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O. Introduction 

A random field is a stochastic process (Xi)i~ed indexed by the integer lattice ;gd. 
A random field is called Gibbsian if the conditional distributions of Xi, i6V, 
given the values Xj, jr can be written in terms of an energy function for all 
finite V~_7/d (cf. e.g. [8]). If several Gibbsian fields with the same energy exist, 
it is interpreted as phase transition. The Gibbs variational principle says that 
among all stationary random fields the Gibbsian fields are characterized by the 
fact that they minimize a suitable free energy which is a justification for calling 
the Gibbsian fields equilibria. It was proved by Lanford and Ruelle [-4] if the 
Xi take only the two values 0 or 1. F611mer [-1] discovered a connection of this 
with information theoretic quantities: He proved that the information gain of a 
stationary field over a Gibbsian field is the difference of the free energies. The 
variational principle is then equivalent to the claim that two stationary fields 
have information gain zero iff they have the same conditional distributions for 
finite sets given the outside. 

If the state space is unbounded, new difficulties arise because in general 
uniform bounds are no more available. Usually one works here with the 
superstability and regularity assumptions (see [11, 12]) which give powerful 
estimates for the conditional distributions (Ruelle [-12]). With the help of these 
estimates Lebowitz and Presutti [-5] proved the existence of the so called 
pressure, and with this result Pirlot [-7] showed that Gibbsian fields minimize 
the free energy and that two Gibbsian fields with the same energy have 
information gain zero. A general result of Preston [8] says in our situation 
that if the information gain of a stationary random field with respect to a 
Gibbsian field with energy of finite range is zero, it must be Gibbsian with the 
same energy. The case of infinite range is still open. 

This paper contains the following results: We prove almost sure and L 1- 
convergence of the entropy for Gibbsian fields (d-dimensional version of the 
theorem of McMillan-Breiman) which gives us also an almost sure version of 
the variational principle. Secondly we show that the formula information gain 
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equal difference of free energies holds also for unbounded state space. This 
formula makes it possible to prove Prestons result about information gain 
mentionned before also in cases of infinite range of the energy. Moreover our 
approach gives new proofs for the existence of pressure and of Pirlots results. 
It consists essentially in proving that the conditional density approximates 
in some sense the absolute density (Sect. 3). In the case of finite state space 
this is not very hard to prove (FSllmer [-1 l, formula (4.22)), but in our case it 
requires rather complicated estimates and a condition somewhat stronger than 
regularity. In Sect. 2 we prove the almost sure and Ll-Convergence of 
the energy with a version of the ergodic theorem for nonadditive functions. 
Section 4 contains the main results. 

The author wishes to express his gratitude to H. FSllmer for suggesting the problem and helping 
with valuable suggestions. Thanks are also due to Gallavotti for a stimulating discussion. 

1. Definitions and Assumptions 

We consider the configuration space X=(IR~) Zd, i.e. the set of all functions 
x: 2U~IR ~. x~ will be the value at the site i. Let ~ be the a-field generated by 
the projections x~x~, is2U. A lR"-valued random field is then a probability 
measure on (X, ~). A random field # will be called stationary if # is invariant 
under all shifttransformations 0~, i~TZ d, where (Oix)j=xj+ i. We will call # 
tempered (in the sense of Ruelle [11]) if 

(1.1) #{U ~ (  Z x~<Ne(2n+l)a)} =1, where I.I 
N n l i l<n  

is the norm on 2U defined by [il=-max(lill . . . .  , [ial ). 

For any D_cTZ a N(D) will be the o--field generated by the projections x + x  i, 
ieD. 7/r denotes the set of all finite subsets of ;ge. The letters V and W will be 
reserved for elements of OF. I vI denotes the cardinality of the set VeV. 

We start with an energy U, i.e. a family of measurable functions Uv, VeYf,, 
Uv: (IR")V~IR which satisfies the following consistency and normalizing con- 
ditions 

(1.2) Uv(x)= Uw(x ) if W _  V and xi=O for all i t  V\W, U~(0)=0. 

The corresponding interaction I is defined by 

(1.3) Iv, w(X)= Uww(X ) - Uv(x ) - Uw(X ) (V~ W= r 

and the potential ~ by 

(1.4) ~v(X)= ~ (-1)lvl-lWlUw(x). 
W = V  

It follows from (1.2) and (1.4) that 

(1.5) Uv(x)= ~ qSw(X ) and @v(X)=0 if xz=0 for some ieV. 
W c V  

Usually we will work rather with the interaction than with the potential. 
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We will always suppose that the energy is stationary, i.e. 

(1.6) Uv(x)= Ur+i(O_ix ) (i~Z d, Ve~).  

As the need arises, we will impose the following conditions on U: 

(1.7) Definition. An energy U is called superstable if there exist A >0  and 
B~IR such that Uv(x)>A ~ x~+BIV[ for all VcV. It is called regular (super- 

ieV 

regular) if there exists ~ : N ~ I R +  monotonically decreasing with 
~ (n) n d 1 < o~ such that 

n 

IIv, w(X)l<�89 ~ @(li-j[)(x~+x~), 
iEV, j e W  

respectively 

IIv, w(X)l~ ~ O(li-jl) lxillxjl. 
ieV, j e W  

Superstability and regularity were introduced by Ruelle [12]. Superregularity 
which is slightly stronger than regularity is new here, it will be needed for our 
main result (Theorem 3.14). 

With the same methods as in [8], p. 95-100, it can be shown that to every 
superstable energy there exists a consistent family of conditional distributions 
with respect to .~(VC), V~ , ,  which are of the following form 

= zcv(xly) dcov(X ) (x~(lR") v, ye(lR") w) if ysR v 
=0  if yCR v. 

Here dcov(X ) is a product reference measure 1-[ dc~ on (IR") v with 
i~V 

(1.8) ~exp(-cx2) doo(x)<c~ (c>0), 

R v is an element of N(VC), the set of nice boundary conditions y for which 
Iv, vo(Xy) is well defined, and 

(1.9) 

where 

rcV (x l y) = Zv(y) -1 e x p ( -  Uv(x ) -  lv, rdX y)) 

(1.10) Zv(y ) = 5 exp ( - Ur(x ) - Iv, w(XY)) door(X ). 

All probability measures v on X for which the above conditional distributions 
are a version of E(.I~(VC)) are called equilibria. If there is more than one 
equilibrium, we say that phase transition occurs. The set of all stationary 
tempered equilibria will be denoted by (go(U). A result of Lebowitz-Presutti 
([5], Theorems 4.3 and 4.5) tells us that go(U) is not empty when U is super- 
stable and regular. The proof of this result uses the following basic estimate of 
Ruelle [12] : 
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(1.11) Theorem. I f  the energy U is superstable and regular, then there exists to 
any 7 < A  a 6 such that for all V ~ _ W ~ ' .  

~W(x 10) do~ w \v(Xw\v)<= exp ( -  7 ~ x~ + 6[Vl) 
iEV 

(0 is the boundary condition y with yi=O for all JEW). 

The same arguments as in the proof of this theorem show that the same 
estimate holds also for vv(x), the density of vl~(v) with respect to dc~v(X ) if v is in 
(Co(U) with U superstable and regular (see Lebowitz-Presutti [5], Theorem 4.4, 
or Ruelle [11]). 

We will use these estimates in Sect. 3. 

(1.12) Examples. Let n = l .  

i) U v(x) = ~ x { + ~ a,_ j x~ xj with a k = a_k and ~ l a k[ < ~ .  Then regularity 
iEV i:t:j k 

as satisfied under a mild condition on the decay of the a k and implies also 
superregularity. We introduce P(x)=  1 -  ~ ake ikx. It is easily seen that U is 

k t 0  

superstable iff in fP(x)>0,  in fact A=infP(x) ,  B=0.  If do~(x) is the Lebesgue- 
x x 

measure, then it can be shown by generalizing the results of Rosanov [10], 
Spitzer [-13] and Kfinsch [3] that the Gaussian field with spectral density 
(2n)-d lp(x)  1 is in leo(U). But in order to have ~0(U)~:0 it is sufficient to 
have P(x)>_>=O and ~ P ( x ) - l d x  < ~ .  So we have examples where the super- 

[- n,  ~]d 

stability condition is not satisfied. 
ii) Uv(X)=~F(x i )+  ~ bijkG(Xi, Xj, Xk) where bij k is invariant under 

i~V i:t-j:t:k 

translations and permutations of the indices and G is symmetric in its argu- 
ments. If ~ l bijkl < ~ and [G(x, y, z)[ :< const. (x 2 + y2 + z2), then this energy is 

j * k  

regular, and if F is bounded below and grows quick enough at infinity, it is 
also superstable. Like this example we can construct energies where the poten- 
tial q~v is not zero for arbitrarily big iV[. 

2. Energy and Mean Entropy 

We want to define the average energy of a configuration x as the limit of 
IVI -~ Uv(x ) as V tends to 7/d. We will prove the existence of this limit by using 
ergodic theorems for 7Z d. It is known that for these theorems it is necessary 
that V tends to 7/d in some regular way which we are going to  define now. 

(2.1) Definition. For F~r we define the "r-inside" f/(r) as the set {i~V, 
l i - j l > r  for all jCV} and the "r-outside" l/(r) as the set {i~Z d, l i - j l < r  for a 
j~V}.  

(2.2) Definition. A sequence (V,) is called a van Hove sequence if V,6~; V, 
increases monotonically to 2g d and for all r e N  limlfZ,(r)\l/,(r)l/IV, l=O. It is 
called regular if moreover there exists a sequence of cubes F, ~_ V, such that 
sup IF.I/IV, I < ~ .  
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(2.3) 

have 

A van Hove sequence allows us to neglect boundary terms, and a regular 
sequence is also "round enough". If now Z is a random variable and ,u is 
stationary with Eu(tZl)<co, then the following ergodic theorem holds (see 
Tempel'man [14] or Nguyen and Zessin [6]): [V,[ -1 ~ Zo Oi--+g(ZlJ; ) ( J  is 

the a-field of invariant events) in L~ (d#) if (V,) is van Hove and a.s. (d#) if (V~) 
is regular. 

Except in trivial cases the energy Uv(x ) is not of the form ~ Z o 0~, but the 
i~V 

regularity condition allows us to control the difference between Uv(x ) and an 
additive expression. We have 

Lemma. Let V= ~ V k with v~aV~---r (i=~j) and let U be regular. Then we 
k = l  

Uv-k~ - Uv~ ~ <~ ~ ~ x:( ~ O(li-jl)). 
1 k = l  i~Vk j 6 V k  

Proof By induction on m. 

Let us sketch first how one can reduce the convergence of I V~] - 1 Uv~(X) to 
the additive case by using the above lemma: we partition ~d in cubes of size pd 
parallel to the axes: 

Fp,~={jsig~,(ki-1)p<ji<kip (i=1 . . . .  ,d)} (kE2~d, p~N). 

Let Jn, p be the following set {kEig e, Fp, k~_V,}. For any p e n  and (t<p/2 V, is 
then the union of three disjoint subsets: V, ~= 0 Fp, k(q), Vn 2 

k~Jn, p 

= U (Fp, k\Fp, k(q)) and V,3=V~\V,I\V, 2. We write now Urn= ~ Ur~,k+er- 
k~Jn, p k~Jn, p 

ror, and because of Lemma (2.3) the error is bounded by ~ wiX2+ ~ IUi(xi)[ 
ieVn i~V3 n 

with some weights w i. If q is big, then the w~ are small for all ifV, l, and if p 
and n are also big, most points of V~ will belong to V~ I. 

We are going now to make the above arguments exact. 

(2.4) Lemma. Let # be stationary with E,(X 2)<co. For all p, q 
lim[V~l 1 ~ X~ exists in Ll(d#) if (V~) is vanHove and a.s. (d[~) if (V,) is 

f~V 2 

regular. For~fixed q these limits tend to zero in Ll(d#) for p- ,  oo. 

Proof We have [VI-~ ~ X~=pdlJ,,p[/[V,~[.[3 p]-~ ~ Z k where Z k 
i~ [/2 k~ Jn, p 

=p -d ~o X 2. The first ratio on the right tends to 1 because of the 
ieFp,  k ~. Fp, k(q) 

van Hove condition, and the second term converges because of the ergodic 
theorem since (J,, p),~N is also van Hove and regular if (V~) is so as one sees 
easily. Furthermore because of L~-convergence E(limjVnl-x ~ X?)~E(X~) 
(1-- (1-- 2q/p)d). SO the last claim follows also. [] ~,v~ 

(2.5) Theorem. Let U be a stationary and regular energy and ,u stationary with 
E (X~)<CO and E~lU~l<co. IVy(1Uv,(X) converges then in Ll(d#)for  any 
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van Hove sequence and also a.s. (dp) if (V~) is regular. The limit does not depend 
on the sequence (V,). 

Proof We are going to show a.s. convergence (the arguments for L 1- 
convergence are the same). Fix a regular sequence (V,). We want to show that 
IV, l - '  gvo(X) is a.s. a Cauchy sequence. 

Let e > 0  be given. First, we choose q such that ~ O([kJ)<e, and after a p 
Ik[>q 

such that lim[V,]-~ ~ X 2 < e  (this is possible because of Lemma (2.4): By 
n iE I/-2 

choosing a subsequence we get also a.s. convergence in p). It then follows from 
Lemma (2.3): 

(2.6) ]]V,] - I  Uv,(x)-lV,,] -1 Urn(X)] 

<llV.1-1 F~ UF~,~--IV~I -~ ~ UF,,,,~I 
k~Jn, p kEJm, p 

+~ ~,(Ikl)lV,,1-1 ~ X2+lV.1-1 ~ IU,(x)l 
k i,v 3 i~v~ 

+ ~ ~b(lk[)lV.] -1 ~ X2+~O(Ikl)lV.I -~ ~ X 2 
Ikl>q i~Vl k ieV~ 

+ same terms with m instead of n. 

Because of the van Hove condition I g n l ~ p  d. [Jn, pl, and because of the ergodic 
theorem IJ.,p1-1 F~ gFp, k is convergent. Therefore the first term on the right 

k E J n ,  p 

hand side of (2.6) is <e  if n and m are big enough. 
Since Ig.l~lg.lug.21, limlV, l-1 ~ X2=limlV,] -1 ~ X 2. Therefore, the 

second term is also <z for n big enough, and the same argument applies also 
to the third term. Combining these results: 

(2.7) 11Vn 1-1 Uv~(X) -[V~1-1 Uv,,(x)[ 

<5e+Ze~,~(Jkl)+Z~suplV,,J -1 ~ X~ 
k n ieV~ 

for n and m big enough. The last supremum is finite because of the ergodic 
theorem. 

Using Ll-Convergence and the same arguments as before, we find: 

EullimrV, I -~ gv~(x)-lim[V,1-1 ~ UF,,~(x)[ 
ke Jn, p 

<__E~(X}) ~ ~P(lkl)+ E~(X fi) ~ ~(Ikl)(1 - ( 1 - 2 q / p )  d) 
Ikl>q k 

which is arbitrarily small if p and q are big enough. But 

l imlr ,  1-1 ~ Ur~,k(x)=p-dE(UFp, olJp) 
k~ Jn, p 

where a( is the a-field invariant unter translations pk, ks7/d. Therefore 
lira [V,[-lPUv (x)=limp-eE(Uv o [~r independent of (V,). [] 

n n P p ,  
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(2.8) Definition. The mean energy e of a stationary field # is defined as 

e (#) = lim I V,[- ~ Eu (Uv, (x)) if Eu I Uv[ < oQ (VE~ and the limit exists 

for all van Hove sequences and is independent 

of the chosen sequence, 

= + oe otherwise. 

(2.9) Remarks. i) Usually the convergence of energy is proved under a con- 
dition on the potential ~, e.g. we have L1- and a.s. convergence if 

[Vl-ll~bvl is in L 1 (F611mer, private communication, see also Nguyen- 
Vg0 
Zessin [6], Remark (7.21)). But if ~ v + 0  for IV[>2 it is not clear whether the 
above condition follows from regularity. From (1.4) we get for instance ~{i,j, k} 
=I~i~,~),k?--I~i~,~j}--I~},(k }. If we use regularity for every term, we get +oo 
after summation over all j and k. 

ii) In the proof of Theorem (2.5) we have never used the consistency 
conditions (1.2). Moreover, the same arguments apply if we replace X~ in the 
definition of regular by any Z o 0~. However, we do not know if these ergodic 
theorems follow also from the results of Nguyen-Zessin [6]. We notice also 
that we did not show in Theorem (2.5) that the limit is J-measurable.  

If # is stationary with #[~(v)~dogv, we denote the density of #[e(v) with 
respect to do9 v by #v(X). As in the case of the energy we would like to define 
the average entropy as the limit of - I v 1 - 1  log#v(X ), but at the present stage 
we are not able to prove the convergence of this expression. It will follow 
easily after the estimates of Sect. 3. At the moment we recall a result of Ruelle 
which says that at least ]vl-lEu(log#v(X)) converges. 

(2.10) Theorem (Ruelle). I f  # is stationary with E~(X~)<oc and #l~(v~dogv, 
then for every vanHove sequence (V,) IV, l-lE,(logpv(X)) converges to 
sup ]Fv[-1Eu(log#F~(x)) (+ oo as value for lim and sup must be allowed). 

p 

Proof If do9 is a probability measure on IR", the result is well known, see for 
instance Preston [8], Theorem 8.1. If de) is not a probability measure, we 
consider d&(x)=exp(a-xZ)dog(x)  with a suitable a. [] 

(2,11) Definition. The mean entropy of a stationary field # is defined as 

s(#) = - l i r a  I V,[- 1 Eu(log#v,(X) ) if the density #v(X) exists 

and is integrable and if the limit exists for every van Hove sequence 

and is independent of the chosen sequence, 

= - oo otherwise. 

3. Absolute and Conditional Density 

If v is an equilibrium then vl~<v)<~do9v, and the density is given by 

(3.1) Vv(X) = S 7zv ( x l Y) d vvc(Y). 
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Since the interaction between distant points is small, it is intuitively clear that 
the different boundary conditions y will not have much influence in the 
interior of V. This would mean that we can approximate the right hand side of 
(3.1) by s with some fixed boundary condition Yo. For simplicity we 
take y0=0.  We will give in this section a precise statement in which sense 
Vv(X ) and ~zV(xl0) are very close for big V. First we prove a couple of lemmas 
which all follow from Jensen's inequality. 

(3.2) Lemma (Pirlot [7]). I f  #r~(v)~dco v and Uv(x ) and log/~v(X ) are inte- 
grable, then Eu(Uv(x)) + E,(log #v(X)) > - log Zv(O ). 

Proof 

(log (exp ( - Uv(x)) ) - log #v(X)) #v(X) dcov(x ) 

< log j" exp ( -  Uv(x)) ~v(x) -~ ~v(x) &o~(x) = log Zv(O ). [] 

(3.3) Lemma (Pirlot [7]). Suppose U is regular and superstable. Then 

Proof 

logZv(Y)>=logZv(O)-�89 ~ @(li-jI)(K + y2). 
ieV, jCV 

log (Zv(y)/Zv(O)) = log ~ exp ( -  Iv, vc(X y)) )zV (x [0) dcov(X ) 

>= - S Iv, vc(x y) s (x I0) dory(x) 
> - � 8 9  K ~,(li-jl)(~x~rcV(x]O)do9v(X)+y}). 

i~V, jCV 

Now we apply the estimates of Theorem (1.11). [] 

(3.4) Lemma (Pirlot [7]). I f  U is regular and superstable and if v is in ~o(U), 
then we have 

E~(logvv(x))<= -E~(logZv(x))-E~(Uv(x))+ K ~ O(li-jl). 
i~V, j~V 

Proof By (3.1) and Jensen's inequality for the function x log (x): 

log v v(x) Vv(X) < ~ ~v (x [ y) log (Trv (x I Y)) d Vvo(y) 

<=~V(x]y ) (_logZv(y)_ Uv(x)+ �89 ~ O(li_j[)(x 2 + y2)) dvvc(y). 
ieV, jCV 

Now because of Theorem (1.11) E,(X2)< ~ .  Superstability shows that Uv(x )- 
is in Ll(dv), and finally Lemma (3.3) shows that (logZv(x))- is also in Ll(dv ). 
Therefore the claim of the lemma follows by integrating both sides of the 
above inequality with respect to dcov(X ) and applying Fubini. [] 

From these inequalities we get 

(3.5) Corollary. I f  U is regular and superstable and v is in No(U), then 
i) U v is integrable, and 

ii) Ev(logZv(x))<=logZv(O)+K ~ O(]i-j]). 
ieV, jCV 
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Proof i) follows from (3.4): Since Uv(x ) and (logZv(x)) are in Ll(dv), the 
right hand side of (3.4) can only be equal to -oo .  But the left hand side is 
bounded below: If dco is a probability measure, this is obvious, otherwise we 
change do) to a probability measure dc5 as in the proof of Theorem (2.10) and 
use that E~(X 2) < oo. 

ii) is just a combination of the Lemmas (3.2) and (3.4). [] 

We are going now to estimate the difference log vv(x)-log~V(xlO) for 
vEr ). We want to show that this difference is of smaller order than IVI for 
many configurations x. By definition and (3.1) 

(3.6) log Vv(X ) - log zV (x I O) 

= log (~ exp ( - Iv, vc(Xy)) Zv(O)/Zv(y) d Vvo(y)). 

A lower bound follows directly from Jensen's inequality: 

(3.7) Lemma. Suppose U is regular and superstable and v is in (go(U). Then 
there exists K independent of V such that 

log Vv(X ) -  log zV(xl 0) > - �89  ~ ~(] i - j l ) (x  2 + K). 
iEV, j ~ V  

Proof Applying Jensen's inequality to (3.6) we get 

log Vv(X ) -  log ~zV (x I O) 

>= - ~ Iv, vc(X y) d Vvc (y) + log Z v (0) - E~ (log Z v (x)). 

Now we use regularity, Theorem (1.11) and Corollary (3.5) ii). [] 

The upper bound is much more delicate. 

(3.8) Lemma. Suppose U is superregular and superstable, and v is in go(U). 
Then there exist K1, K2, K3, K 4 independent of V such that 

l ogvv(x ) - logzV(x l0 )<K1  ~ tP(li-jl)(lxzl+K2) 
ieV, jCV 

+ 1 3  ~, ( ~  O(li-J[)(]xi] +g2))  2 + K  4. 
j 6 V  ieV 

Proof If we have superregularity instead of regularity, we can improve the 
estimate of Lemma (3.3): 

logZv(Y)- logZv(O)>-K ~ @(li-jl)lyjl. 
isV,  jCV 

Because of (3.6) it is therefore sufficient to give an estimate of Edex p ~ aj IXjl) 
jCV 

where as= ~ (]x~t+K)~J(li-jl) for short. Put a =  ~ aj. Using integration by 
i c y  j C v  

parts we find for any N > 0 :  

(3.9) ( +k~le kv[aN+ ) E~(exp ~ ajlXjl)<e "N 1 k - 1  < ~ aj[Xjl<aN +k] 
j•V = jC~V 

=ea (l+e+ e i 
k = 1 j ~ v  
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We are now going to find a bound for v [ ~  ai]Xj]>aN+k j. First we notice 
that Theorem (1.11) implies that jd~v 

(3.10) v[~X~>_c]<=exp(6lVl-yc)~exp(-(7-7)~x2)dogv(x) 
i eV  i eV  

=exp(3]V]-Tc ) for all Vand c and ~ < ? < A .  

So by Schwartz inequality 

(3.11) v[~ ]Xj]>=]V[NJ<=v[~ X]>]V]NE]<=exp(-(~N2-5)]VI). 
j e V  j e V  

Now take an enumeration (J,),~N of V ~ such that a j ~ > a j > . . ,  and put W, 
= {Jl,J2 .... ,j,}. Then we get by integration by parts 

~ a j I X j l = l i m  (ajl-aj,+l) ~ IXkl§ ~ IXkl �9 
m t 1 kEWi k r  / j C v  = 

(3.11) and the Lemma of Borel-Cantelli show that a.s. ~ IX~]>nN only for 
j e W .  

finitely many n if we choose N:>3/~. If ~ IXk[<__nN for all n>r and 
IXkl >rN, then we have k~w,, 

keW~ 

~,ajIXjl-aN=lim (aj~--aj,+l)( ~ IXk]--iN)§ 2 IXk]--mN) 
j ~ V  i -- k e W  i k e W m  

<= ~ (aj,-aj,+l)( E IX~I-iN) 
i= 1 k e W  i 

= ~ aj~]Xj,]-N ~ aj-aj~+~( ~ ]Xk]-rN ) 
i = 1 i= 1 keW~ 

< ~ ajIXjl. 
j e W ~  

This shows that ~ ajIXj] must be >k  if ~ aj]Xi]>aN+k and ~ ]Xjl<nN 
j e W r  jCV j e W ~  

for all n > r  but ~ ]Xj]>rN. But this means that we can replace the set 
je Wr 

[~ aj]Xjl >aN+k] which depends on infinitely many coordinates by a union 
j C v  

of sets which all depend only on finitely many coordinates and whose proba- 
bility can be estimated using (3.11). Namely we have 

(3.12) vie ajlXjl>aN+k]< ~ v[E ajlXjl>k, E IX/>rN] 
j ~ V  r= 1 j e W r  j e W r  

<= v[ E 2 E IX;>rNn 
r= 1 j e W r  j e W r  j e W r  

_-< ~ exp ( J r -  max (rN2, k2/E ay) y). 
r= 1 jCV 
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2 and inserting (3.12) in (3.9) we find Putting g = ~ a t 
jcv 

N ( ~ r )  I/2 

e k v [ E  a j [ X j l > a N + k ] <  ~ exp(r(J-yN2))  E ek 
k = 1 j C V  r = 1 k = 1 

k 2 / ( N 2 a )  

+ Z exp(k-yk / ) Z 
k = l  r = i  

e cc 

< ~1 exp ( r (3-  ~N 2) + N(dr) 1/2) 
~ e - - 1  r =  

+ e~/(e ~ - 1) ~ exp ( k -  ka(~N 2 - 3)/(N 2 d)). 
k = l  

Using Lemma (3.13) below we get 

E,(exp ~ aj IX j I) < e "u(1 + e + exp (N2 d/4(~N2 _ 3)) (K 1 + K 2 ~1/2)). 
jcv 

In order to complete the proof we take logarithms using that log(a + b ) < l o g a  
+log b for a and b > 2 and go back to the definitions of a and 8. [] 

Finally we give a lemma announced in the proof before. 

(3.13) Lemma. There exist constants K 1, K 2 such that for all a and b>0:  

~ e x p ( k - a k Z ) < e x p  (1/4a)(1 + K  1 a-1/2) 
k = l  

and 

• exp(bkl /2-ak)<exp(b2/4a)( l  + K  la 3/2b+K2a 1). 
k - 1  

Proof Because e x p ( x - a x  2) is increasing for x<(2a)  -1 and decreasing for 
x>(2a)  1 we have: 

co 

~ ( e x p  (k - ak2)) < ~ exp (x - ax 2) dx + exp (1/4a) 
k = l  1 

= exp (1/4a) (1 + ~ exp ( -  a(x - 1/2a) 2) dx)<exp(l/4a)(1 +a-  1/2 K) 

+ o o  

where K =  y exp ( - xZ )dx .  The proof of the second claim is analogous. [] 
- o o  

Now we are able to prove our central result. 

(3.14) Theorem. Let U be superregular and superstable, v in No(U ) and # 
stationary with E , (X  2) < oo. Then [ V,[ 1 (log Vv, (x ) - log  7c v"(x [ 0)) converges to 
zero in Ll(dp) for every van Hove sequence and a.s. (dr) if (Vn) is regular. 

Proof We only have to show that the bounds of Lemma (3.7) and (3.8) go 
to zero after division by [V[. All terms which occur can be treated the same 
way, therefore we give the proof only for ~ ( ~  [Xi[tp(]i-j[)) 2. We put 

j C V  i ~ V  



80 H. Kiinsch 

Y/= ~ @(li-jl)IXjl, Then we have 
j~2~ a 

F, F~ IX, I ~'(li-jl) ~ ISkl ~,(Ik-j[)__< ~ IX,I Yj~,(Ii-jl). 
jCV i~V k~V i~V, # V  

If we call the last expression T V, we can prove the convergence of [VI-1 Tv as 
in Theorem (2.5) (cf. Remark (2.9) ii)) since we have 

Tv~w-Tv-T~=- ~ ~,(li-jl)(IGI Y~+IXzI~) 
i~V, j ~ W  

which is bounded by Z O(li-Jl)(X2+y~2+X~+YJ2) �9 Furthermore 
ieV, j e w  

E(y/2)_-<(~ @(lil))2E(X~). In order to see that the limit is zero we notice that 
i 

E,(Tv)<-- 2 g,(li-jl)~,g,(Ikl)E,(X~) 
i~V, j4sV k 

which is of smaller order than IVI. [] 

The next theorem treats the case where we have only regularity instead of 
superregularity. 

(3.15) Theorem. Theorem (3.14) holds also for regular superstable energies U for 
which ~ ~([kl)< A, A being the constant in the definition of superstable. 

k 

Proof We give only those arguments which differ from those used in (3.8) and 
(3.14). For a corresponding result as Lemma (3.8) it is sufficient to find an 
upper bound of Ev(ex p 2 bjX~) where bj= ~ @(li-jl). We put b=  ~ bj. Then 

j ~ V  i eV  j ~ V  

(3.9) carries over without problems, and with the same arguments which led to 
(3.12) we get 

(3.16) vEEb;X~.>bN+k]<= ~ v [ E  bjXy>k, E X2>rN] 
j S V  r= 1 j E W r  j E W r  

< ~ min(v[ E bjX~>k], v[ E X2>rNl) �9 
r= 1 j e W r  j sW, .  

Here we have now to use a different argument in order to estimate 
v[ ~ bjX y > k] because Schwartz inequality does not help any more. Because 

j~  Wr 

of the assumption ~O(Ikl)<A we can choose 7<A and r /> l  such that 
k 

7-t /y,O(Ikl)>0.  Now it is not difficult to see that because of the condition on 
k 

d o  there exists a constant M such that for all c with ? > c > ? - t / ~ , O ( I k t )  we 
have k 

S exp ( - c x2) d co (x) < exp (M (7 - c)). ~ exp ( - ? x2) dco (x). 

But this implies that 

v [ ~ bj X 2 > k] __< exp (c5 r - t/k) ~ exp ( - 2 (7 - tl b j) x 2) dcow~(X ) 
j ~ W r  j ~ W r  

<=exp(Jr-tl(k-M ~ bi))<__exp(3r-tl(k-Mb)). 
j ~ W" r 
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So we have found 

(3.17) v[ 2 b j X ~ > b N + k ] <  ~ exp(3r-max(~Nr, tl(k-Mb))) 
jEW~ r -  1 

which can be used instead of (3.12). The rest of the proof carries over with 
minor changes. [] 

(3.18) Remark. If we want to compare logvv(X ) and loguV(x[y) for an arbi- 
trary but fixed boundary condition y instead of 0 we need to estimate the 
difference logZv(Y)-logZv(O ) since it can be seen immediately that 
IV[-1 iv , vc(Xy) converges to zero. This would require again rather complicated 
estimates, see for instance Lebowitz-Presutti [5], Chap. 3. We leave this prob- 
lem because we can deduce all desired results already from the Theorems (3.14) 
and (3.15). 

4. Variational Principle, almost Sure Entropy and Information Gain 

We start with the following identity 

(4.1) log Vv(X ) = - l o g  Zv(O ) -  Uv(x ) + (log Vv(X ) -  log rcV(xlO)). 

From this we first get a new proof of results of Lebowitz-Presutti [5] (existence 
of pressure) and Pirlot [7] (first part of the variational principle). 

(4.2) Theorem. I f  U is stationary, superstable and superregular (or regular with 
~tP(lkl)<A) and if v is in (go(U), then the limit of [V,[ -1 logZv,(0 ) exists for 
any van Hove sequence and is equal to - ( e ( v ) - s ( v ) )=- in f  {e(/~)-s(/0, /~ sta- 
tionary} independently of the chosen sequence. 

The limit of Iv.l-1 logZv,(0) is called the pressure and is denoted by p. The 
difference e ( . ) - s ( . )  is called the free energy. 

Proof We divide (4.1) by Igl and take expectation with respect to v. Because of 
Theorem (1.11) Ev(X2)< o% and because of Corollary (3.5)i) also E v [gv(x)l < co. 
The existence of the limit and the identity p = - ( e ( v ) - s ( v ) )  follow then from 
the Theorems (2.5), (2.10) and (3.14) respectively (3.15). Finally Lernma (3.2) 
implies the variational inequality - p < e (# ) -  s(#). [] 

Together with the previous results (4.1) gives also the almost sure con- 
vergence of entropy. 

(4.3) Theorem. Suppose v is in (go(U) with a superstable and superregular 
energy U (or regular with ~0([k l )<A) .  Then ]V,] -1 logvg,(X ) converges in L 1 

k 

for every van Hove sequence (V,) and also a.s. (dr) if (V,) is a regular sequence, 
and the limit is equal to - p - l i m  IV,[ 1 Uv,(X)" 

Proof Divide (4.1) by ]VI and take the limit with respect to V without taking 
expectations. Then all terms on the right hand side converge, due to Theorems 
(2.5), (4.2) and (3.14) respectively (3.15). [] 
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(4.4) Remark. L~-convergence, but not the a.s. convergence can be proved 
under weaker conditions with the methods of Nguyen-Zessin [63. The idea to 
prove the a.s. convergence for Gibbs states via the a.s. convergence of the 
energy and the pressure is due to F611mer [1]. 

Theorem (4.3) says that we can calculate the entropy of an equilibrium 
from one typical configuration and with the energy U alone without knowing 
which v out of N0(U ) has been realized. Moreover we can get also an almost 
sure version of the variational principle. 

(4.5) Corollary. Let U (i), i=l,  2, be two superstable and superregular energies 
(or regular with ~O([kl )<A)  with potentials q~(i), and let v be in f 0 ( U  (1)) such 

k 

that ~ I~r lgl-l~Ll(dv)for i= 1, 2. Then we have for every regular sequence 
VwO 

(V.) a.s. (dr): 

limLV, l-l(U(v~)(x)+logvv,,(x))>=_p(2), =__p(2) if U(1)=U (2). 

Proof. Under the above conditions limlV,] -1 U(vi~(x) is J -measurable  (cf. Re- 
mark (2.9)). Therefore the corollary follows from the Theorems (4.2) and (4.3) if 
v is ergodic. But every stationary equilibrium is a mixture of ergodic equilibria, 
see F611mer [2]. [] 

From (4.1) we can deduce a third result, but for this we first have to define 
the information gain. 

(4.6) Definition. Let v and # be stationary. The information gain of # with 
respect to v is defined as 

h(/~, v)=l imtV1-1Hv(#,  v), where Hv(#, v)=E, (log d#[~(v~) (x)), 
dv[~(v) 

if d#l~(v~ and the above integral exist and if the limit exists 
drip(v) 

for all van Hove sequences (independently of the chosen sequence). 

= + oo otherwise. 

Using Jensen's inequality it follows easily that Hv( #, v)=0 iff #]~(v)=Vl~(v). 
Because of the division by [VI and the passage to the limit this need not to be 
true for h(#, v) any more, in fact we will have counterexamples below. Let us 
first show the connection between the information gain and the quantities 
defined before. 

(4.7) Theorem. Let # be stationary with Eu(X 2)< oo and s(l~)>- oo, and let v 
be in fro(U)for some superstable and superregular energy U (or regular with 

O(Ikl)<A). Then h(#, v) is finite iff E,[Ui(x)l< co, and the following formula 
k 

holds 
h(#, v) = e(#) -- s(#) + p = e(#) - s(#) - (e(v) - s(v)). 
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Proof If s(#) > - oo, then gin(v)~do)v. Therefore 

t VI 1 Hv(# ' v)= I VI- 1 Eu(log #v(X))- IV I- 1 E,(log v v (x)). 

Because of Theorem (2.10) the first term converges to -s(#) .  If we replace 
logvv(X ) in the second term by the right hand side of (4.1), the proof is 
completed by applying the Theorems (4.2), (2.5) and (3.14) respectively 
(3.15). [] 

The following corollary is also in Pirlot [-7]. 

(4.8) Corollary. Let # be stationary with E,(X~)< c~, and let v be in go(U)for 
some superstable and superreguIar energy U (or regular with ~ @([kl)<A). Then 

k 

e(#) - s(#) = - p = inf {e (2 ) -  s (2), 2 stationary} iff h(#, v) = O. In particular h (#, v) 
= 0 / f  also #ego(U ). 

In order to complete the variational principle we still have to show that 
any stationary field minimizing the free energy is in go(U). Because of the 
above corollary this is equivalent to the claim that #~No(U ) if h(#, v)=0 for a 
V~No(U ). For finite state space or finite range of the energy (i.e. Iv, w=O if 
d(V, W)>K where d(V, W)=inf{[i-j], i~V, j~W}) this is true very generally 
(F611mer [1], Preston [8], Theorem 7.1). Without these assumptions it is very 
difficult; the next result covers at least a wide class of superstable and super- 
regular energies with infinite range. 

(4.9) Theorem. Suppose i z is stationary with Eu(X/2)< oo and v is in go(U)for 
some superstable and superregular energy U satisfying the following additional 
assumptions: 

K e ~ O(n)n d 1~0  for K---,oo, and ~bv=0 for all IVl>2. 
n > K  

Then h(#, v)=0 implies that also #eNo(U ). 

Proof Consider the energies U K with UvK(X)= ~ ~ (x )+ �89  ~ ~j(x).  If K is 
ieV [ i - j l < K  

big enough, U K is also superstable. The corresponding conditional distribu- 
tions are denoted by ~/r and v K is in go(U/C). Obviously le(#)-eK(#)l< 
�89 2) ~ ~'(IJl)- Moreover Jensen's inequality and Theorem (1.11) show that 

IJl>g 

logZv(O)-logZ~(O) 
> S ( -  Uv(x) + UvK(X)) ~K, V(x 10) dory(X)> -IVI C F, O(IJl). 

Ij]>K 

This implies pK_p<= C ~ r so because of Theorem (4.7) 
lJl>g 

h(#, vK)=h(#, v)+eK(#)--e(#)+pK--p<=const. ~ ~(]Jl), 
tjt>K 

i.e. Kah(#, vK)~o for K ~ o o .  



84 H. Kiinsch 

N o w  we are going to prove  the t heo rem with the same a rguments  as 
Pres ton  [8], p. 115-122, in the case of  finite range. W e  will use the  same 
no ta t ions  too. Let  Ar B ~ ( W ) ,  V~W=O. Then  we have (cf. Preston,  
L e m m a s  7.1 and 7.2): 

# ( A ~ B ) -  [, ~. 7: r' V(x [y) d~ov(X ) d#v~(y ) :  S (q~, v ' -  1) g~, dv K 
B A A n B  

for all V'~_W'=Ww{iCV, ] i - j l<K for some j s V }  (q and  g are def ined in [8]). 
W e  want  to show tha t  the r ight  h a n d  side above  tends to zero for K- - ,  oo 
which will prove  the theorem.  

Let  e > 0  be given. Choose  K o such tha t  h(#, vK)<e[W'1-1 for K > K  o. As 
in [8], L e m m a 7 . 6 ,  it is then shown that  there  is a V'~_W' such that  

K K K ~b(qv, v,)gv, dv <e.  L e m m a 7 . 3  of  [8]  implies  then that  

I/~(A c~B)- S S ~ '  V(xlY)&~ d#w(Y)l < d 
B A  

for all K > K o. [] 

(4.10). Remarks. i) Super regula r i ty  is sat isfied if ~(k)~k -d-~, but  the cond i t ion  
of  Theo rem (4.9) requests  a decay of  ~b of the o rde r  - ( 2 d  +e).  

ii) P res ton  [93 gives a sufficient condi t ions  under  which h(/l, v ) = 0  with 
V6No(U ) implies  tha t  also # e ~ o ( U ) .  I t  is a t ightness cond i t ion  on ~V(x]y) for 
different y and all V and  it can be app l ied  also in o ther  s i tuat ions,  e.g. po in t  
processes,  but  we were no t  able  to p rove  that  it is satisfied in our  s i tua t ion  for 

all supers tab le  and  super regula r  energies.  

Note Added in Proof 

After submission of this article an error in the paper of Lebowitz-Presutti [5] was found, see the 
erratum in Comm. Math. Phys. 78, 1, p. 151 (1980). It appeared that the existence of equilibria 
cannot be proved with superstability and regularity alone. The additional conditions proposed to 
remedy this situation are very similar to the ones used in our Theorems (3.14) and (3.15), though 
our hypotheses are still a little bit stronger. 
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