Zeitschrift fiir

Z. Wahrscheinlichkeitstheorie verw. Gebiete Wahrscheinlichkeitstheorie
58, 69 —85 (1981) und verwandte Gebiete

© Springer-Verlag 1981

Almost Sure Entropy and the Variational Principle
for Random Fields with Unbounded State Space

Hansrudolf Kiinsch
Mathematikdepartement, ETH-Zentrum, CH-8092 Ziirich, Switzerland

0. Introduction

A random field is a stochastic process (X,),.z« indexed by the integer lattice Z°.
A random field is called Gibbsian if the conditional distributions of X, i€V,
given the values X ;, j¢V, can be written in terms of an energy function for all
finite V=Z? (cf. e.g. [8]). If several Gibbsian fields with the same energy exist,
it is interpreted as phase tramsition. The Gibbs variational principle says that
among all stationary random fields the Gibbsian fields are characterized by the
fact that they minimize a suitable free energy which is a justification for calling
the Gibbsian fields equilibria. It was proved by Lanford and Ruelle [4] if the
X, take only the two values 0 or 1. Follmer [1] discovered a connection of this
with information theoretic quantities: He proved that the information gain of a
stationary field over a Gibbsian field is the difference of the free energies. The
variational principle is then equivalent to the claim that two stationary fields
have information gain zero iff they have the same conditional distributions for
finite sets given the outside.

If the state space is unbounded, new difficulties arise because in general
uniform bounds are no more available. Usually one works here with the
superstability and regularity assumptions (see [11, 12]) which give powerful
estimates for the conditional distributions (Ruelle [12]). With the help of these
estimates Lebowitz and Presutti [5] proved the existence of the so called
pressure, and with this result Pirlot [7] showed that Gibbsian fields minimize
the free energy and that two Gibbsian fields with the same energy have
information gain zero. A general result of Preston [8] says in our situation
that if the information gain of a stationary random field with respect to a
Gibbsian field with energy of finite range is zero, it must be Gibbsian with the
same energy. The case of infinite range is still open.

This paper contains the following results: We prove almost sure and L;-
convergence of the entropy for Gibbsian fields (d-dimensional version of the
theorem of McMillan-Breiman) which gives us also an almost sure version of
the variational principle. Secondly we show that the formula information gain
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equal difference of free energies holds also for unbounded state space. This
formula makes it possible to prove Prestons result about information gain
mentionned before also in cases of infinite range of the energy. Moreover our
approach gives new proofs for the existence of pressure and of Pirlots results.
It consists essentially in proving that the conditional density approximates
in some sense the absolute density (Sect. 3). In the case of finite state space
this is not very hard to prove (Follmer [1], formula (4.22)), but in our case it
requires rather complicated estimates and a condition somewhat stronger than
regularity. In Sect.2 we prove the almost sure and L,-convergence of
the energy with a version of the ergodic theorem for nonadditive functions.
Section 4 contains the main results.

The author wishes to express his gratitude to H. Féllmer for suggesting the problem and helping
with valuable suggestions. Thanks are also due to Gallavotti for a stimulating discussion.

1. Definitions and Assumptions

We consider the configuration space X =(R")%, ie. the set of all functions
x: Z*>R" x; will be the value at the site i. Let & be the o-field generated by
the projections x—x;, ieZ’. A R"-valued random field is then a probability
measure on (X, #). A random field u will be called stationary if u is invariant
under all shifttransformations 6,, i€Z?, where (6,x),=x,,,. We will call u
tempered (in the sense of Ruelle [117) if

(1.1) p{N(Y x2<N2@n+1) =1, where .|
N onilgn
is the norm on Z* defined by |i|=max (i |, ..., li]).

For any D<=Z? #(D) will be the o-field generated by the projections x—x;,
ieD. ¥" denotes the set of all finite subsets of Z“. The letters ¥V and W will be
reserved for elements of ¥ |V| denotes the cardinality of the set Ve?”

We start with an energy U, ie. a family of measurable functions U, Ve?,
U,: (R >R which satisfies the following consistency and normalizing con-
ditions

(1.2) U,(x)=Up(x) if W<V and x,=0 for all ie V\W, U, (0)=0.
The corresponding interaction I is defined by
(1.3) Ly w()=Uyw(X) = Uy (x) = Uy (x)  (VnW=0),

and the potential ® by

(1.4) Dy(x)= 3 (DY (x).

wWev

It follows from (1.2) and (1.4) that

(1.5) U= > @u(x) and @,(x)=0 if x;=0 for some icV.
S owev

Usually we will work rather with the interaction than with the potential.
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We will always suppose that the energy is stationary, ie.
(1.6) Uy (x)=U,,(0_,x) (i€Z?, VeV").
As the need arises, we will impose the following conditions on U:

(1.7) Definition. An energy U is called superstable if there exist A>0 and
BeR such that U,(x)2AY x?+B|V| for all Ve7" It is called regular (super-

ieV
regular) if there exists Y:N-—IR_ monotonically decreasing with
Y W(n)n?~! < oo such that

Iy wll =5 3 w(li—jed +x37),

icV, jeW

respectively
Iy wGI= Y wlli=ihIxillx;l

ieV, jeW
Superstability and regularity were introduced by Ruelle [12]. Superregularity
which is slightly stronger than regularity is new here, it will be needed for our
main result (Theorem 3.14).

With the same methods as in [8], p. 95-100, it can be shown that to every

superstable energy there exists a consistent family of conditional distributions
with respect to B(V°), Ve, which are of the following form

=7"(x|y) doy(x) (xe(R")", ye(R")") if yeR,

=0 if y¢R,.
Here dwy(x) is a product reference measure | [ dw(x;) on (R"Y with
ieV
(1.8) fexp(—cxP)do(x)<co  (c>0),

R, is an element of #(V*), the set of nice boundary conditions y for which
I, y(xy) is well defined, and

(1.9) " (x| y)=Z, ()" exp(—= Uy () =1 ye(x))
where
(1.10) Zy(y)={ exp(—U,(x) =1, y(x)) dewy,(x).

All probability measures v on X for which the above conditional distributions
are a version of E(.{# (V) are called equilibria. If there is more than one
equilibrium, we say that phase transition occurs. The set of all stationary
tempered equilibria will be denoted by 4,(U). A result of Lebowitz-Presutti
([5]. Theorems 4.3 and 4.5) tells us that 4,(U) is not empty when U is super-
stable and regular. The proof of this result uses the following basic estimate of
Ruelle [12]:
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(1.11) Theorem. If the energy U is superstable and regular, then there exists to
any y<A a & such that for all V< We”

j " (x]0) de\V(xW\V)éeXP(_V Z x;+0[V])

ieV
(0 is the boundary condition y with y,=0 for all i¢W).

The same arguments as in the proof of this theorem show that the same
estimate holds also for v, (x), the density of v|g,, with respect to dewy,(x) if v is in
G (U) with U superstable and regular (see Lebowitz-Presutti [5], Theorem 4.4,
or Ruelle [117).

We will use these estimates in Sect. 3.

(1.12) Examples Let n=1.

) Uy(x)=Y x?+ Y a;_;x;x; with a¢,=a_, and ) |a,[<oo. Then regularity
ieV i+j k
is satisfied under a mild condition on the decay of the a, and implies also

superregularity. We introduce P(x)=1— ) a, ™. It is easily seen that U is
k0

superstable iff inf P(x) >0, in fact A=inf P(x), B=0. If dw(x) is the Lebesgue-

measure, then it can be shown by generalizing the results of Rosanov [10],
Spitzer [13] and Kiinsch [3] that the Gaussian field with spectral density
(2m)~44P(x)~! is in %4(U). But in order to have %,(U)=*0 it is sufficient to
have P(x)20 and | P(x)~'dx<co. So we have examples where the super-
[- =, =}d

stability condition is not satisfied.

i) Uy (x)=) F(x)+ Y b;;;G(x;,x;,x) where b is invariant under

ieV i+j*k

translations and permutations of the indices and G is symmetric in its argu-
ments. If Z ;| <00 and |G(x, y, z)| = const. (x?+y?+2z?), then this energy is

regular, and if F is bounded below and grows quick enough at infinity, it is
also superstable. Like this example we can construct energies where the poten-
tial @, is not zero for arbitrarily big |V|.

2. Energy and Mean Entropy

We want to define the average enmergy of a configuration x as the limit of
|V~ U,(x) as V tends to Z*. We will prove the existence of this limit by using
ergodic theorems for Z¢ It is known that for these theorems it is necessary
that ¥V tends to Z“ in some regular way which we are going to define now.

(2.1) Definition. For Fey” we define the “r-inside” V() as the set {ieV,
li—jl>r for all j¢V} and the “r-outside” V(r) as the set {ieZ’, |i—j|<r for a
jeVl}.

(2.2) Definition. A sequence (V,) is called a van Hove sequence if V,e? V,
increases monotonically to Z* and for all reN hmIV(r)\V( )I/]VI—O It is
called regular if moreover there exists a sequence of cubes F,=V, such that
sup |F,|/|V,| < co.
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A van Hove sequence allows us to neglect boundary terms, and a regular
sequence is also “round enough”. If now Z is a random variable and u is
stationary with E (|Z[)<oo, then the following ergodic theorem holds (see
Tempel'man [14] or Nguyen and Zessin [6]): [V,[™1 Y Zo0,—E(Z|.5) (J is

ieV,
the o-field of invariant events) in L, (du) if (V) is van Hove and a.s. (dy) if (V)
is regular.

Except in trivial cases the energy U, (x) is not of the form ) Zo0;, but the
isV
regularity condition allows us to control the difference between U, (x) and an
additive expression. We have

(2.3) Lemma. Let V=) V, with V,nV,=0 (%)) and let U be regular. Then we
k=1

J

have

<5 5 ¥ (T vlli-i)

1 ieVy JEVi

Proof. By induction on m.

Let us sketch first how one can reduce the convergence of |V,|=' U, (x) to
the additive case by using the above lemma: we partition Z¢ in cubes of size p*
parallel to the axes:

F, ,={eZ’ (k—1)p<ji<kp (i=1,..,d)} (keZ’ peN).

Let J, , be the following set {keZ’, F, ,&V,}. For any pelN and g<p/2 V. is

p k=

then the wunion of three disjoint subsets: U F, 9 V2
keJ,l o
U (F, \F, (@) and V2=V \V\V2 We write now U, = ). U,  +er-
kedy, p kedyn
ror, and because of Lemma (2.3) the error is bounded by ) w, X Z-{— SUx)!
ieVy, leV

with some weights w,. If g is big, then the w, are small for all ieV’, and if p
and n are also big, most points of V, will belong to V1.
We are going now to make the above arguments exact.

(24) Lemma. Let pu be stationary with E/(X])<o. For all p,g
Hm |V,|=' Y X? exists in Li(dp) if (V,) is vanHove and as. (dp) if (V,) is

16V2
regular. Forflxed q these limits tend to zero in L (dy) for p— co.
Proof. We have [|V,|='Y X?=p*lJ, J/IV,I-\, I”" > Z, where Z,

ieV2 keJn, p
=p~ 4 3 X? The first ratio on the right tends to 1 because of the
i€Fp. 1k~ Fp, @) .
van Hove condition, and the second term converges because of the ergodic

theorem since (J, ), is also van Hove and regular if (V) is so as one sees

easily. Furthermore because of L,-convergence E(lim|V,|=" Y X7)=E(X})
(1—(1—24/py). so the last claim follows also. [] eV

(2.5) Theorem. Let U be a stationary and regular energy and u stationary with
E,(X})<oo and E\Ul<oo. V|71 Uy, (x) converges then in L(dy) for any
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van Hove sequence and also a.s. (dy) if (V) is regular. The limit does not depend
on the sequence (V).

Proof. We are going to show a.s. convergence (the arguments for L,-
convergence are the same). Fix a regular sequence (V,). We want to show that
|V,I=' Uy, (x) is a.s. a Cauchy sequence.
Let >0 be given. First, we choose g such that Y y(k])<s, and after a p
|ki>q
such that l1m|V| 'YX ?<¢ (this is possible because of Lemma (2.4): By
V2

choosing a subsequence we get also a.s. convergence in p). It then follows from
Lemma (2.3):

(2.6) WU )=V, U, ()]
SV Y Up =V Y Uy,
kedy, p keJwm, p
+Zl//(|kl WV ITH Y X2V (Uix
eV} ieV3
+ Z Yk IV Y X2+Zlﬂ(|k| AP &
k] >q eV} iev2

+same terms with m 1nstead of n.

Because of the van Hove condition |V,|~p®- [/, ,I, and because of the ergodic
theorem |J, ,|~' Z U, is convergent. Therefore the first term on the right

hand side of (2. 6) 1s 'Zeifnand m are big enough.
Since |V,|~|V,'OV2, lim|V,|= Y X2=Ilim|V,|~' Y X7. Therefore, the

ieVa 16V1UV2
second term is also <¢ for n big enough, and the same argument applies also

to the third term. Combining these results:

2.7) VI~ Gy, () =1V, Uy, (0]
<58+282(// |k|) +28sup|V! Ly X7

ieVy,
for n and m big enough. The last supremum is finite because of the ergodic
theorem.
Using L;-convergence and the same arguments as before, we find:

E, Hm|V, =" U, (x)—lim[V,[=" ¥ Up ()

kedu, p

SE(XD) Y y(kD+E, (Xz)Zlﬁ (k1= (1—2q/p))

[k}>q

which is arbitrarily small if p and g are big enough. But

im|V, =t Y Up, ()=p~*E(Uy, ,|.%)

kedn, p

where ., is the o-field invariant unter translations pk, keZ‘. Therefore
hmIVI "y Uy, (x)=limp~“ E(Uy, ,|.#,) independent of (V). [
p
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(2.8) Definition. The mean energy e of a stationary field u is defined as

e(W=lim|V,|"* E (U, (x)) if E,[U,[< oo (V€¥") and the limit exists
for all van Hove sequences and is independent
of the chosen sequence,

=400  otherwise.

(2.9) Remarks. 1) Usually the convergence of energy is proved under a con-
dition on the potential &, e.g. we have L,- and as. convergence if

Y [VI=*®,| is in L, (Follmer, private communication, see also Nguyen-
Va0

Zessin [6], Remark (7.21)). But if @, <40 for |V|>2 it is not clear whether the
above condition follows from regularity. From (1.4) we get for instance @ ; 5
=Iy =L~ Ly.g I we use regularity for every term, we get + oo
after summation over all j and k.

ii) In the proof of Theorem (2.5) we have never used the consistency
conditions (1.2). Moreover, the same arguments apply if we replace X7 in the
definition of regular by any Zo6,. However, we do not know if these ergodic
theorems follow also from the results of Nguyen-Zessin [6]. We notice also
that we did not show in Theorem (2.5) that the limit is .#-measurable.

If u is stationary with ply,,,<dw,, we denote the density of ulgy, with
respect to dw, by u,(x). As in the case of the energy we would like to define
the average entropy as the limit of —|V|~!logu,(x), but at the present stage
we are not able to prove the convergence of this expression. It will follow
easily after the estimates of Sect. 3. At the moment we recall a result of Ruelle
which says that at least |V|~" E,(log u;(x)) converges.

(2.10) Theorem (Ruelle). If u is stationary with Eﬂ(XiZ)<oo and jilgq,<dwy,
then for every van Hove sequence (V) |Vn|‘1Eu(10g,u.V(x)) converges to
sup|F,|= ' E,(log p, (X)) (+ o as value for lim and sup must be allowed).

p

Proof. If dw is a probability measure on R”, the result is well known, see for
instance Preston [8], Theorem 8.1. If dw is not a probability measure, we
consider d@(x)=exp(a—x*)dw(x) with a suitable a. [J

(2.11) Definition. The mean entropy of a stationary field x is defined as

s(wy=—lim|V |1 E (log uy (x)) if the density u,(x) exists
and is integrable and if the limit exists for every van Hove sequence
and is independent of the chosen sequence,
=—o0 otherwise.

3. Absolute and Conditional Density

If v is an equilibrium then v|,, <dw,, and the density is given by

(3.1) vy (x)=f ¥ (x1y) dvye(y).
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Since the interaction between distant points is small, it is intuitively clear that
the different boundary conditions y will not have much influence in the
interior of V. This would mean that we can approximate the right hand side of
(3.1) by n"(x|y,) with some fixed boundary condition y,. For simplicity we
take y,=0. We will give in this section a precise statement in which sense
vp(x) and 7" (x]0) are very close for big V. First we prove a couple of lemmas
which all follow from Jensen’s inequality.

(3.2) Lemma (Pirlot [7]). If plgz,,<dwy, and U,(x) and logu,(x) are inte-
grable, then E,(Uy(x))+E ,(log uy (x)) = —log Z,,(0).

Proof.

§ (log (exp (— Uy (x))) ~log py (x)) ty (x) dwy (x)
<log j exp(— Uy (x)) pty ()~ 1y (x) deoy (x)=log Z,,(0). [

(3.3) Lemma (Pirlot [7]). Suppose U is regular and superstable. Then

logZy(y)2log Z, (0)—3 > Y(i—jhEK+y7).

eV, jé¢v

Proof.

log (Z, (/2 (0) =10g | exp (= I, y.(x 1) 7¥ (x10) deoy ()
- Iy ye(xy) 77 (x10) dewy (x)
=3 2 Y(i=jD( x7 7" (x]0) deoy, (x)+y7).

ieV, j¢v

IV v

Now we apply the estimates of Theorem (1.11). [

(3.4) Lemma (Pirlot [7]). If U is regular and superstable and if v is in %,(U),
then we have

E,(logvy(x)) = —E,(log Z, (x)) = E,(Uy D+ K 3 y(li—jl).

eV, j¢V

Proof. By (3.1) and Jensen’s inequality for the function x log (x):

log vy, (x) vy (x) = ¥ (x| y) log (7" (x| y)) dvy(y)
=[n(xly) (=1og Zy ()= Up () +3 Y, w(li—il(] +7)) dvye(y).

icV, j¢v

Now because of Theorem (1.11) E,(X7)<oo. Superstability shows that U, (x)~
is in L, (dv), and finally Lemma (3.3) shows that (logZ,(x))~ is also in L, (dv).
Therefore the claim of the lemma follows by integrating both sides of the
above inequality with respect to dw,,(x) and applying Fubini. []

From these inequalitics we get
(3.5) Corollary. If U is regular and superstable and v is in 9 ,(U), then

i) Uy, is integrable, and
ii) E,(logZy(x))<log Z,(0)+K > y(li—j.

ieV, j¢vV
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Proof. 1) follows from (3.4): Since U,(x)~ and (logZ,(x))~ are in L,(dv), the
right hand side of (3.4) can only be equal to —oo. But the left hand side is
bounded below: If dw is a probability measure, this is obvious, otherwise we
change dw to a probability measure d& as in the proof of Theorem (2.10) and
use that E (X?) < co.

ii) is just a combination of the Lemmas (3.2) and (3.4). O

We are going now to estimate the difference logv, (x)—logn” (x|0) for
ve¥,(U). We want to show that this difference is of smaller order than |V| for
many configurations x. By definition and (3.1)

(3.6) log v, (x)—log " (x| 0)
=log(fexp(—1Iy y(x¥) Z,(0)/Z,, (y) dvy.(y)).

A lower bound follows directly from Jensen’s inequality:

(3.7) Lemma. Suppose U is regular and superstable and v is in 4,(U). Then
there exists K independent of V such that

log v, (x)~logn" (x|0)= —3 Y (li—j))(+K).

ieV, jéV
Proof. Applying Jensen’s inequality to (3.6) w:: get
log v, (x)—log ¥ (x]0)
2 — (I, ye(xy) dvye(y)+1log Z,(0)—E,(log Z, (x)).
Now we use regularity, Theorem (1.11) and Corollary (3.5) ii). [
The upper bound is much more delicate.

(3.8) Lemma. Suppose U is superregular and superstable, and v is in 4,(U).
Then there exist K, K,, K5, K, independent of V such that

logvy (x)—logn”(x[0) =K, Y d(li—jh(x|+K>)

iV, j¢v
+K5 3 (2 wli=iD(xi+Kp)* +K,.
JEV ieV
Proof. If we have superregularity instead of regularity, we can improve the
estimate of Lemma (3.3):

logZy(y)—logZ, (O)=z —K > y(li—jhly,l-

eV, j¢v

Because of (3.6) it is therefore sufficient to give an estimate of E (exp Y. a;|X )
j¢v
where a,=) (Ix/+K)y(i—jl) for short. Put a= ;,aj. Using integration by
ieV J
parts we find for any N >0:

(39) E,(exp ) a;|X;h<e™ (1+ Y év[aN+k—1<) aj[Xj|§aN+k]>
itV

k=1 JjEV

=N (1+e+(e—1) 2 vy aj|XjI>aN+k]>'
k=1 a4
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We are now going to find a bound for v[) a;|X;|>aN +k]. First we notice

that Theorem (1.11) implies that 4
(3.10) v[) Xizc]exp(d[V]—7c) fexp(—(r=7) ) x{) doy(x)
ieV ieV

=exp(d|V|—7c) forall Vand ¢ and y<y<A.
So by Schwartz inequality

GBI VY IXZIVINISVLY, X2 |VIN?]Zexp(— (IN?> =) V).

Jjev jev

Now take an enumeration (j,),.x of V¢ such that a;, Za,=... and put W,
={j1,jz. ---»J,}- Then we get by integration by parts

Y a,lX; |=11m(2(ah a, )Y X l+a; > IXkI).
J¢V ke W, keW,,

(3.11) and the Lemma of Borel-Cantelli show that as. ) [X j>nN only for
jeWn

finitely many n if we choose N2>§/7. If ) |X,[<nN for all n>r and
Y. |X,I>rN, then we have KWy
keW,

Zalej|—aN=lim(i (@,—a; )Y X, )]=iN)+a, (Y IX, [—mN))
& i=1

keW; keWim

(aji @iy (Z 'X '_ZN)

W,

>
-1
=Z X = NZa —a;  ( Z |X,|—rN)
= keW,
s>a
jeW,

G151

This shows that ) a;1X| must be >k if ) q;|X;|>aN+kand ) |X|<nN

jew, Jj¢V jeWn
for all n>r but ) |X,/>rN. But this means that we can replace the set
jeWw,

[y a;|X;|>aN +k] which depends on infinitely many coordinates by a union
v

of sets which all depend only on finitely many coordinates and whose proba-
bility can be estimated using (3.11). Namely we have

(3.12) v[z alX,|>aN+k]1< Y v[ Z a|X >k, Z X ,|>7N]

rS1 e, e,

<Zv[ZX2 K*'Y ai, ¥ |X,|>rN]

= jeWw, jeW, JEW

< Z exp(6r—max (rN?, k*/Y a?

r=1 Jjev

8
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Putting @= )" a} and inserting (3.12) in (3.9) we find
v
o0 o) _ N(ar)t/2
Y EV[Y a)|X |>aN+k]S Y exp(r(6—FN?) >
k=1 Jj¢V r=1 k=1
K2/(N2a)

+ Z exp(k—yk%/a) Y "
= r=1

II/\

i r(0—JN?)+N(ar)''?

+eé e —1) i exp (k—k*(GN2 —§)/(N?a)).

k=1

Using Lemma (3.13) below we get

E (exp Y ;| X ) Se®™(1 +e+exp(N?a/4(FN?—d)(K, + K, a'?)).
v
In order to complete the proof we take logarithms using that log(a+b)<loga
+logbh for a and b=2 and go back to the definitions of @ and @. [

Finally we give a lemma announced in the proof before.

(3.13) Lemma. There exist constants K |, K, such that for all a and b>0:

o8]

Y. exp(k—ak*)<exp(1/4a)(1+K,a '1?)
k=1
and

Y. exp(bk'?—ak)<exp(b*/4a)(1+K,a **b+K,a ").
k=1

Proof. Because exp(x—ax?) is increasing for x<(2a)~' and decreasing for
x>(2a)~! we have:

Z(exp (k—ak?) < [ exp(x—ax?) dx +exp(l/4a)

=1 1

=cexp(1/4a)(1+ [exp(—a(x—1/2a)*) dx)<exp(l/4a)(1 +a~"*K)

where K= | exp(—x?)dx. The proof of the second claim is analogous. [

Now we are able to prove our central result.

(3.14) Theorem. Let U be superregular and superstable, v in 4 (U) and u
stationary with E (X2)<oo Then V|1 (logvy (x)— logn”"(x]0)) converges to
zero in L, (dp) for every van Hove sequence and a.s. (dp) if (V) is regular.

Proof. We only have to show that the bounds of Lemma (3.7) and (3.8) go
to zero after division by |V]. All terms which occur can be treated the same

way, therefore we give the proof only for Y (3 IXy(i—j))*> We put

jEv iev
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Y,= Y (i—j)|X,. Then we have

jezd
2 XD Y X (k=D 31X Yy (i)

jeV iev keV ieV, jéV

If we call the last expression T}, we can prove the convergence of [V|~' T, as
in Theorem (2.5) (cf. Remark (2.9) ii)) since we have

Trow—Ty—Ty=— ) Y(i—jih(X,] Y +|X,|Y)
iV, jeW
which is bounded by Y Y(i—j)(X}+Y>+X}+Y?). Furthermore
ieV, jeWw

E(Y) = y(il)* E(X?). In order to see that the limit is zero we notice that

E(T)s > v(i—iD Zlﬁ(lkl )E,(X7)

i€V, jév
which is of smaller order than |V]. [J

The next theorem treats the case where we have only regularity instead of
superregularity.

(3.15) Theorem. Theorem (3.14) holds also for regular superstable energies U for
which Y y(lkl)< A, A being the constant in the definition of superstable.
k

Proof- We give only those arguments which differ from those used in (3.8) and
(3.14). For a corresponding result as Lemma (3.8) it is sufficient to find an
upper bound of E,(exp Z b; X?) where b;= ) y(li—jl). We put b= Z b;. Then

ieV
(3.9) carries over w1thout problems and with the same arguments Wthh led to

(3.12) we get
(3.16) V[ijXf>bN+k]§Zv[ZbX2>k Y X7>rN]

JEV r=1 jeW, jeW,

in(v[ ¥, b,X;>k],v[ Y X;>rN]).

1 jeWy jeW,

=

F

i []8
=

Here we have now to use a different argument in order to estimate

v[ ) b, X?>k] because Schwartz inequality does not help any more. Because
JjeW,
of the assumption Y y(lk)<A we can choose y<A and n>1 such that
k

y—nZt//(lk|)>0. Now it is not difficult to see that because of the condition on

dw there exists a constant M such that for all ¢ with y>c>y— nzw(]kl
have

[exp(—cx?)dw(x)Sexp(M(y—c)- fexp(—yx?)dw(x).
But this implies that

v[_zv:V b; X7 >k]<exp(dr—nk) [exp(— ZW (y—nb;) x7)dwy, (x)
<exp(5r—n(k—M Y. b)) <exp(6r—n(k—Mb)).

jeW,
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So we have found

(3.17) v[ Y b;X}>bN+k]< Y exp(6r—max (FN, n(k—Mb))

jeW, r=1
which can be used instead of (3.12). The rest of the proof carries over with
minor changes. [

(3.18) Remark. If we want to compare logv,(x) and logn”(x|y) for an arbi-
trary but fixed boundary condition y instead of 0 we need to estimate the
difference logZ,(y)—logZ,(0) since it can be seen immediately that
V=11, ye(xy) converges to zero. This would require again rather complicated
estimates, see for instance Lebowitz-Presutti [5], Chap. 3. We leave this prob-

lem because we can deduce all desired results already from the Theorems (3.14)
and (3.15).

4. Variational Principle, almost Sure Entropy and Information Gain

We start with the following identity
4.1) log vy, (x)= —log Z,,(0) — U, (x) + (log v (x) —log =¥ (x| 0)).

From this we first get a new proof of results of Lebowitz-Presutti [5] (existence
of pressure) and Pirlot [7] (first part of the variational principle).

(4.2) Theorem. If U is stationary, superstable and superregular (or regular with
YV (kD) <A) and if v is in G4(U), then the limit of |V,|~*logZ, (0) exists for
any van Hove sequence and is equal to —(e(v)—s(v))= —inf{e(u)—s(u), p sta-
tionary} independently of the chosen sequence.

The limit of [V |1 logZ, (0) is called the pressure and is denoted by p. The
difference e(.)—s(.) is called the free energy.

Proof. We divide (4.1) by |V| and take expectation with respect to v. Because of
Theorem (1.11) E,(X?) < o0, and because of Corollary (3.5)i) also E, |U, (x)| < 0.
The existence of the limit and the identity p= —(e(v)—s(v)) follow then from
the Theorems (2.5), (2.10) and (3.14) respectively (3.15). Finally Lemma (3.2)
implies the variational inequality —p<e(w)—s(p). O

" Together with the previous results (4.1) gives also the almost sure con-
vergence of entropy.

(4.3) Theorem. Suppose v is in 9,(U) with a superstable and superregular

energy U (or regular with Y \i(|kl)<A). Then |V,|~'logv, (x) converges in L,
3

for every van Hove sequence (V)) and also a.s. (dv) if (V) is a regular sequence,

and the limit is equal to —p~—1lim|V,|~" U, (x).

Proof. Divide (4.1) by {V] and take the limit with respect to V without taking
expectations. Then all terms on the right hand side converge, due to Theorems
(2.5), (4.2) and (3.14) respectively (3.15). O
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(4.4) Remark. L, -convergence, but not the as. convergence can be proved
under weaker conditions with the methods of Nguyen-Zessin [6]. The idea to
prove the a.s. convergence for Gibbs states via the a.s. convergence of the
energy and the pressure is due to Follmer [17.

Theorem (4.3) says that we can calculate the entropy of an equilibrium
from one typical configuration and with the energy U alone without knowing
which v out of 4,(U) has been realized. Moreover we can get also an almost
sure version of the variational principle.

(4.5) Corollary. Let U?, i=1,2, be two superstable and superregular energies
(or regular with > y(|k|)<A) with potentials ®©, and let v be in %,(UY) such
k

that Y |®P||V|~'eL,(dv) for i=1,2. Then we have for every regular sequence

Va0

(V) as. (dv):
lim V)= (U2 (x) +log vy, ()= —p®, = —p@ if UV=U®,

Proof. Under the above conditions lim|V,|~' U?(x) is .#-measurable (cf. Re-
mark (2.9)). Therefore the corollary follows from the Theorems (4.2) and (4.3) if
v is ergodic. But every stationary equilibrium is a mixture of ergodic equilibria,
see Follmer [2]. [

From (4.1) we can deduce a third result, but for this we first have to define
the information gain.

(4.6) Definition. Let v and p be stationary. The information gain of p with
respect to v is defined as

d
Al ) =lim V] (). where Hy (1 )=, (1og 2522 ().
BYV)

if —5"&(@ and the above integral exist and if the limit exists
BV)
for all van Hove sequences (independently of the chosen sequence).

=400  otherwise.

Using Jensen’s inequality it follows easily that H,(u, v)=0 iff ulyzq,=Vigq,.
Because of the division by |V| and the passage to the limit this need not to be
true for h(u, v) any more, in fact we will have counterexamples below. Let us

first show the connection between the information gain and the quantities
defined before.

(4.7y Theorem. Let p be stationary with Eu(Xiz)<oo and s(u)> — oo, and let v
be in G,(U) for some superstable and superregular energy U (or regular with

Y W(lkl)<A). Then h(u,v) is finite iff E, |Ufx)[ <0, and the following formula
k

holds
h{w, v)=e(p) —s(u) +p=e(1) — s() — (e(v) — s(v)).
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Proof. If s(u)> — oo, then plg, <dw,. Therefore
VI~ Hy(u, )=V E, (log py (x)) = V|~ ' E, (log vy (x)).

Because of Theorem (2.10) the first term converges to —s(u). If we replace
logv,(x) in the second term by the right hand side of (4.1), the proof is
completed by applying the Theorems (4.2), (2.5) and (3.14) respectively
(3.15. O

The following corollary is also in Pirlot [7].

(4.8) Corollary. Let u be stationary with E,(X})< oo, and let v be in %,(U) for
some superstable and superregular energy U (or regular with Y y(k])<A). Then

k
e(W)—s(p)y= —p=inf {e()—s(L), A stationary} iff h(u, v)=0. In particular h(u, v)
=0 if also ue9,(U).

In order to complete the variational principle we still have to show that
any stationary field minimizing the free energy is in %,(U). Because of the
above corollary this is equivalent to the claim that ue%,(U) if h(u, v)=0 for a
ve%,(U). For finite state space or finite range of the energy (ie. I, , =0 if
d(V, W)>K where d(V, W)=inf{|i—j|, ieV, jeW}) this is true very generally
(Follmer [1], Preston [8], Theorem 7.1). Without these assumptions it is very
difficult; the next result covers at least a wide class of superstable and super-
regular energies with infinite range.

(4.9) Theorem. Suppose p is stationary with E (X7?)<co and v is in 44(U) for

some superstable and superregular energy U satisfying the following additional
assumptions:

K'Y ymn'~'>0 for K—»oo, and &,=0 forall |V|>2.

n>K
Then h(u, v)=0 implies that also ue%y(U).
Proof. Consider the energies U with Uf(x)=) &,(x)+5 3 &,(x). If K is

ieV li—jl<K
big enough, U* is also superstable. The corresponding conditional distribu-
tions are denoted by #%Y, and v¥ is in g,(UX). Obviously |e(u)—eX(u)| <

$E,(X?) Y (lj). Moreover Jensen’s inequality and Theorem (1.11) show that

lil>K

log Z(0)—log Z3(0)
2 [ (= U+ ) 2 (x |0 dewy () z = VI C 3 $(l)).

ljl>K

This implies p“*—p<C ¥ (lj]), so because of Theorem (4.7)

lit>K

h(p, v6)=h(p, v)+e (W) —e(w+pS —p=const. Y (),

lil>K

ie. K4h(u, v*)—0 for K — .
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Now we are going to prove the theorem with the same arguments as
Preston [8], p.115-122, in the case of finite range. We will use the same
notations too. Let Ae#(V), BeB(W), VAW=0. Then we have (cf. Preston,
Lemmas 7.1 and 7.2):

WANB)=[ 757 (x| y)dow, () duy.()= | (a7, —1) gy dV*
B A AnB

for all V'oW' =Wu{i¢V,|i—jl<K for some jeV} (g and g are defined in [&]).
We want to show that the right hand side above tends to zero for K— o0
which will prove the theorem.

Let £¢>0 be given. Choose K, such that h(u, v¥)<e|[W'|"! for K>K,. As
in [8], Lemma 7.6, it is then shown that there is a V'= W’ such that
{(ay ) gy dv¥ <e Lemma 7.3 of [8] implies then that

WANB)— | [ 2%V (x| y)dwy(x)dpy,.(y)| < forall K>K,. [
B4

(4.10). Remarks. i) Superregularity is satisfied if y(k)~k=?~%, but the condition
of Theorem (4.9) requests a decay of ¥ of the order —(2d +¢).

ii) Preston [9] gives a sufficient conditions under which h(u, v)=0 with
ve%,(U) implies that also ue%,(U). It is a tightness condition on ¥ (x|y) for
different y and all ¥ and it can be applied also in other situations, e.g. point
processes, but we were not able to prove that it is satisfied in our situation for
all superstable and superregular energies.

Note Added in Proof

After submission of this article an error in the paper of Lebowitz-Presutti [5] was found, see the
erratum in Comm. Math. Phys. 78, 1, p. 151 (1980). It appeared that the existence of equilibria
cannot be proved with superstability and regularity alone. The additional conditions proposed to
remedy this situation are very similar to the ones used in our Theorems (3.14) and (3.15), though
our hypotheses are still a little bit stronger.
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