2}$.

For any $t \leqq T$ we have

$$
\begin{aligned}
\sum_{j=1}^{N} E\left(\xi_{j}^{* 2}(t)\right) & \leqq \sum_{j=1}^{N} E\left(\xi_{j}^{2}(t)\right) \\
& =\sum_{j=1}^{N} E\left(\frac{\beta_{j}^{2}(t)}{\left(\sum_{k=1}^{N} \bar{H}_{k}\left(Z_{j}\right)\right)^{2 \alpha}}\right)=\sum_{j=1}^{N} E\left(\frac{\beta_{j}(t)}{\left(\sum_{k=1}^{N} \bar{H}_{k}\left(Z_{j}\right)\right)^{2 \alpha}}\right) \\
& \leqq \frac{1}{\left(\sum_{k=1}^{N} \bar{G}_{k}(T)\right)^{2 \alpha-1}} \int_{-\infty}^{t} \frac{\sum_{j=1}^{N} \bar{G}_{j}\left(s^{-}\right)}{\bar{F}^{2 \alpha}(s)\left(\sum_{k=1}^{N} \bar{G}_{k}(s)\right)} d F(s) \\
& \leqq \frac{1}{(\bar{G}(N, T))^{2 \alpha-1}} \int_{-\infty}^{t} \frac{\bar{G}\left(N, s^{-}\right)}{\bar{F}^{2 \alpha}(s) \bar{G}(N, s)} d F(s) \\
& =\frac{1}{(2 \alpha-1)(\bar{G}(N, T))^{2 \alpha-1}}\left(\frac{1}{(\bar{F}(t))^{2 \alpha-1}}-1\right) \\
& \leqq \frac{1}{(\bar{G}(N, T) \bar{F}(T))^{2 \alpha-1}}=\frac{1}{\left(m_{N}(T)\right)^{2 \alpha-1}} .
\end{aligned}
$$

Hence using the notations of Lemma 3.1, with

$$
U=\frac{\left(m_{N}(T)\right)^{\alpha}}{2}, \quad \Lambda=\sum_{j=1}^{N} \lambda_{j}=\frac{2}{\left(m_{N}(T)\right)^{2 \alpha-1}}, \quad U \Lambda=1
$$

we have for any $0 \leqq \varepsilon \leqq 1$ and any $t \leqq T$

$$
P\left(\left|\sum_{j=1}^{N} \xi_{j}^{*}(t)\right|>\varepsilon\right) \leqq 2 \exp \left\{-\frac{\varepsilon^{2}\left(m_{N}(T)\right)^{2 \alpha-1}}{4}\right\}
$$

To estimate the supremum in $(-\infty, T)$ observe that

$$
\eta_{N}(t)=\sum_{j=1}^{N} \xi_{j}(t)=\int_{-\infty}^{t} \frac{1}{m_{N}^{\alpha}(u)} d B_{N}(u), \quad l_{N}(t)=\sum_{j=1}^{N} E\left(\xi_{j}(t)\right)=\int_{-\infty}^{t} \frac{1}{m_{N}^{\alpha}(u)} d b_{N}(u)
$$

are both monotone nondecreasing functions of t. Suppose that $m_{\mathrm{N}}(T)>1$ then $l_{N}(t) \leqq|\log \bar{F}(t)|$. (As by $m_{N}(T) \geqq 1,1 \leqq \alpha \leqq 2, l_{N}(t)=\int_{-\infty}^{t} \frac{1}{m_{N}^{\alpha}(t)} d b_{N}(t) \leqq \int_{-\infty}^{t} \frac{1}{m_{N}(t)}$ $\left.d b_{N}(t)=|\log \bar{F}(t)|.\right)$ For a fix $0<\varepsilon<1$ consider a partition of the interval $(-\infty, T) \quad-\infty=u_{0}<u_{1} \ldots<u_{L(\varepsilon)}=T$ such that

$$
\begin{equation*}
l_{N}\left(u_{i}\right)-l_{N}\left(u_{i-1}\right)<\frac{\varepsilon}{3} \quad i=1,2, \ldots, L(\varepsilon) \quad \text { and } \quad L(\varepsilon) \leqq \frac{3|\log \bar{F}(T)|}{\varepsilon}+1 \tag{4.14}
\end{equation*}
$$

Since $l_{N}(t)$ is continuous such a partition easily can be constructed. If

$$
\left|\eta_{N}\left(u_{i-1}\right)-l_{N}\left(u_{i-1}\right)\right| \leqq \frac{\varepsilon}{3} \quad \text { and } \quad\left|\eta_{N}\left(u_{i}^{-}\right)-l_{N}\left(u_{i}\right)\right| \leqq \frac{\varepsilon}{3},
$$

then by the monotonicity of $\mathrm{n}_{N}(t)$ and $l_{N}(t)$ and (4.14) for any $u_{i} \leqq t<u_{i+1}$,

$$
\left|\eta_{N}(t)-l_{N}(t)\right| \leqq \frac{\varepsilon}{3}+2 \frac{\varepsilon}{3}=\varepsilon .
$$

Consequently, if $\sup _{-\infty<t \leqq T}\left|\eta_{N}(t)-(-\log \bar{F}(t))\right|>\varepsilon$ then for some $0 \leqq i \leqq L(\varepsilon)$

$$
\left|\eta_{N}\left(u_{i}\right)-l_{N}\left(u_{i}\right)\right|>\frac{\varepsilon}{3} \quad \text { or }\left|\eta_{N}\left(u_{i}^{-}\right)-l_{N}\left(u_{i}\right)\right|>\frac{\varepsilon}{3} .
$$

Thus we have ${ }^{1}$ that if $m_{N}(T) \geqq 1$

$$
\begin{align*}
& P\left(\sup _{-\infty<t \leqq T}\left|\int_{-\infty}^{t} \frac{1}{m_{N}^{\alpha}(s)} d B_{N}(s)-\int_{-\infty}^{t} \frac{1}{m_{N}^{\alpha}(s)} d b_{N}(s)\right|>\varepsilon\right) \\
& \quad \leqq 2 \cdot 2 L(\varepsilon) \exp \left\{-\frac{\varepsilon^{2} m_{N}^{2 \alpha-1}(T)}{4 \cdot 3^{2}}\right\} \\
& \quad \leqq 4\left(\frac{3|\log \bar{F}(T)|}{\varepsilon}+1\right) \exp \left\{-\frac{\varepsilon^{2} m_{N}^{2 \alpha-1}(T)}{36}\right\} \tag{4.15}
\end{align*}
$$

Consider now the sequence T_{N} defined by (4.6). Observe that

$$
\begin{equation*}
m_{N}\left(T_{N}\right)=\bar{G}\left(N, T_{N}\right) \bar{F}\left(T_{N}\right)=\bar{G}\left(N, T_{N}\right) \sqrt{\frac{\log N}{\bar{G}\left(N, T_{F}\right)}} \geqq \sqrt{\log N \bar{G}\left(N, T_{F}\right)}>1 \tag{4.16}
\end{equation*}
$$

if $N \geqq N_{1}\left(\geqq N^{*}\right)$ by (1.2).
Consequently for any $T \leqq T_{N}, m_{N}(T)>1$, if $N \geqq N_{1}$. Thus (4.15) is valid for any $T \leqq T_{N}$, if $N \geqq N_{1}$.

Let $\varepsilon_{N}=\frac{\sqrt{4 \cdot 36 \log N}}{\left(m_{N}(T)\right)^{\frac{1}{2}(2 \alpha-1)}}$. Then for any $T \leqq T_{N}$

$$
4\left(\frac{3|\log \bar{F}(T)|}{\varepsilon_{N}}+1\right) \leqq 4\left(\frac{3\left|\log \bar{F}\left(T_{N}\right)\right|}{\varepsilon_{N}}+1\right) \leqq 4\left(\frac{3 \log N}{\sqrt{4 \cdot 36 \log N}} N^{\frac{2 \alpha-1}{2}}+1\right) \leqq N^{2}
$$

if $N \geqq N_{2}\left(\geqq N_{1}\right)$ (as $m_{N}(t) \leqq N$ for any $t, \bar{G}(N, T) \leqq N$, for any $T, \alpha \leqq 2$, and by the definition of $T_{N} \quad\left|\log \bar{F}\left(T_{N}\right)\right| \leqq \log N$, if N is big enough). Consequently for any $T \leqq T_{N}$ we have

$$
\begin{aligned}
& \sum_{N \geqq N_{2}}^{\infty} P\left(\sup _{-\infty<t \leqq T}\left|\int_{-\infty}^{t} \frac{1}{m_{N}^{\alpha}(s)} d\left(B_{N}(s)-b_{N}(s)\right)\right|>\frac{12 \sqrt{\log N}}{\left(m_{N}(T)\right)^{\frac{1}{2}(2 \alpha-1)}}\right) \\
& \quad \leqq \sum_{N \geqq N_{2}}^{\infty} N^{2} \exp \{-4 \log N\}<+\infty
\end{aligned}
$$

which proves our statement.

[^1]Lemma 4.5. If T_{N} is defined by (4.6), $1<\alpha \leqq 2$ arbitrary, and (1.2) holds, then for almost all ω there exists an $N_{0}^{*}(\omega)$ such that for $N \geqq N_{0}^{*}(\omega)$

$$
\int_{-\infty}^{T} \frac{1}{m_{N}^{\alpha}(u)} d B_{N}(u) \leqq \frac{2}{(\alpha-1) m_{N}^{\alpha-1}(T)} \quad \text { for any } T \leqq T_{N}
$$

Proof.

$$
\begin{equation*}
\int_{-\infty}^{T} \frac{1}{m_{N}^{\alpha}(u)} d B_{N}(u)=\int_{-\infty}^{T} \frac{1}{m_{N}^{\alpha}(u)} d\left(B_{N}(u)-b_{N}(u)\right)+\int_{-\infty}^{T} \frac{1}{m_{N}^{\alpha}(u)} d b_{N}(u) \tag{4.17}
\end{equation*}
$$

The first term of (4.17) can be estimated by Lemma 4.4. On the other hand

$$
\begin{align*}
\int_{-\infty}^{T} \frac{1}{m_{N}^{\alpha}(u)} d b_{N}(u) & =\int_{-\infty}^{T} \frac{\bar{G}\left(N, u^{-}\right)}{(\bar{F}(u) \bar{G}(N, u))^{\alpha}} d F(u) \\
& \leqq \frac{1}{(\bar{G}(N, T))^{\alpha-1}} \int_{-\infty}^{T} \frac{1}{\bar{F}^{\alpha}(u)} d F(u) \\
& \leqq \frac{1}{(\bar{G}(N, T))^{\alpha-1}(\alpha-1) \bar{F}^{\alpha-1}(T)}=\frac{1}{(\alpha-1) m_{N}^{\alpha-1}(T)} . \tag{4.18}
\end{align*}
$$

From (4.17), (4.18) and Lemma 4.4 for almost all ω there exists an $N_{0}(\omega)$ ($\geqq N^{*}$) such that for $N \geqq N_{0}(\omega)$, for any $T \leqq T_{N}$

$$
\begin{aligned}
\int_{-\infty}^{T} \frac{1}{m_{N}^{\alpha}(u)} d B_{N}(u) & \leqq \frac{12 \sqrt{\log N}}{m_{N}(T)^{\frac{1}{2}(2 \alpha-1)}}+\frac{1}{(\alpha-1) m_{N}^{\alpha-1}(T)} \\
& \leqq \frac{1}{(\alpha-1) m_{N}^{\alpha-1}(T)}\left(1+\frac{12 \sqrt{\log N}}{m_{N}(T)^{\frac{1}{2}}}\right)
\end{aligned}
$$

By condition (1.2) there exists an $N_{0}^{*}\left(\geqq N_{0}\right)$ such that if $N \geqq N_{0}^{*}$ then $\frac{12 \sqrt{\log N}}{m_{N}(T)^{\frac{1}{2}}} \leqq 1$, which proves the Lemma.

Proof of Theorem 1. First observe that

$$
\begin{aligned}
& \sup _{-\infty<u<+\infty}\left|F_{N}^{*}(u)-F(u)\right| \leqq \sup _{-\infty<u \leqq T_{N}}\left|F_{N}^{*}(u)-F(u)\right|+\sup _{T_{N}<u<+\infty}\left|F_{N}^{*}(u)-F(u)\right| \\
& \quad \leqq \sup _{-\infty<u \leqq T_{N}}\left|F_{N}^{*}(u)-F(u)\right|+\sup _{T_{N} \leqq u<+\infty}\left|\bar{F}_{N}^{*}(u)-\bar{F}(u)\right| \leqq \sup _{-\infty<u \leqq T_{N}}\left|F_{N}^{*}(u)-F(u)\right| \\
& \quad+\left|\bar{F}_{N}^{*}\left(T_{N}\right)-\bar{F}\left(T_{N}\right)+\bar{F}\left(T_{N}\right) \leqq 2 \sup _{-\infty<u \leqq T_{N}}\right| F_{N}^{*}(u)-F(u) \mid+\bar{F}\left(T_{N}\right)
\end{aligned}
$$

as both \bar{F}_{N}^{*} and \bar{F} are monotone nonincreasing. By the definition of T_{N} it's enough to consider

$$
\sup _{-\infty<u \leqq T_{N}}\left|F_{N}^{*}(u)-F(u)\right| .
$$

Using Lemma 4.1 and applying the same argument for (4.4) which was used in [3] (Lemma 2.2, (2.7) in Lemma 2.3, and Lemma 2.5) we get that under conditions (1.2) if,

$$
\begin{equation*}
\sup _{-\infty<u \leqq T_{N}}\left|R_{N}(u)-R(u)\right| \leqq \frac{2}{3} \quad \text { a.s. } \tag{5.1}
\end{equation*}
$$

then

$$
\begin{align*}
\sup _{-\infty<u \leqq T_{N}}\left|F_{N}^{*}(u)-F(u)\right| \leqq & 4 \int_{-\infty}^{T_{N}} \frac{1}{M_{N}^{2}(s)} d B_{N}(s) \\
& +2 \sup _{-\infty<u \leqq T_{N}} \bar{F}(u)\left|R_{N}(u)-R(u)\right| \quad \text { a.s. } \tag{5.2}
\end{align*}
$$

From Lemma 4.2 and Lemma 4.5 follows that

$$
\int_{-\infty}^{T_{N}} \frac{1}{M_{N}^{2}(s)} d B_{N}(s) \leqq 2^{2} \int_{-\infty}^{T_{N}} \frac{1}{m_{N}^{2}(s)} d B_{N}(s)=O\left(\frac{1}{m_{N}\left(T_{N}\right)}\right) \leqq O\left(\frac{1}{\sqrt{\log N \bar{G}\left(N, T_{F}\right)}}\right)
$$

as by (4.16)

$$
m_{N}\left(T_{N}\right) \geqq \sqrt{\log N G\left(N, T_{F}\right)}, \quad \text { if } N>N_{1}\left(\geqq N^{*}\right)
$$

Considering the difference $\left|R_{N}(u)-R(u)\right|$ apply Lemma 4.2, 4.3 and 4.5 with α $=\frac{3}{2}$ for the first term of (4.5) and for the second term apply Lemma 4.4 with α $=1$. Then for any $u \leqq T_{N}$

$$
\begin{align*}
\left|R_{N}(u)-R(u)\right| & \leqq \int_{-\infty}^{u} \frac{\left.2 \mid M_{N}(s)-m_{N}(s)\right) \mid}{m_{N}^{2}(s)} d B_{N}(s)+\sup _{-\infty<t \leqq u}\left|\int_{-\infty}^{t} \frac{1}{m_{N}(s)} d\left(B_{N}(s)-b_{N}(s)\right)\right| \\
& \leqq 2 \sqrt{2^{9} \log N} \int_{-\infty}^{u} \frac{1}{m_{N}^{3 / 2}(s)} d B_{N}(s)+\sup _{-\infty<t \leqq u}\left|\int_{-\infty}^{t} \frac{1}{m_{N}(s)} d\left(B_{N}(s)-b_{N}(s)\right)\right| \\
& \leqq 2^{3} \sqrt{2^{9} \log N} \frac{1}{\sqrt{m_{N}(u)}}+\frac{12 \sqrt{\log N}}{\sqrt{m_{N}(u)}}=O\left(\sqrt{\frac{\log N}{m_{N}(u)}}\right) \quad \text { a.s. } \tag{5.4}
\end{align*}
$$

Hence by (4.16)

$$
\begin{equation*}
\sup _{-\infty<u \leqq T_{N}}\left|R_{N}(u)-R(u)\right|=O\left(\sqrt{\frac{\log N}{m_{N}\left(T_{N}\right)}}\right) \leqq O\left(\left(\frac{\log N}{\bar{G}\left(N, T_{F}\right)}\right)^{\frac{1}{4}}\right) \quad \text { a.s. . } \tag{5.5}
\end{equation*}
$$

Hence (5.1) holds if $N \geqq N_{1}$.
From (5.2), (5.3), (5.5)

$$
\begin{aligned}
& \sup _{-\infty<u \leqq T_{N}}\left|F_{N}^{*}(u)-F(u)\right| \leqq O\left(\frac{1}{\sqrt{\log N \bar{G}}\left(N, T_{F}\right)}\right)+\sup _{-\infty<u \leqq T_{N}} \bar{F}(u) O\left(\sqrt{\frac{\log N}{m_{N}(u)}}\right) \\
& \leqq O\left(\frac{1}{\sqrt{\log N \bar{G}\left(N, T_{F}\right)}}\right)+\sup _{-\infty<u \leqq T_{N}} \bar{F}(u) O\left(\sqrt{\frac{\log N}{F(u) \bar{G}(N, u)}}\right) \leqq O\left(\frac{1}{\sqrt{\log N \bar{G}\left(N, T_{F}\right)}}\right) \\
& \quad+\sup _{-\infty<u \leqq r_{N}} \sqrt{\bar{F}(u)} O\left(\sqrt{\frac{\log N}{\bar{G}(N, u)}}\right) \leqq O\left(\frac{1}{\sqrt{\log N \bar{G}\left(N, T_{F}\right)}}\right)+O\left(\sqrt{\frac{\log N}{\bar{G}\left(N, T_{F}\right)}}\right) \\
& =O\left(\sqrt{\frac{\log N}{\bar{G}\left(N, T_{F}\right)}}\right) \quad \text { a.s. }
\end{aligned}
$$

and the theorem follows.

Remark 1. From our proof it is clear that we may give a concrete bound instead of using the O symbol. But this bound would be very crude.

Remark 2. Corollary 1 easily follows from Theorem 1. For this it's enough to observe that all of the lemmas and statements are valid for $(-\infty, t]$ using conditions of the corollary instead of the conditions of Theorem 1.

Remark 3. Corollary 2 covers the i.i.d. censoring case ($\alpha=1$) and gives slightly weaker result then (1.1).

References

1. Földes, A., Rejtö, L.: Strong uniform consistency for nonparametric survival estimators from randomly censored data. Ann. Statist. 9, 122-129 (1981)
2. Földes, A., Rejtö, L.: Asymptotic properties of the nonparametric survival curve estimators under variable censoring. The First Pannonian Symposium on Mathematical Statistics. Lecture Notes in Statistic 8, 55-71. Berlin-Heidelberg-New York: Springer 1981
3. Földes, A., Rejtö, L.: A LIL type result for the product limit estimator on the whole line. Z. Wahrscheinlichkeitstheorie verw. Gebiete 56, 75-86 (1981)
4. Földes, A., Rejtö, L.: Asymptotic properties of the nonparametric survival curve estimators under variable censoring. Unpublished Technical Report of the Math. Inst. of the Hungarian Academy of Sciences No. 38/1979, Budapest
5. Gill, R.D.: Censoring and stochastic integrals. Mathematisch Centrum Amsterdam, 1979
6. Kaplan, E.L., Mcier, P.: Nonparametric estimation from incomplete observation. J. Amer. Statist. Assoc. 58 U, 457-481 (1963)
7. Petrov, V.V.: Sums of independent random variables. Berlin-Heidelberg-New York: Springer 1975
8. Singh, R.S.: On the Glivenko-Cantelli theorem for weighted empiricals based on independent random variables. Ann. Probability 3, 371-374 (1975)
9. Rényi, A.: Probability theory. Amsterdam: North-Holland 1970
10. Wellner, Jon A.: Limit theorems for the ratio of the empirical distribution functions to the true distribution function. Z. Wahrscheinlichkeitstheorie verw. Gebiete 45, 73-88 (1978)

Received June 13, 1980; in revised form May 2, 1981

[^0]: * Mathematical Institute of the Hungarian Academy of Sciences. This research was done while the author was visiting the Departments of Statistics and Mathematics at Purdue University. The author would like to acknowledge the financial assistance of the two departments

[^1]: ${ }^{1}$ A similar but weaker inequality is proved in [4]

