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Summary. Suppose X 1 , X 2 ,  ... are independent, identically distributed ran- 
dom variables, and suppose n-1 / ' (X1  + ... +X,,) converges in distribution to 
a symmetric stable law of index e < 2. For s = 1, ..., n, set 

Y.~ =n-1/~ i X~ cos(2njs/n).  
j = l  

Let #, be the empirical distribution of {Y,s: s = l ,  ...,n}. Then #n converges 
in distribution, but not in probability. 

1. Introduction 

In an unpublished Bell Labs memorandum [5], Colin Mallows noted an 
interesting empirical phenomenon: the normality-inducing behavior of ortho- 
gonal transformations. If X is a random vector with independent coordinates 
and H an orthogonal matrix, then the coordinates of H X  "behave in some 
ways like members of a random normal sample." This idea was taken up by 
others, and some empirical work suggests that the phenomenon might occur 
even when the distribution of the coordinates of X were far from normal. In 
particular, investigators have reported that, for standard Cauchy coordinates 
and Hadamard H, normal probability plots of the coordinates of Y appeared 
linear. 

In [4], we began an investigation of one aspect of this phenomenon and 
showed that if the coordinates of X were identically distributed L 2 random 
variables, then the empirical distribution of the coordinates of Y tended with 
high probability to be close to the normal distribution. The proof depended 
strongly on the L2-ness of the coordinates of X, but we wondered whether the 
result might still hold even if the coordinates of X had long tails. The 
mathematics of the problem became much more complicated in this setting, 
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and so we restricted attention to Fourier coefficients. This paper presents our 
findings on this problem. In brief, the reported empirical results seem to be in 
conflict with the asymptotic theory. The empirical distribution of the coef- 
ficients does not converge in probability: there is a weak limit, but the limit 
does not concentrate on the normal distributions; and the scaling for the long- 
tailed X is quite different. Similar conclusions apply to the Hadamard case. 

To describe the asymptotic theory, we first give a formal statement of the 
theorem in [4]. Let R denote the real line and ~ the complex plane. Let n be a 

positive integer, and i = 1 / - 1 .  Suppose x=(xl , . . . , xn)  is a vector in R n. The 
discrete Fourier transform 2 is the vector in IlY whose coordinates are given by 

)~= ~ exp(2zcijs/n)xj for s = l  . . . .  ,n. 
j = l  

Here, exp(x)=e x. The coordinates of ~ are the Fourier coefficients of x. 

Theorem. Suppose X 1 , X  2 .... are independent, identically distributed random 
variables with mean 0 and variance 1. Let #n be the empirical distribution of 

(Ynl,..., Y~,), where ]/n Y~s is the s th Fourier coefficient of (X1, . . . ,X,) .  Then #~ 
converges in probability to a complex normal measure. 

Now suppose the common distribution of the Xi's is in the domain of 
attraction of a symmetric stable law with parameter less than 2. We found that 
the transforms of these long-tailed variables behave very differently from the 
transforms of the L2-variables. Theorem (47) shows that the law of the empiri- 
cal distributions of the Fourier coefficients (when properly normalized) does 
converge, but the limiting distribution is a nondegenerate measure on the set 
of probability measures on the complex plane. This limit law depends upon the 
index of the stable law attracting the Xi's. Proposition (50) shows that the 
empirical distributions themselves do not converge, even in probability. 

These results hold for a class of transforms which include the Fourier 
transform as a special case. This class is quite different from the orthogonal 
transforms considered in [4]. To state the main results of this paper for the 
more general transform, let X 1 , X 2 . . . .  be independent and identically distribut- 
ed random variables on (~2, ~ ,  P), such that 

n-1/c~(X 1 + ... + X n )  

converges in law to the symmetric stable law of index c~. Let h be a nonzero 
continuous, real-valued function on R of period 1 ; 

h(x) = c o s ( 2  ~ x)  

is the leading special case. For s = 1,... ,  n, let 

Y,s = n-  i/, ~ h(sj/n) Xj. 
j = l  

In particular, if h(x)=cos(2rcx), then nl/~Y,s is the real part of the s th Fourier 
coefficient of X1, ..., X,,. 
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Now let/~, be the empirical measure of Y,~, ..., Y,,: that is, #, assigns mass 
1/n to each Y,,s. Thus, #, is a random measure on the real line and has a law 
),,. This 2, is a measure on the space of measures. 

To go at this a bit more slowly, we introduce M(R), the space of probabili- 
ty measures on the Borel real line. Endowed with the weak-star topology, 
M(R) is a complete separable metric space. And /~, is a Borel measurable 
mapping from ~2 to M(R). Now 2 ,=P#~  -1 is a probability on M(R), that is, an 
element of M[M(R)]. Our main result can be stated as follows: 

Theorem. 4, converges weak-star to a limit 2 in M[M(R)]. 

Notice that #, is a random element of M(R), and the theorem says that /~ 
converges in law. Does #, converge in probability? The answer is no, unless c~ 

1 
--2 and ~ h(t)dt=O. This is the content of proposition (50). 

o 
The main results of this paper are proved in Sect. 3. Readers may wish to 

begin with this section, and refer to Sect. 2, which sets out some preliminary 
lemmas, only when needed. Several of the lemmas of Sect. 2 may be interesting in 
themselves. Lemma (1) is a version for rationals of Weyl's theorem on the equi- 
distribution of multiplicative sequences generated by irrationals in R mod 1. 
Lemmas (4) and (15) establish inequalities for the sums of independent 
L = random variables, for 0 < ~ < 2 .  If X and Y have identical unsymmetric 
distributions, lemma (4) shows that EIX-YI~<EIX+ Y]=. If X1, . . . ,X ,  all have 

~_XkCt<k~=l symmetric distributions, then according to Lemma (15) E k 1 EIXkl~" 

Finally, in Sect. 4 appear some facts about the limit laws of #,. In particular, a 
class of interesting stochastic processes are discussed there, all of whose finite 
dimensional distributions are stable. 

We would like to thank M.L. Eaton for many helpful conversations around the ideas of this 
paper, and W. Pruitt for suggesting the method of proof used in (4). 

2. Some Preliminary Results 

The first result of this section is a variation on a famous theorem of Weyl's. 
For x in R, let {x} denote the fractional part of x, that is, x m o d  1. Fix real 
numbers cq .. . .  , ~k" Let yj be the k-tuple {e~j} . . . . .  {ekJ}" Weyl's theorem states 
that Yl,Y2 .... is equidistributed over the unit cube in R k, unless the c~'s are 
rationally related. But suppose c~=a~/n,...,C~k=ajn, with integer ai's: so 
cq, ..., c~ k is a k-tuple of rationals of order n. Lemma (1) shows that, for most 
such k-tuples, the corresponding sequence yl . . . . .  Yn is close to being equidis- 
tributed over the unit cube in R k. 

For integers n and k, let N(k) denote the set of k-tuples a = ( a  1, ...,ak) with 
integer coordinates between 1 and n inclusive (here, the dependence on n is 
suggested by the N). For a in N(k), define the probability v,a by the require- 
ment that it assign weight 1/n to each of the k-vectors ({alj/n} ..... {akj/n}), for 
j = l  . . . .  ,n. Let I denote the unit interval. For f continuous on I k and e>0,  
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define 
A(n, e, f)  = {a: a~N(k) and I~f(x) v , , (dx ) -  ~ f (x) dxq < ~}. 

Denote the cardinality of a finite set A by IA[. In particular, [N(k)l = nkl 

(1) Lemma. For every continuous function f on Ik, for every e>0,  

IA(n,e,f)l/nk-~l as n~ov.  

Proof Consider the class of complex-valued continuous functions o n  I k which 
satisfy the displayed relation. This class is linear and dosed under uniform 
limits. Thus, it contains every continuous function on I k if it contains functions 
of the form 

f ( x )  = exp [2 ~ i(v. x)] 

where " ."  denotes inner product in R k and v is a vector in R k with integer 
coordinates. The case where v vanishes identically is trivial. So fix v with at 
least one coordinate nonzero. In this case, 

~f(x) dx=O. 

For any real number y and integer p, we have 

SO 

Thus 

(2) 

p y =p{y}  + an integer 

exp (2 ~ i p y) = exp (27r i p {y}). 

exp[27r i(v. x)] v,a(dx ) = 1/n ~ exp[27r i(v. a)j/n]. 
j = l  

Suppose that n does not divide v.a. We will show that a is in A(n,O,f). 
Indeed, the right-hand side of (2) is a finite geometric series whose sum is zero. 
On the other hand, ~f (x )dx  = 0 too. 

Now consider the set S of a in N(k) such that v .a  is divisible by n. We 
claim that ISl=O(nk-1), which would complete the argument for (1). Let K 
=ma x  S Ivsl. Clearly, Iv. al is bounded by K k n  for a in N(k). For j =  - K k  . . . . .  K k  
set 

S j =  {a:aeN(k) and v. a = j  n}. 

Kk 

Then S =  U Sj. But Sj consists of all the integer lattice points in the 
j= - K k  

intersection of the (k-1)-dimensional  hyperplane (x: x f f R  k and v. x =jn} with 
the hypercube [1,n] k. As such, JSjl<n k-l ,  by induction on k. And so, 
[ S I N ( 2 K k + l ) n  g-1. [] 

(3) Corollary. Let ~ be a family of complex-valued continuous functions f on I k 
which is precompact in the sup norm. Let ~ be a bounded continuous function on 
a closed disk in the complex plane which contains f(x) ,  for all f in ~ and x in I k. 
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T h e n  a s  n.--~ oo,  

n -k ~ r  ~, f({alj/n},...,{akj/n}))--*q~(Sf(x)dx) 
a~N(k)  j =  1 

uniformly in f e ~. 

The next three lemmas represent small, but for our purposes critical, 
improvement on results of Clarkson [3] and yon Bahr and Esseen [7]. In 
particular, the strict inequality (11) improves upon the corresponding weak 
inequality (i.e., with "=<" in place of " < ' )  proved in [3]. The representation 
of Ixl ~ used in the proof of (4) appears in [7]. 

(4) Lemma. Suppose X and Y are independent, identically distributed random 
variables. Let 0<c~<2. If E{]XI ~} < ~, then 

(5) E{IX- Yl =} < 2E{IXI =} 

unless X is degenerate. Also 

(6) Ei]X-  Y]~} <E{]X+ Yt~}, 

unless the distribution of X is symmetric. 

Proof For x in R, 

Ixl~=C~ ~ [1-cos(ux)]luI-=-ldu. 
-co  

Here, C~ is a real constant whose exact value is immaterial. So, for any 
random variable X with characteristic function qSx, 

(7) E{IX[ ~} = C~ ~ E1 - ReOx(U)]lu[-~-I du. 
- c o  

In particular, 

(8) 

and 

(9) 

E{IX - Y[~} = C~ S E1 -I~x(u)l 2] lu[-~- 1 du, 
--CO 

E{IX + Y] ~} = C= ~ [1 - Re~b~(u)] tu]-=- 1 du. 
- c o  

Now (5) follows from (7) and (8), because for any complex number z with 
Izl < 1, 

1 - 1 z i 2 < 2 [ 1 -  Rez],  

unless z =  1, when equality obtains. But ~x(U)= 1 for almost all u's if and only 
if X is degenerate. 

Likewise, (6) follows from (8) and (9), because 

Re(z ~)<tzl ~, 



26 D. Freedman and D. Lane 

unless z is real, in which case equality obtains. But ~x(U) is real for almost all 
u's if and only if X is symmetric. [] 

Note. (6) does not extend to c~>2. In particular, if E X  and E X  3 have opposite 
signs, the inequality is reversed for e=4.  For general ~>2, let X and Y be 
independent, identically distributed random variables, with P [ X = - L ] = I  
- P [ X  = 1] = L- }~. For L sufficiently large, E{[X + Y[~} < E { [ X -  Y[~}. 

(10) Corollary. Suppose h is a measurable function on the unit interval, 0<c~<2, 
1 

and 0 < ~ lh(x)l ~ dx < oo. Then 
0 

11 1 

~ Ih(xa)- h(x2)l ~ dXl dx2 < 2 S Ih(x)l ~ dx. 
O 0  0 

1 

This inequality holds also for c~=2, unless S h(x)=0. 
0 

Proof For ~=2, the calculation is immediate. Otherwise, let U and V be 
independent random variables, uniform on the unit interval. Set X =h(U) and 
Y= h(V). Then apply (5). [] 

(11) Lemma. Suppose x and y are nonzero real numbers and 1<c~<2. Then 

Ix - Y7 + Ix + yl = < 2(M = + lyl~). 

Proof Divide both sides of the inequality by the larger in absolute value of x 
and y. This reduces (11) to the claim that, for 0<x__<l, 

(12) qb(x) < 1 +x% 

Expand in a Taylor series" 

where 

where qS(x) = �89 - x) = + (1 + x) ~] 

~b(y)=l+ ~ Cny 2n, 
n = l  

cr 1) ... (c~- 2n + 1) > 0 
03) c, = (2n)! 

because 1<c~<2. In particular, qS(y) increases with y for 0<y=<l.  But qS(1) 
= U - I  <2, so 

~ c n y 2 n < l  for 0 < y < l .  
n = l  

Substitute y - x -  1 -  ~ . .  

(14) • CnX(2-~)n< 1 for 0~<x_< 1. 
n = l  

N o w x  ~>l ,  s o x  "~_>x -~.By(13) and(14) 

~,, 2n--ct cnx ~.1 for 0_<x<l .  
n = l  
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Multiply by x~: 

i c, x2n<x ~ for 0 < x < l .  
n = l  

Adding 1 to both sides gives (12). [] 

(15) Lemma. Suppose 0<c~<2. Let X1 , . . . ,X  k be nondegenerate, symmetric, 
independent random variables, with E{IX~l ~} < oo. Then 

g X i < E{[XzI~}. 
i i=1 

Proof. First, suppose 0 < ~ < 1 .  For x a nonnegative real number, let qS(x)=l 
+ x  ~ and O(x)=(1 +x) ~. Then ~b and ~ are equal at zero, while for all positive 
x, the derivative of 0 is strictly less than the derivative of 4- Thus q5 is strictly 
greater than ~b, for positive x. Now let x 1 and x 2 be any nonzero real numbers. 
Then 

I X 1 q- X2I a ~ (I X 11 -{-Ix21) ~ 

_-< Ixll ~ g'(Ix21/Ixll) 
< Ixll ~ 4([x2l/lxxl) 

= l x l l ~ + l x y .  

By induction, if Xl, . . . ,x k are real numbers at least two of which are nonzero, 

i~ ~ i X i o: "~ 

k 

Y~ Ixs 
i = 1  

The conclusion of (15) in this case follows by integration. 
Next, suppose c~= 1. Certainly, 

/x~ + . . .  + x , I  <IXll + . . .  + Ix,I. 

Let A be the event that at least two of the X~'s have different signs. Since the 
X~'s are independent and have symmetric distributions, A has positive proba- 
bility. On A, 

IXl  q-.. .  q - X n l < I X l [ q - . . ,  q-lXn[. 

The conclusion of (15) follows for this case. 
Finally, suppose 1 <0r Consider the case k=2.  From (11), 

E{IX ~ + Xel =} + E{lX ~ - X2l ~} < 2 (g{lx,  [ ~} + E {IX 2[=}). 

Since X 1 and X 2 are independent and X 2 is symmetric, 

~{IX~ + x ~ l  ~} -- E{IX~ - X~l~}, 

and so the result follows. The inequality is obtained for k > 2 by induction. [] 

(16) Corollary. Suppose 0<c~<2. Let X1 , . . . ,X  k be nondegenerate, symmetric, 
independent random variables, all with the same distribution, and with 
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k 

EIXtI~< oo. Let tl . . . .  , t k be real numbers, with ~ Itil ~< 1. Then 
i = 1  

The next main result is Lemma (19), a characterization of the domain of 
at tract ion to the symmetric stable laws. The preliminaries in Lemmas (17) and 
(18) give a careful t reatment  of the logarithm of the characteristic function. 
Proofs are omitted, being routine applications of the method of analytic 
continuation. The material is well known, but we cannot supply references. 

(17) Lemma.  Let 0 < T < o o .  Let t be a real variable, with 0<[ t [<T.  Let 0 be a 
continuous, complex-valued non-vanishing function of t, with 0(0)=  1. 

(a) There is a unique continuous, complex-valued function 2 of t ~ ( -  T, T) such 
that 2(0)= 0 and 2(0 is a value of log[O(t)]. Write 2(0 = (log, 0)(t). 

(b) (log, 0") (t) = n(log, 0) (t). 
(c) Let 0 < T o < T. Suppose 11 - 0(01 < 1 for [t[ < T o. Then for [t[ =< To, 

1 
(log, 0 ) ( t )=  - ~ ~(1 - O(t)) k. 

k = l  ~ 

(d) Let 0 < T~ < T. Suppose O(t) is real-valued for 0 < Itl < T1. Then (log, 0) (t) 
is the ordinary real logarithm of O(t), for Itl < T1. 

(18) Lemma. Let 0 < T < o o .  Let O, and 0 be continuous, complex-valued, non- 
vanishing functions of the real variable t for 0 < tt[ < T, with On(O ) = 0(0) = 1. 
Suppose 0 ,~0,  uniformly for Itl < To < T. Then (log, 0,)-~(log, 0) uniformly for 
It[ <= To. This can fail for pointwise convergence. 

(19) Lemma.  Let 0<c~<2 and 0 < c <  oo. Let ~ be a characteristic function. Then 

4)(t /nl/~)" ~exp(  - c Itl ~) 

uniformly on bounded intervals if and only if 

4)(t)=l-cltl~+o(Itl ~) as t~O. 

Proof The "if" part is easy. For  "only  if", set 

(20) 3(0 = 1 - ~b(t) 

and 

Choose T o > 0 so small that 

(21) I~(t/nl/~)l <1 

1 a(t)= ~ ~(t) ~ 
k = l  

for all n and all t with It] _-< To. 

Use Lemma (17), with O,(t)=c~(t/n 1/~) in place of 0;  this function does not 
vanish by (21): the conclusion is 

(log, 0,~) (t) = n (log, 0,) (t) = - n a(t/n i/a) 
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for It] < To. In view of (18), there is a sequence e , ~ 0  such that 

( 2 2 )  Icltl~-n~(t/nl/91<=~n, for all n and all t with Itl=ro. 

Divide by n and put u=t/nl/": for all n, 

(23) [c[u["-o(u)]<__8,/n for all u with [u[<To/n 1/~. 

Given u with 0 < u < T O choose n so that 

(24) To/(n + 1) 1/~ < lui < To/n 1/~. 

But then 1/n<2/(n+ 1)<2To-~lu[ ~. So 

(25) leiup-a(u)l<2~,To~lul ~ for 0 < l u l < T o ,  with n defined by (24). 

As u~O, clearly n ~  oo and ~ ,~0.  Hence  

(26) ~(u)=clul~+o(lul9 as u ~ 0 .  

Recall (20). Clearly, a (u)=  6(u)+ p(u), where 

~o 1 
p(u) = ~=~ ~ ~(u) ~. 

Recall (21). For  ]ul < To, 

1(12   Ip(u)l<=16(u)lZk~2 ~ -<_ lc~(u)l 2 (27) 

and 

(28) 

29 

Ip(u)l <-~ IcS(u)l. 

In particular, 6(u)=~r(u)-p(u)=O(lul ~) by (26) and (28). Then  p(u)=o(lul ~) by 
(27), so in fact c3(u)=ciul~+o(lul% [] 

The next three results are well known. 

(29) Lemma.  Let zj and z) be complex numbers, with absolute values bounded 
by A. Then 

z ,  fi i 
j = l  j = l  j = l  

(30) Lemma.  Let z be a complex number. Then 

le ~ -  1 - z t  ==�89 2 e Izl. 

(31) Lemma.  Let X be a random variable with characteristic function 4, and 
~>0. Then 

P{[X[ >2/e} <_1 i Re[1  - ~b(t)] dr. 
g _g  



30 D. Freedman and D. Lane 

We will be considering the law of an empirical distribution, that is, a 
measure on measures. Some technical machinery is developed in the remainder 
of this section to handle this complication. Suppose X is a complete separable 
metric space. Let M(X) denote the space of probability measures on the Borel 
~-field of X; equip M(X) with the weak star topology. By definition, a subset S 
of M(X) is tight if for each e>0,  there is a compact subset K~ of X such that 
m ( K ~ ) > l - ~  for all m in S. By Prohorov's Theorem [L p. 371, a subset of 
M(X) is tight if and only if it is relatively compact. M(X) is itself a complete 
separable metric space [6, Theorem 6.2, p. 431. Thus, M[M(X)1 is well defined. 

(32) Lemma. A subset T of M[M(X)1 is tight if and only if for each e > O, there 
is a compact subset K~ of X such that for all 2 in T, 

2{m:m(K~)> 1 -e}  > 1 -e .  

Proof "If". Suppose the condition holds. Fix 6>0.  We need to find a compact 
subset C 0 of M(X) such that )~(C0)>l-f i  for all 2 in T. Pick a sequence of 

positive numbers e, such that ~ e,<~.  For each n, choose a compact subset 
n = l  

K n of X according to the condition with e, in place of e. Let A n be the 
compact set of m in M(X) with m(K,)> 1-en.  Then, let Co= (~ A n. 

n 

"Only if". Suppose T is tight. For  each e>0,  there is a compact subset C~ 
of M(X) such that 2(C~) > 1 - e for all 2 in T. By Prohorov's Theorem, each C~ 
is tight: so there exists a compact subset K~ of X such that m(K~)> 1 - e  for all 
m in C~. [] 

The proof of the next result is omitted as routine. 

(33) Lemma. Suppose f, f l , f2 , . . ,  are uniformly bounded continuous real-valued 
functions on X, and f ,  converges to f uniformly on compacts. Suppose 2 and V are 
in M[M(X)] and for each integer n, the random variable m-~Sf, dm on M(X) has 
the same distribution under 2 as it has under V. Then the 2-distribution of 
m ~  S f dm coincides with the v-distribution. 

Let B denote the space of bounded continuous functions from R into C. 
With the topology of uniform convergence on compacts, B is a complete 
separable metric space. For  m in M(R), denote the characteristic function of m 
by rfi; that is, rfi(t)=~exp(itx)m(dx). 

(34) Lemma. Suppose 2 and V are in M[M(R)1, and for each integer k and k- 
tuple of real numbers (tl, ...,tk) , the )~-distribution of m--+[n3(tl), ...,rfi(tk) ] coin- 
cides with the v-distribution. Then 2= 7. 

Proof Let f l  . . . .  ,f ,  be bounded continuous real-valued functions on R. It is 
enough to show that the 2- and v-distributions of vectors of the form 
(~fl dm,..., ~f, din) coincide. We begin with the case in which n = 1. Suppose f 

k 

is a complex trigonometric polynomial, namely f ( x ) =  ~ aj.exp(i tsx ) for some 
j=l 

integer k, complex k-tuple a and real k-tuple t. If m is in M(R), then ~fdm 
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k 

= ~ aj tfi(tj). By assumption, for any Borel subset A of r 
i=l 

),{m: m~M(R) and j_~l ajtfi(tj)~A} 

=7{m: m~M(R) and j_~l ajtfi(tj)~A}. 

This settles the case of one trigonometric polynomial. 
Next, let f be any bounded, continuous real-valued function on the line. 

There is a sequence of real trigonometric polynomials which are uniformly 
bounded and converge to f uniformly on compacts. By (33), the Z- and 7- 
distributions of ~fdm coincide. This settles the case n = 1. 

Finally, let f t , . . . , f ,  be bounded continuous real-valued functions on R, and 
c~ ... .  , c, arbitrary real numbers. Then 

cjSf jdm=~ cj dm for m in M(R), 
j = l  j 

and the right-hand side has the same distribution under 2 as it has under 7. By 
Radon's Theorem, the 2- and ?-distributions of the n-vector 
m+(Sf ldm . . . . .  5f, dm) must coincide also. [] 

(35) Lemma. Let k be a positive integer and Z1 , . . . ,Z  k complex-valued random 
variables, with IZjI<I for all j. Then the joint distribution of Z1 , . . . ,Z  k is 
determined by the moments 

al - -b l  7 a k  7 b k ]  E(Z1 Z1 . . . .  1, ~k J, 

where the aj and bj range over all nonnegative integers. 

Proof Immediate from the Stone-Weierstrass Theorem. [] 

Note. The conjugate moments really are needed. For example, suppose Z is 
uniform over the circle with radius r < 1. Then E(Z a) = 0 unless a = 0, in which 
case the expectation is 1. This is so whatever r may be. 

(36) Proposition. For each n, let 2, be an element of M[M(R)]. Suppose that for 
each e > O, there is a compact subset K s of R such that 

(37) 2,{m:m~m(R) and m(K~)_>_l-e}>l-~,  for all n. 

Suppose too that for every integer k and k-tuple of real numbers (t l , . . . ,  tk), 

(38) Srfi(tl) ... rh(tk)Zn(dm ) converges as n goes to infinity. 

Then )~, converges weak-star to some element Z of M[M(R)]. 
The limit 2 is point-mass at some point in M(R) if and only if for all t, the 2,- 

variance of m~rh(t) goes to zero as n goes to infinity. 
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Note. The 2,-variance of rh(t) is 

[rh(t)- ~ rh(t) 2,(dm)l 2 2,(din) = ~ Irh(t)l 2 2,(din) -IS th(t) 2h(dm) l 2. 

Proof By condition (37) and lemma (32), the sequence {2,} is tight. By 
Prohorov's Theorem, then, {)~,} is relatively compact. Suppose )~ is a sub- 
sequential limit of {2,}. Let k be a positive integer and (h, ..-, tk) a k-tuple of 
real numbers. By condition (38) and Lemma (35), the 2-distribution of 

m--* [rfi(t 1) .. . .  ,rfi(tk)] 

is determined: the complex conjugate of rh(t) is just rfi(-t). By lemma (34), 
then, 2 is unique. Therefore, 2n converges weak-star to 2. 

When is 2 a point-mass? Clearly, if and only if for all real t, the 2-variance 
of m~rh(t) is zero. But the 2-variance is the limit of the 2,-variances, because 
Itfi(t)l < 1. [] 

3. The Convergence Theorem 

Let h be a continuous function on R with period 1. Let c~ be a real number 
with 0<e__<2. Let X1,X2,.. .  be independent, identically distributed random 
variables on (f2,o~,P), such that n-1/~(X~+...+Xn) converges in distribution 
to the symmetric stable law of order e. Let ~ denote the characteristic function 
of X 1. 

For n = 1, 2 .... and s = 1,..., n, define Y,~ by 

(39) Yns=n -1/~ ~ h(sj/n)Xj. 
j = l  

In particular, if h(x)=cos2~x,  then nU"Y,s is the real part of the s th Fourier 
coefficient of XI , . . .  , X,. 

Recall from (1) that N(k) is the set of k-tuples a = ( a l , . . . , G  ) of integers 
between 1 and n inclusive. Let t=(tx,...,tk) be a k-tuple of real numbers. 
Define functions r  and O k by 

(40) qS~(a, t) = E exp [i(q Y,~, + . . .  + t k Y,~)] 

and 

(41) Ok(t ) = exp [ -  S It1 h(xO + . . .  + tk h(xk)l ~ dx], 
I k 

where dx is Lebesgue measure on the k-dimensional unit cube I k. 

(42) Proposition. n -k 

Proof Clearly 

where 

r t) converges uniformly on compact t-sets to Ok(t ). 
aEN(k) 

r t)= E[exp(i Y)] 

Y = h  Y,,l +...+tkY, ak. 
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Next, by collecting terms, 

Y=n -1/~ ~ h(a,J,t)Xi 
i=1 

where 
h(a,j, t) = t 1 h(alj/n ) +... + t k h(Gj/n). 

Thus 

(43) 0n(a, t) = E[exp (i Y)l = l~I 0 [h(a,j, t)/n ~/~3. 
j = l  

Now h is bounded, so in view of (19), 

(44) [h(a,j, t)/n t/a] = 1 - 1  [h(a,j, t)l ~ + o(1/n), 
1'1 

the error being uniform in a,j, and compact t. 

Of course, 

(45) exp [ - 1 j ~ l  Ih(a'j't)J~]= j=lh exp[-!Jh(a,j,t)]~] �9 

By (29), applied to (43) and (45), the difference between E[exp(iY)] 

exp [ - !  ~ Ih(a,j,t)k ~] is at most 
j = l  

i=~ O[h(a'j't)/n*/~]-exp[-!Jh(a'j't)J~]' 

which by the triangle inequality is at most T 1 + T2, where 

TI =j~= I t~[h(a,j, t)/nl/~] - [ 1 - !  [h(a,j, t)J ~] 

and 

and 

Restrict t to a compact set in R k. Then (44) implies that T 1 is o(1), uniformly in 

a,j, and t. Next, h is uniformly bounded and so - ]h(a,j,t)j2~=O(1) uni- 
formly in a and j. By (30), then, ~ is o(1). Thus n i= 1 

0,(a, 0=expl --1 ~ Jh(a,j,t)]~]+o(1), 
L 1~i= I 

uniformly in a, j and t restricted to a compact. 
We may now apply (3) to estimate the exponent in (45). For ~,  take the 

functions on I k of the form 

It1 h ( x 1 ) +  . . .  +tkh(Xk)l ~, 
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as t ranges over a compact set in R k. Also, take q ~ : x ~ e x p ( - x )  on 
0<x<(llhl[oo sup ~[tk?). This completes the proof. [] 

t 

Remark. The same argument shows that n -k ~, kbn(a , t)[ 2 converges to [0k(t)] 2. 
asN(k) 

So ~b,(a, t) is nearly O~(t) for most k-tuples a. 

(46) Corollary. -1 ~ P{[Y,~[>L} converges to zero as L goes to infinity, uni- 
formly in n. n ~= 1 

Proof Use the case k=  1 of (42), and then (31). [] 

We are now ready to state and prove the main theorem of this paper. Let 
#n be the empirical measure of {Y,s}; that is, #, assigns mass 1In to each Y,~. 
Thus, #, is a Borel measurable mapping from s into M(R). Let 2, be the 
distribution of #,, so 2, is in M[M(R)].  

(47) Theorem. 2, converges weak-star to a limit 2 in M[M(R)].  

Proof We will use (36). We first verify condition (37). Fix L <  oe. Then 

j m [ - L , L ] 2 , ( d m ) =  1- ~, P{]Y,~I<L} 
M(R) n s= 1 

is uniformly close to 1, by (46). So (37) follows by 12eby~ev's inequality. Next, 
we verify condition (38). But 

rfi(tx).., rfi (tk) 2,(din) 

can be evaluated as 

n -k y, E{exp[ i ( t lY ,~+. . .+ tkY ,~) ]}  
aEN(k) 

whose limit was computed in (42). [] 

(48) Corollary. The limit 2 in (47) depends only on ~ and h, but not on the 
distribution of the Xi's. Indeed, 2 is characterized by the fact that 

S m(tl)'"'n(tk)'~(dm) = Ok(tl . . . .  , t~) 

where O k is defined in (41). 

Proof Use (34) and (35). [] 

(49) Corollary. The limit 2 in (47) is a point mass if and only if c~=2 and 
1 

Sh(t)dt=O. 
0 

Proof. To apply (36), we need to compute the 2,-variance of rfi(t). This variance 
is T 1 - T2, where 

T 1 = E exp (i t Y j  
S = I  
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and 

From (42) with k = 1 

r 2 = E exp (it Y,s) . 
S = 1  

T2-~exp [ -  2ltl~ i lh(x)l~ dx ] �9 

Similarly, using (42) with k = 2, 

1 Tl=~2 ~ E{exp[i(tY, a~-tY, a2)]}" 
aeN(2) 

o e x p  [- -It{ ~ ~lh(xl) - h(x2)l ~ dx I dxz]. 

Now use (10). [] 

Note. We have proved that the empirical measure #n converges in distribution. 
But #, is a random element of M(R), which is endowed with the weak-star 
topology. The next result shows #, does not converge in probability, except for 
a special case. 

1 
(50) Proposition./~, converges in probability if and only/f~=2 and ~ h(t) dt=O. 

0 

Proof. "If." This follows from (49): if 2 is a point mass and #, converges to 2 in 
distribution, it converges in probability also. 

"Only if." Fix t>0 .  Let 

0,= S exp(itx)#n(dx), 
- o o  

a complex-valued random variable bounded in absolute value by 1. If #, 
converges in probability, then {~b,} is a Cauchy sequence in L2: 

E{l~b.- q~n, 12}~0 

as n, n '~oo.  We will derive a contradiction. First, 

where 

and 

E {I~.-~.,IZ}= VI- V2, 

V, = E {l~b,I 2} + E {[~b.,I 2} 

Vz =2  ReE{~b, qS,,}. 

By (42), as n,n'--+oo, 

(51) V, --,2 exp V- l t ]~S Ih(xl)-h(x2)l~dxl dx2]. 
12 
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Now send n' to infinity before n. By (42), 

1 

Finally, apply (10) to (51) and (52) to obtain the contradiction. [] 

4. The Limiting Measures 

In this section, we suppose 0 < c~ < 2 and study the measure 2, the weak limit of 
2 n in (47). As stated in (48), 2 is determined by the quantities 

(53) ~ /~ ( t l ) . . .  t~/(tk),~(dm)= Ok(t ) 
M(R) 

over all integers k and k-tuples of real numbers t=( t l , . . . ,  tk), with Ok(t ) defined 
in (41). 

Equation (53) can be interpreted as follows. Choose m at random according 
to 2. This m is a probability on the line: given m, construct a sequence 
41, 42, ... of independent random variables with common distribution m. Un- 
conditionally, the members of this sequence form an exchangeable process, and 
(53) gives their joint characteristic function: 

( 5 4 )  E { e x p [ i ~ t j 4 j ] = e x p [ - - S k  ~_ltjh(xj)~dx~...dXk]. 
j = l  j 

From this point of view, proposition (42) states that the generalized Fourier 
coefficients Ynl, ..., Yn, are "nearly" distributed like {41, 42,..-} in the following 
sense: as n~oo,  most k-tuples of these generalized Fourier coefficients are 
distributed like 41, .--, 4k. According to (47), then, the empirical distribution of 
Y,1, .--, Y,, behaves like the empirical distribution of 41, .--, ~,, namely, its law 
goes to 2. 

The next result shows that (41 . . . . .  4k) has a multivariate distribution which 
is symmetric stable of index c~. 

k 
(55) Proposition. a) Fix real numbers cl, . . . ,c k. Then ~ cj4j is symmetric 
stable of order ~. j-1 

b) Let (1 . . . . .  (~ be independent k-vectors, each distributed like (41 . . . . .  4k). 
Then n-1/~(( 1 + ... +( , )  is also distributed like (41 . . . . .  ~k). 

Proof This is immediate from (54). [] 

Call an element of M[M(R)] symmetric stable of order fl if it assigns 
measure 1 to the set of measures in M(R) which are symmetric stable of order 
fi, having arbitrary scale parameters. If # is a symmetric stable measure in 
M[M(R)]  of order fi, then there is a measure 7 in M(R) concentrated in (0, oo) 
such that, for all integers k and k-tuples of real numbers t l , . . . ,  tk, 

k 
(56) ~ rh(tl)...rh(tk)#(din)= ! exp ( - c  ~11tJ)7(de).  

M(R) j= 
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Here, c is the arbitrary scale parameter. 

The reported results that the empirical distribution of (Ynl, .-., Yn,) is nearly 
normal suggest that Z should by symmetric stable of order 2. The following 
proposition shows that this is not so. 

(57) Proposition. Suppose h is not constant, 0<cr and O<fi<2.  Then 2 is 
not symmetric stable of order ft. 

Proof Suppose the contrary. Let 7 be the measure corresponding to 2 as in 
(56). We will obtain a contradiction between the representations (56) and (53). 

Case 1: ~<fl. Let t =  I t J  . Then (56) entails 
j =  

(58) ~ rh(tt)...rh(tk)2(dm)= ~ rh(t)2(dm). 
M(R) M(R) 

Evaluate both sides of (58) by (53) and (41): 

(59) ~ )1 h(xx)+ "" +tkh(xk)l~dx=t~lh(x)] ~dx" 
I k I 

Let [71, U2, ... be independent random variables, each uniform on [0, 1]. Let Vj 
=h(Uj). With k=2,  the right hand side of (59) gives the same evaluation for 
two cases: t l = t 2 = l  and t l = - t 2 = l .  Thus, the left hand sides for the two 
cases also coincide, which shows that 

(60) E l i  v~ - v21 ~] = E [I vl  + G r ] .  

Thus, by (4), the V's are symmetric. They are nondegenerate because h is not 
constant. Now (16) implies that 

Since ~ < fi, 

E tjVj < ~ Itjl ~ Elrl[% 
j L j=  i 

tj = I t J  = t ,  
j= j = l  

so the left side of (59) is strictly smaller than the right side, a contradiction. 

Case 2: fl<ct. Use (56) with k =  1 to see that 

1 

exp [-]tl~!lh(x)I ~ dx] = S exp(-c] t ]~)o  7(dc)" 

1 

Put x for c, 2 for Itl ~, and k for ~ ]h(x)l~dx: 
0 

~exp ( -  2x) 7(dx) = exp ( - k2~/~). 
0 
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However, since c~ > fi, the right side is not a Laplace transform. 

Case 3: fi = ~. As in Case 2, we get 

~exp  ( -  2x) 7(dx) = exp ( -  k2), 
0 

so 7{k} = 1. But this contradicts (49). [] 

Here is a probabilistic construction of 3. First, it is convenient to embed 4 
in a continuous time process: for each instant t, 4t=(4], 4~,-.-) will be an 
infinite random vector, with 41 equal to the original 4. To construct 4 t, 
proceed as follows. For  simplicity, suppose h(U) and -h (U)  have the same 
distribution, where U is a uniform random variable on [0, 1]. 

Step 1. Construct an infinite supply of random vectors V1, V 2, . . . ,  each Vii 
=(vii, vi2 , ...) where the viSs are independent random variables distributed as 
h(U). 

Step 2. Construct a one-dimensional symmetric stable process of index c~. Call 
this process {rh}. 

Step 3. Take each jump of r/t; say the height of the jump is u; replace this by 
the vector C a. u. V, where Vis one of the vectors constructed in Step 1, and C a 
is the constant in (7). 

Step 4. Sum the vector "jumps": the sum of these "jumps" to time t is 4 t. 
(Note: if e <  1, caution is in order. Take the sum over the jumps corresponding 
to u such that lul __>t, and let t--~0.) 

The log characteristic function of (~1,-.-, ~k) is 

By (7), this is 

- ~ j=~ tj h(xj) ~ dxl. . ,  dx k. 

- ~  j~  lul 1+~ '  

where q5 is the characteristic function of the random variable h(U). Now 
C~lul -(1+~) is the canonical L6vy measure for the process r/. The relevant 
infinite dimensional canonical measure is then as follows: select u from the 
canonical measure for r/; make vl, v 2 . . . .  independent and distributed like h(U); 
then, take the distribution of u vl, u Vz, .... 

Given r/, the processes ~], ~ ,  ... are independent and identically distributed. 
Now 2 can be described as follows: a "typical" m selected from 2 is the 
distribution of ~ujvj ,  where the vfs are independent and distributed like h(U). 
So the u's are parameters, which are randomly selected by 2, as the jumps of 
the process r/between 0 and 1. 
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