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Summary.  One considers a simple exclusion particle jump process on g, 
where the underlying one particle motion is a degenerate random walk that 
moves only to the right. One starts with the configuration in which the left 
halfline is completely occupied and the right one free. It is shown that the 
number of particles at time t between site [u t] and [vt],  divided by t, con- 

IJ 

verges a.s. to ~f(w) dw, where f might be called the density profile. It is ex- 
u 

plicitely determined and shown to be an affine function. Secondly we prove 
that the distribution of the process looked at by an observer travelling at 
constant speed u, converges weakly to the Bernoulli measure with density 
f(u), as the time tends to infinity. 

1. Introduction 

Consider on the space E={0,  1} z with elements x=(x/),  i~Z, the Markovian 
process of an asymmetric simple random walk with exclusion. For simplicity 
we confine ourselves to the extreme case of a walk which only moves to the 
right; i.e. the generator of the process is given by 

A g(x) = ~ (g(zi, i+l x ) -  g(x)) l{x ~= ,,~,+,= o} 
i s Z  

(1) 

for g depending on finitely many coordinates. (z/j x is obtained from x by per- 
muting the coordinates at i and j and keeping the rest fixed.) Denote the semi- 
group which A generates by (Tt); the process variable is denoted by X(t), its 
coordinates by X(k, t), k~Z. 

We let the process start at the fixed initial configuration X(0)=~, where 

:~k = l{k< 01, k@Z. 
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In the sequel, all probabilities and expectations are to be understood with re- 
spect to a process with this initial value. In [3] it has been shown that the dis- 
tribution of X(t), as t goes to infinity, converges weakly to the Bernoulli mea- 
sure with density 1/2; i.e. at any finite set {il, ..., i,} of sites the random vari- 
ables X(ij, t), j=  1 .... , n, become asymptotically independent with expectation 
1/2. 

Here we are interested in global properties of the system, not only its be- 
haviour at a fixed set of sites; there are two aspects of this question which are 
intimately connected: 

(i) First we look at the one particle correlations ~X(k, t), keZ, over the whole 
space. We say that the system expands at a linear speed and admits f(u), u~R, 
as its density profile, if for all ueR 

lim C X (k, t)=f(u), (2) 
t ~ c O  

whenever lim k/t = u. 
t ~ o O  

(For this particular model, a more general definition allowing also other speeds 
of expansion is not needed.) 

We say that a (strong) law of large numbers holds, if 

lim 1 ~ X(k, t )=~f(w)dw a.s. (3) 
t u t < k < v t  u 

for any u < v. 
A complete answer to all questions in this context in given in Theorem 1 

(Sect. 3). It states the existence of a density profile which satisfies the law of 
large numbers; even an explicite calculation of f is possible; one has a linear 
decay (in space) of density: 

f(u)=�89 for ]u[__<l, and (4) 

f ( u ) = l ( 0 )  for u < - I  (u> l ) .  

(ii) The second aspect concerns the limiting behaviour of the particle process 
seen by a travelling observer, i.e. the distributions of X([ut]+k,t), k eZ  as t 
tends to infinity, for every fixed usR, not only u = 0  as in [3]. ([a]: greatest in- 
teger less or equal to a.) We say that propagation of chaos holds, if all these 
measures tend weakly to a Bernoulli measure, with a density depending on u 
(it is f(u), of course). In the physical context, propagation of chaos means 
asymptotic independence of any finite number of components in a system get- 
ting larger and larger. That is exactly what is proved here (Th. 2, Sect. 4); at 
least locally, in a fixed distance from u t, asymptotic independence of the X(k, t) 
holds. (The only difference to the situation familiar in many physical contexts 
is that usually a scale parameter is introduced; for each value of this parameter 
one has a different dynamics (and tries to find a possible limit law), whereas 
here in this model we have to deal only with one dynamics. See also Remark 2 
below.) Since all Bernoulli measures are invariant under the semigroup (Tt), we 
see that the system consists of many subsystems in different local equilibria, 
what is not unexpected if one thinks of transport phenomena like heat conduc- 
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tion through a widely extended system. (Compare [11; in particular the second 
model there is quite similar to the process considered here.) 

The organization of the paper is as follows' In Sect. 2 we state some facts 
about stochastic order relations between the measures #(k, t), k~Z, t>O. (#(k, t) 
denotes the distribution of X(k+ I, t), leZ.) From there we deduce the existence 
of a density profile and the law of large numbers. Further it is shown that any 
limit of #([ut],  t), t-+oo, is an exchangeable measure (i.e. mixture of Bernoulli 
measures). 

Section3 gives identical lower and upper estimates on the function h(u): 
1 

= S f (v)dv and determines that function. 
u 
In Sect. 4 we show that the only limits of #([u t], t) are Bernoulli measures. 

One surprising circumstance, perhaps, lies in the fact that one first has to iden- 
tify f in order to show the propagation of chaos property. From a "physical" 
point of view the opposite way would have been more natural" /f one has al- 
most independence of the variables X(k, t), X(k + 1, t) the differential equation 
for the evolution of the one point correlations becomes (almost) autonomous 
(as it is the case in the Boltzmann equation) 

d 
p (k) ~ [p (k - 1) (1 - p (k)) - p (k) (1 - p (k + 1 ))3, (5) 

where p(k) stands for gX(k, t);  so, at least asymptotically, for large t, one 
would be able to compute CX(k, t )~f(k/ t )  and to identify f We did not try to 
argue along these lines since we could not show propagation of chaos a priori. 

Remark 1. Theorem 1 has a geometric interpretation; it determines the asymp- 
totic shape of a subset of Ra+ (in the sense of Richardson [5]) which grows ac- 
cording to the following rule: 

Divide R 2 into squares of unit side length. Each square is initially white. A 
white square becomes black in time (t, t+dt) with probability dt if two of the 
adjacent squares are black; a black square stays black for ever. The "bound- 
ary" R2\R2+ is kept black so that the process can start and does not ter- 
minate at finite time. Denote by c(k, l) the square with (k, l) as its right upper 
corner; then all possible black coloured sets in R 2 are of the form 

~>__ 1, k~>__k->_ 1C( k, l) 

where k(-) is decreasing and zero for large I. If one interpretes k(1) as displace- 
ment of the k-th particle from its initial position, one gets a one to one cor- 
respondence between particle and growth process. 

If we denote by B t the black coloured set in R2+ at time t, Theorem 1 then 
1 

says that the rescaled set - .  B t converges to a compact set B a.s. (in the Haus- 
t 

dorff-metric). The set B has as its boundary the two line segments from the ori- 

gin to (0, 1) and to (1,0) and the arc of the parabola ] f s - l + V s 2 = l  between 
these two points (s 1, s2: Cartesian coordinates in R2). 
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Fig. 1. A typical configuration of the growth process 
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Fig. 2. A simulation of the growth process stopped at an area of 216 unit squares. Dashed line: the 

parabola ] / ~ + ] / s  2 = constant which cuts off the same area 

Remark2. Maybe a more natural way (which is closer to hydrodynamics) to 
look at the result of Theorem 1 (density profile and law of large numbers) is 
the following: 

for e > 0  define the process M~(t), t>O, whose values are measures on the 
real line, by 

M~(t,[u,v])==e ~ X(k,t/e), u, veR. 
uNke<=v 

(That means, each wandering particle contributes a mass s to the random mea- 
sure; space and time are suitably rescaled.) 

Then Theorem l states that for all t > 0  the random measure M~(t) con- 
verges to the deterministic measure r(t, x)dx as e tends to 0, in the sense that 
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MS(t, [u, v]) converges in L J (and a.s.) to i r(t, x)dx for all u, v, where r is de- 
u 

fined by r(t, x)=f(x/t) ( f  is the density profile and has been defined in (4)). 
The remarkable fact is that r solves the evolution equation 

~; = - g ~  (r(1 - r)) (6) 

to the initial value r(0, x)--l{x~0 }. One immediately recognizes that (6) is a 
continuous version of (5); in a certain sense, (6) is the limit dynamics of the 
originally given simple exclusion process in the "hydrodynamical scaling". 

2. Monotonicity Properties 

Let X be the original particle process with state space E. On E, the coordinate- 
wise order between points is defined by 

x < y  iff xi<=y i for all iEZ, (1) 

which induces the stochastic order for probability measures on E: we say that v 
is stochastically larger than # (in symbols/~__< v) if there exists a measure o- on 
E 2 with 

~:~zl(~), v=~2(~), ~(x 1<x2)=1.  (2) 

(7t i" projection on coordinate i, i=  1, 2). 
We will also have to look at the process S, 

S(k, t)= ~ X(i, t), (3) 
i>k 

whose appropriate state space E' is the set of all decreasing sequences S k, keZ, 
of natural numbers. S is again Markov and a stochastic order is introduced on 
E', literally in the same way as in (1), (2). 

Finally, we denote by ~(Y)  the distribution of a random variable Y; �9 de- 
notes convolution of measures on R. 

Proposition 1. For all r, t >O, k, leN one has 

ao(s(< r)) �9 ~e(s(l, t))=> ~e(s(k + l, r + t)), (5) 

Proof. By a simple coupling argument one sees that the transition kernel of the 
S-process preserves the stochastic order of measures on E'. (In the picture of 
the growth process defined above: s<s' means that the black set corresponding 
to s is contained in the set corresponding to s'.) Hence, if one compares the 
process S(u), u<r+t,  to the process S, defined in the following way: 

evolves like S before time r; at the instant r, it is replaced by (6) 

~) {S(k,r) for j ~ k  
S(J'" =~S(k,r)+(k-j)  for j<k ,  

after time r it evolves again according to the dynamics of the S-process, 
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one sees that ~[S( r+t ) )>SY(S ( r+t ) )  holds. But, conditioned on S(r, k), the law 
of S(k+l,  r + t ) - S ( r ,  k), leZ, t>O is identical to that of S(I, t), I~Z, t>O and in- 
dependent of S(r, k). This proves the proposition. [] 

Proposition 2. For all u6R the random variables 1S([ut] ,  t) converge a.s. and in 
t 

L ~ to a constant h(u), as t goes to infinity. The function h is decreasing, convex," 
one has h(u)=0 for u > 1 and h(u)= - u  for u < - 1 .  

Proof By Proposition 1 we have 

=!P(S([u r], r) * ~ (S ( [u  t], t)) >= ~ ( S  [u(r + t)], r + t)). (7) 

The convergence statement follows from a lemma in subadditive ergodic 
theory. (See [6], the Kesten-Hammersley theorem.) To prove convexity of h, 
we deduce from Proposition 1, for ~, fl > 0, ~ + fl = 1, 

Cs(E~ u t], ~ t) + r vt],/3 t)_>_ cS([(~ u +/3 v) t], t). (8) 

If one divides by t on either side one obtains 

h(u) +/3 h(v) > h(~ u +/3 v). (9) 

The other statements of Proposition 2 are obvious. [] 

Proposition 3. I f  h is differentiable at u, one has 

lira gX(k ,  t)= -h ' (u)  
t ~ 0 0  

whenever k/t tends to u. 

Proof We consider the functions h t, defined by 

oo 

hi(v) = j r  t], t) dw; (10) 
o 

they are convex (see Prop. 4, (12) below) and tend~ as t goes to infinity, to h 

=lim-1 r  t], t). Hence, by an elementary lemma on convex functions of a 
t 

real argument, one has even 

lira h~(v)=h'(u), if v ~ u  and h'(u) exists, 
t 

where h' t may be any (right or left) derivative of h t. [] 

We define the (unknown) density profile f by 

f (u)  = -h ' (u+O).  (11) 

Theorem 1 is almost proved, except for the continuity of h' and the identifi- 
cation o f f  

We recall the notation/x(k, t) = ~ ( X ( k  + l, t), lcZ). 
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Proposition 4. For all k6Z,  s, t > 0 the following stochastic order properties hold: 

#(k, t)>=#(k + 1, t) (12) 

#(k, t + s)< ~ ~(s, l) # (k- l ,  t) (13a) 
l 

#(k, t + s)> ~ ~(s, l)#(k+l, t) (13b) 
l 

where rr(s, .) is the Poisson distribution with mean s. 

Proof (12) is obvious' # (k+  1, t) is the law of X(k+l ,  t), 16Z under the initial 
condition 2, where 2i= 1(i=<_1i; since 2 < Z  ~, (12) follows from the monotonicity 
of T~. 

To prove (13a) one uses again this monotonicity. The position of the first 
particle at time s is Poisson distributed with mean s; conditioned on that po- 
sition, one compares the original process with the process, where all sites be- 
hind the first particle are occupied at time s, and which evolves according to 
(Tt) after time s. (13b) follows from (13a), by symmetry between migration of 
particles and migration of holes. [] 

Proposition 5. I f  h'(u) exists, any weak limit #* of the measures #(Eu t], t), t-+o o, 
is an exchangeable measure, i.e. is of the form 

1 

#* = ~ fiap(da) (14) 
0 

with some probability p on [0, 1]. 
(rio: Bernoulli measure of density a, i.e. 

fia(xij= 1 , j=  1 . . . . .  n)=a", for all n, i 1 ... i,). 

7he one point correlation of #* is equal to ~ ap(da)=f(u) .  

Proof #* is stochastically larger than its image under shift, by Prop. 4. Both 
measures have the same one point correlations (Prop. 3), hence they are identi- 
cal. (This follows immediately from the definition of stochastic order via cou- 
pling.) But shift invariance of #* implies also its invariance under the semi- 
group (Tt) if one uses the inequalities (13) in Prop. 4. By [4] one knows that 
shift invariance and invariance under (T~) imply exchangeability. The rest is 
deFinetti 's theorem. [] 

We have to exploit further the principle underlying the proof of Prop. 5, as 
preparation for the proof of Theorem 2. That principle, roughly speaking says, 
that #(k, t) is "slowly varying" in space and time; more precisely: in order that 
#(k, t) changes by an amount of O(1), k or t has to change by an amount of 
O(t), at least. 

Denote by p"(k, F; t) the n-point correlations of #(k, t), where F is a set of n 
sites; i.e. 

p"(k; F; t )=P(X(k  +i, t)= 1, i~ f ) .  (15) 
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Proposition 6. Assume that h'(g) exists. For any n and any finite set F of  cardi- 
nality n and any e > 0  there exists a F>0,  touR + such that 

Ip"([u t], F; t ) -  p"([g t], F; t)] < e (16) 

for ]u-ff[=<6 and t >=to, 

]p"([gt], F; t+s)-p"(Ugt] ,  F; t] < e  (17) 

f o r O < s < F . t ,  t > t  o. 

Proof We only show (16). The other statement then follows in connection with 
Prop. 4, (13), and the fact that n(s, .) is essentially carried by a set of the form 
{/: l<cs}  in the limit s~oo .  Also, by symmetry, we have only to consider the 
case u>~.  

Since /~(k,t) is stochastically decreasing in k we need an upper estimate 
only for 

/(Eat], F; t)- p"(Eu t], F; t). 

But such an estimate, by the definition of stochastic order via coupling, is pro- 
vided by 

(p*([-fft], i; t ) -p l (Eut] ,  i, t))= Z g(X([fft]  +i, t ) - X ( [ u t ]  +i, t)). 
ieF i~F 

Take 3 > 0 such that h'(ff+ 3) exists and satisfies - h'(~+ 3) = f ( f f +  3) > f ( u - ) - - -  

( f  is continuous at g). Proposition 3 gives 

lira inf N(X([g+ 6) t] + i, t) > f(tT) 2 n' 
t ~ o O  

hence, for any u<ff+6,  uniformly in u, 

lira sup ~, [p ~ ([~ t], i; t) - p 1 ([u t], i; t)] < e/2 
t ~ o o  i ~ F  

which proves that 
p"([ff t]~ F; t ) -  p"([u t], F; t) 

becomes eventually smaller than e, uniformly in u<ff+6.  [] 

(18) 

2n 

(19) 

(20) 

3. Identification of the Profile f 

oo 

We start by giving a lower estimate for the function h(u)= ~f (w)dw 
t4 

=liml-o~S([ut],t).  To this end one has to look at the interparticle distances 
t t 

Z(O, t ) -Z (1 ,  t), Z(1, t ) -Z (2 ,  t) . . . .  where Z(i, t) is the position at time t of the 
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particle originally located at - i .  We write Y(k,t) for Z ( k - l , t ) - Z ( k , t ) ,  k 
=1 , 2  . . . . .  

Proposition 7. h(u)>l(1  - u )  2 for lu[ < 1. 

Proof. We modify the dynamics of the system in the following way: the first 
particle is allowed to jump only at a rate b, where b < 1 ; the jump rates of the 
other particles are unchanged, i.e. equal to one if they can jump at all. Expec- 
tations with respect to this process will be denoted by gb its probability law by 
pb. 

These dynamics, in terms of the Y-process, may be described as follows' the 
state space is the set of all sequences of integers greater or equal to 1; from the 
point (yl, Y2 . . . .  ) the following jumps are allowed: 

to (Yl, Y2 . . . . .  Yi-  1, yi+ 1 + 1 . . . .  ) at rate 1 if Yl > i ,  
to (y~ + 1, Y2 . . . .  ) at rate b. 

One checks immediately the following two statements about this process, resp. 
its semigroup: first, it preserves stochastic order; second, an invariant measure 
is 7 b, described by 

all coordinates are independent, identically distributed under 7b; 

7b(yi>m)=b m for all m>0 .  

(See for example [7], the computations in Chap. 12-4.) 
We now compare two Y-processes, one with the initial value we are inter- 

ested in, viz. y~ = y 2 =  ... = 1, and the stationary process with initial measure 7 b. 
Since the law of the first process is stochastically smaller than that of the sec- 
ond at time t=O, this holds for all times. We thus get for all t>O, keN 

0 b Y(j,t) <=~ yj .~b(dy)=k. ~ )~b(y~>m)=k.(1-b) -1. 
m>O 

If we choose tc = [a t], 0 < a < 1 fixed, and let t tend to infinity we arrive at 

1 
lim sup t Gb( ~ Y(j' t)) < a(1 - b)- 2. (1) 

j < a t  

This result can be sharpened to provide us with a stochastic upper bound for 
3~ Y(j, t); the weak law of large numbers for 7 b gives 

j < a t  

( 1 y ) 
for any ~>0, l i m P  b ~ .  ~ ( j , t )>a(1-b) - l+e  =0.  (2) 

t~c~  \ ~  j < a t  

About the displacement process Z we know that Z(0, 0 is Poisson distributed 
with mean b t, hence by a law of large numbers for Poisson distributions we 
obtain from (2) 

l i m p b ( ~ . Z ( [ a t ] , t ) < b - a ( 1 - b ) - l - e ) = O  for any e>O. (3) 
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The Z-process gets stochastically larger if b increases to 1; hence (3) remains 
valid if we replace pb by P, the original dynamics of the Z-process. This holds 
for every b. We choose b (depending on a) in such a way that the right hand 
side within the brackets becomes maximal. Since 

we get finally 

max ( b - a ( 1 - b ) - l ) = l - 2 J / - d  for 0 < a < l  (4) 
0 < b < l  

 ora,  0<o<  
t ~ c O  

Translating (5) into terms of the S-process one obtains for all e > 0, 0 < a < 1 

l i m P ( ~ S ( [ ( 1 - 2 l f a - e ) t ] , t ) > a ) = l ,  
t ~  O0 

hence 

(5) 

(6) 

h ( 1 - 2 l / a ) > a  or h(u)>�88 2 for ]u]<l.  [] (7) 

The final step in order to prove Theorem 1 is the following upper estimate 
o n  h .  

Proposition 8. h(u)__<�88 - u) 2 for lul < 1. 

Proof. Consider the case of u>0,  put u - l = w ;  assume h'(u) exists. We compute 
the expectation of S([ut],t) which is the number of particles which have 
passed an observer travelling at speed u, minus the number of particles passed 
by the observer: 

k 

~S(k, kw)= ~ ~(Sq, lw)-S(t-1, lw)) 
/ = 1  

k 

+ ~ c(s(1-1, l w)- s ( l -  1, ( l-  1) w)) 
/ = 1  

k k I w  

= -  ~ CX(l, lw)+ ~ ~ P(X( l - l ,0=l ,X( l , t )=O)d t .  (8) 
/ = 1  / = 1  (/-- 1)w 

(The integral is the expected number of jumps from l - 1  to l in the time in- 
terval ((1 - 1) w, I w).) 

Multiplying both sides by u k -~ one gets, if k tends to infinity, 

1 r 
h(u) = u. h'(u)+ lim u S #([u t], t)(x 0 = 1, x 1 = 0). (9) 

r ~ c o l  0 

The same way one shows that (9) holds for negative u, too. We need this re- 
lation for a dense set of u's in [ -  1, 1]. 

Now, by Proposition 5, any limit of 

#([ut],t)(xo=l, xl=O), t--*oe, 
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is of the form 

~(a-a2)p(da)  with ~ap(da)=f(u) .  (10) 

Hence, by Jensen's inequality we get 

lim sup/~([-u t], t)(x 0 = 1, x 1 = 0 ) < f ( u ) -  (f(u)) 2. (11) 
t ~ c O  

Combining (9) and (11), we obtain, since 0 <__f(u) < 1, 

h(u)< sup { b u + b - b Z } = � 8 8  z. (12) 
0 < b < l  

This proves Proposition8. [] 

From Proposition 2, 3, 7, 8 together we obtain 

Theorem 1. (Density profile and law of large numbers.) For any u~R the limit 
lim g X (k, t) exists and is equal to f (u), whenever k/t tends to u. 7he function f is 
t ~  oO 

given by 

=~�89 for ]ul_<l 
f (u)  [1(0) for u < - l ( u > l ) .  

(13) 

1 
The quantities - ~ X(k, t) converge a.s. to the constant value 

t u t < k < v t  v 

f (w)  dw, for u < v. 
u 

Remark. Returning to the picture of the growth process in R~_ (Remark 1 in 
Section 1) we can now derive an explicit expression for the asymptotic shape of 

B t. Consider [ul < 1. Stochastic convergence of -1 S([utl ' t) to h(u) means that 
t 

particle number [h(u)t] at time t is at site ut+o(t),  what is equivalent to say- 
ing that this particle at time t has travelled a distance (h(u)+u)t+o(t)  from its 
initial position. So the boundary of B t is close (up to terms of order o(t)) to the 
point 

((h(u) + u) t, h(u) t). 

This gives a parametrisation of the boundary arc of B 

s l=h(u )+u  , ~ s z - h ( u  ), - l < u < l  

which because of h(u ) - - l (1 -u )  2 leads to 

(14) 

(15) 

4. Propagation of Chaos 

We want to show weak convergence of #([ut], t) to the Bernoulli measure /~i(u) 
for any u~R. The statement is non-trivial only for lul _-< 1, and only this case 
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will be discussed below. Also, by monotonici ty ,  if this result can be proven, we 
have automatical ly convergence of/~(k, t) to flj.(~) for all k = k(t) with k/t--, u. 

We recollect the results obtained in the last section about  the asymptot ic  
behaviour  of #([ut] ,  t )(Xo= 1, x 1 =0). In (9) we have stated Ces~tro convergence 
towards h(u)+uf(u), which turns out  to be equal to � 8 8  2) or f (u ) - f2 (u ) ;  on 
the other  hand, (11) states that the lim sup is less or equal to the same quanti ty 
f (u ) - f2 (u) .  

We formulate this result in terms of correlat ion functions (notations as in 
Section 2, Proposi t ion 6); since lira pl([ut]; k; t)=f(u) for k=O or t, we get 

t 

We want to show that  

lim inf p2([ut] ; O, 1 ; t) >f (u )  2 (1) 
t ~ 0 0  

1 T 

lira ~- ! pZ([ut]; O, 1; t )= f  (u) 2. 
T ~ o o  

(2) 

lim sup p2([ut]; O, 1 ; t) <f (u )  2. (3) 

If (3) holds the only weak limit of  any subsequence o f / l ( [u t ] ,  t) is the Bernoulli  
measure fis(,)' because any limit is of the form ~p(da)fla, where p satisfies (in 
virtue of (1) and (3)) 

Sap(da) =/ (u) ,  Sa2p(da) =f(u)  2. (4) 

But (4) implies that p is the unit mass at f(u). 
To show (3), we conclude from (1) and (2) that  

for any e > 0 the set A~ = { t:p Z([u t] ; 0, 1 ; t) > f  2 (u) + e} (5) 

is of Ces~tro density zero. 
We have to show that  the sets A~ are actually bounded.  To this purpose one 

uses Proposi t ion 6, relation (17): 

there is a 6>0 ,  touR + such that t > t  o, t~A~ 
implies seA~/2 for all st(t ,  t+&) .  (6) 

Hence if A~ is not  bounded,  A~/a is not  of Ces~ro density zero, in contradict ion 
to (5). So we have proven 

Theorem 2. For any ueR,  the measures I~(k, t), as t tends to infinity, tend weakly 
to the Bernoulli measure with density f (u), whenever k/t tends to u. 
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