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Summary. If  X1, X2,  . . . ,  are i.i.d, r a n d o m  variables and Yn= 
Max(X1,  ... ,  Xn); if for some sequences An, Bn, n =  1, 2, .. . ,  E,(t)=A n Yrnq +B, 
is such that  En(1) weakly converges to a non degenerate  limit distribu- 
tion, then we prove  that  it is possible to construct  a sequence of replicates 
of  extremal  processes E(n)(t) on the same probabi l i ty  space, such that  
d(En(. ), E(n)(.))~0 a.s., with the Levy metric. We give the rates of con- 
sistency of the approximat ions .  

1. Introduction 

If  X1, X 2 . . . .  , is an i.i.d, sequence with c o m m o n  d.f. F(x)=P(X<x), noting 
qS(x)= 1 -F(x), and if for some sequences an>O, bn, n= 1,2, ...,LimF"(Gx+bn) 

noO 

= e x p ( - H ( x ) ) ,  H(x) being one among  the possible limit functions e -x, x -a, 
( - x )  a, then, if Yn=Max(Xx  . . . . .  Xn), it is well known that  the process En(t ) 
=as has all its finite distr ibutions converging to those of an ex- 
t remal  process E(t) (see [4], p. 304). 

The  a im of the following is to give a s trong approx ima t ion  result in the 
following sense: we shall show that  there exists a sequence of replicat ions of 
the extremal  process E(n)(t), n =  1, 2, ..., defined on the same probabi l i ty  space 
(eventually enlarged) as the initial sequence, and such that  for arbi t rary  t > 0, 

E. (t + u~ (0) --< E ~n) (t) + v~ (t) 

G(t + ~(t)) > ~(n)(t) + w.(t) (1) 

where uin(t)=n l O(Lognt), nt~oo, i = 1 , 2 ,  and G, wn going to zero with rates 
depending on H. 

To  obta in  (1), we will first t ransform the sequence by the use of  the 
classical representa t ion  X n = G (Un), G(u) = M a x  { v; ~b(v) > u}, U,,, n = 1, 2, ..., be- 
ing an i.i.d, sequence of U(0,1) r a n d o m  variables, so that  Yn=G(Vn), with Vn 

= M i n ( U  1 . . . . .  Un). 
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Taking now e,(t)=nVE,tl and E,( t )=ayl(Yt , t l -b , ) ,  it can be seen that 

E,(t) = a 21 (G(n- a e,(t)) - b,). (2) 

Furthermore F"(a ,x+b , )~exp( -H(x ) ) ,  when n ~  iff exists sequences 
a,(.), % such that 

(i) c , j , c = H - a ( + m )  
(3) 

(ii) If d = H - l ( 0 ) ,  and ncb(a,x+b,)=H(x)+~,(x) ,  Lira{ Sup [%(x)l} =0. 
" ~  C n ~ X ~ d  

This can be derived easily from the fact that nLog(1-CP(a,x+b,))-~H(x), 
n ~ ,  and that the consistency of a d.f. to a continuous d.f. is always uniform. 

From (2) and (3), we can deduce, for a continuous F, that 

E,(t) = H -  i (e , ( t ) -  %(E,(t))), (4) 

where %(.) is defined in (3)(ii). 
It is thus enough to derive a strong approximation result for e,(.) in order 

to obtain a corresponding version for E,(.) by (4). 
We shall now do so, restricting the study to the sequences U1, U2, ..., and 

V,=Min(U 1 . . . . .  U,). 
2. Strong approximation of the extreme sequences. Let (~, 9,I, P) be a proba- 

bility space, on which is defined an i.i.d, sequence U1, U 2 . . . .  , of U(0, 1) random 
variables. Put for t>0 ,  r , = I n f { k > l ,  Uk<t}, V,=Min(U1,... ,U,); define the 
sequence of downcrossing levels by 

vo= l ,  Vk=Inf{t>vk_l;Zl/,+o--Zl/t_o+O}, k = 1 , 2  .. . .  , 

and the sequence of downcrossing points by 

n1=1, nk=Inf{m>nk_l;Vm<Vm_l}, k=2 ,3  . . . . .  

It is to be noted that v 1 <v 2 < ... is the ordered set of values taken by {1IV,, 
n > 1 }, and that precisely 

vk=l/V,k, Zl/v =rig, k = l , 2  .. . .  ; Zt+o=Limzt+~=z t. (5) 
e N 0  

L e m m a l .  I f  Zk=LOg(1/Vk), k=0 ,1  . . . .  , then Zo=O<zl<. . .<Zk<. . .  are the 
arrival times of a normalized Poisson process {N(t), t ~ 0}. 

Proof {Log(1/Ui), i>l } is an i.i,d, sequence of exponential E(1) r.v., so that 
{zk, k>  1} is the ordered set of the successive maxima of this sequence. It can 
then be readily seen that {zk--zk_l ,k>O } is an i.i.d, sequence of exponential 
E(1) r.v., so that the result follows. 

Knowing Zk_~=Log(1/Vk_l) for some k>  1, the conditional distribution of 
nk--nk 1 is independent of n k_ 1, and such that 

P(nk--n k l ~ r l z k _ l ) =  1-- r = l , 2 , . . . .  (6) 
\ ~k--1 / 

Lemma 2. I f  I is a discrete random variable such that P ( I>0 ) - -1 ,  and G is a 
random variable defined ~on the same probability space, and such that if 
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P ( I = ~ ) > 0 ,  P ( G > r i I = ~ ) = a  ~ 1, r =  1, 2, ..., then there exists on the same prob- 
ability space eventually enlarged an exponential E(1) random variable Y, inde- 
pendent of I, and such that 

G =- Log[1/I) + 1, ([u] standing for the integer part of u). (7) 

Proof. First note that the converse assertion of the lemma is trivial, 
since if Y is E(1) and independent of I, P ( [ Y / L o g ( 1 / I ) ] + l > r l I = ~  ) 
= exp ( -  (r - 1) Log (l/m)) = c~ r-  1. 

To get the result, assume that  I =c~, and consider the conditional distribu- 
t ion of (G-1)Log(1 / I ) ;  we have P ( ( G - 1 ) L o g ( 1 / I ) > t t I = ~ ) = e  -t for all t be- 
longing to {nLog(1/c~), n = 0 ,  1 . . . .  }. It is thus possible to construct for I=cL an 
exponentially E(1) distributed r.v. Y such that  G=[Y/Log(1/ I )]  + l, and that  
P(Y>t l I=c~)=e t, t > 0 .  Repeating the construction for all possible values of c~, 
which amounts  each time to show that  a discrete r.v. can be considered in an 
enlarged probability space as a function of a continuous r.v., we obtain finally 
a r.v. Y whose distribution does not  depend of I, giving the result. 

As a consequence of Lemmas 1 and 2, we get 

Theorem 1. I f  (f2, 9.I, P) is rich enough, it is possible to define on it a normalized 
Poisson process {N(t), t>0}  with arriL, al times denoted by z o 
- - 0 < z l < . . . < z k <  .... and an i.i.d, sequence {co , ,n>l}  of exponential E(1) 
random variables independent of {N(t), t >__ 0}, and such that if 

Z* (t) = [ - [ -  k~ 1= + 1 , t ~ 0, (8) 

then 

(i) 
(ii) 

(iii) 

~l/t =Z*(Logt ) ,  t > l ,  

vk = exp(zk), k=0 ,  1, ..., (9) 

nk=Z*(zk)=l-I-  i = 1  ~ _ L o g ~ _ e _ Z ,  ) +1  , k = l , 2 , . . . .  

( o ) 
With the usual assumption that ~ ( . ) = 0  . Furthermore, the process 

i = 1  

{Z* (t), t > 0} and the process {tilt, t > 1 } have independent increments. 

Proof. It is possible to deduce (9)(iii) from (6) and (7). Now, if t >  t is arbitrary, 
zl/~ is equal to zl/,,k=n k, where v~ is the smallest v~>t, i =  1, 2, .... The number  
of the vi<t is N((Log t ) -O)=N(Log t ) ,  so that  k = N ( L o g t ) + l ,  and the result 
follows. Note that  here N ( t ) = N ( t - O ) ,  and in particular, that  N ( z k ) = k - 1  , k 
--1, 2, ...; this leads logically to N ( 0 ) = -  1, which does not  interfere with (8) 
and (9), since the corresponding summations give 0. The fact that  {Zl/. t> 1}, 
and hence {Z(t), t>0} ,  is a process with independent increments was proved in 
[2] (see also [53). 

Theorem 2. Under the hypothesis of Theorem 1, {N(t), t>0}  being a normalized 
Poisson process, and {con, n > l }  being an i.i.d, independent E(1) sequence, if the 
process {N(t), t>O} is completed as a normalized Poisson process {N(t), 
- o c < t <  +oo} on the whole line, and likewise {co,,n> 1} is completed by {c~,, 
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- o o < n <  + o  o}, the extra variables being independent of the original sequence 
{U,, n>  1}, then if 

N(t) 

z(t)= ~ ~e~, (lO) 
k = - o o  

where ... < z _  1 < z o < O < z  1 < ... are the arrival points of N(.), 

3 
LimSup (Log t)-  1 (r 1/t - Z (Log t)) < ~ a.s., 

tl"oo 

- 1  
LimInf(Log t)-  1 (r 1/t - Z (Log t)) > ~ -  a.s. 

t,oo (11) 

Z ( t ) -  1 - N~) I Proof. It is clear that Z(.) is defined, and that ~ coke ~ =0(1)  a.s.; 
k = l  

now, if Sk=-_LogTV--e_~k , +1, 

coke=k--�89 +O(e-Zk))<Sk<Oke~--�89 + O(e-=~)) + 2, 

and, remarking that Zk/k~l  a.s., (O)l+...+COk)/k~l a.s., and that N ( t ) / t ~ l  
a.s., for t, k--+ + 0% (11) follows. 

Before going further, we shall prove some facts concerning the Z(Logt) 
process. 

Theorem 3. I f  Z(.)  is defined by (10), and if Y(t)=Z(Logt) ,  t>0 ,  then 

1 ~ The process {Y(t),t>=O} has independent, mean stationary, increments, 
E(Y(t)) = t, t > O, and is a left continuous ( Y ( t -  O)= Y(t)) increasing step process; 

1 --ius 
l - J u t ;  the 2 ~ For O<_s<t, the characteristic function of Y ( t ) -Y ( s )  is 

distribution of Y ( t ) -  Y(s) being also given by 

P (Y (t) - Y(s) = O) = s/t, 
(12) 

P ( Y ( t ) - Y ( s ) > u ) = ( 1 - t ) e - U / t ,  u > 0 ;  

3 ~ For t>0 ,  Y(t) is an exponentially E(1/t) distributed random variable; 

4 ~ I f  2>0,  the process {Y(2t)/)c,t>O} is identical in distribution to the pro- 
cess { Y(t), t >= 0}. 

Proof. Following [6] p. 146, Theorem 5.A, 

0 ) 1-,ueS E(elU(z~o-z(s)))=ex p E(e i . . . .  - -  1)dr - 
-s 1 - iud  ' 

co being in the preceding an E(1) r.v. A similar calculus enables to obtain, for 
O<s<=t, 

1 1 - i r e  s E (e iuz(s) +i~(z(t) - z(s))) = - -  
1 - i u e  s" 1 - i v d  ; 



Extremal Processes 5 

the rest follows likewise. We may now derive a strong approximation result for 
the {%/, t >  1} process. 

Theorem 4. I f  ~Sn(t)=n -1%/nt, t>0 ,  then ~,(t)=n -1 z~/,t-n -1 Y (nt) is such that 

-Log(n t )  / ~. 
(1+o(1)) 2n ~_e,(t)<3L~ (l +o(1)), a.s., when nt~oe. (13) 

= 2n 

Proof (13) merely restates (11), noting that by Theorem 3, 4 ~ n -1 Y(nt) defines 
a process identical in distribution for each n to Y(t). 

To get a strong approximation of the extremal process itself, we may note 
that 

"q/t<n ~=~ V,< l/t; Zl/t>n ~=~ V,> l/t. (14) 

Taking (11) as Y(t)-4(t)<Zl/~<Y(t)+t)(t), with Y-~b and Y+O integers, 
and such that r189 ~(t)<(Logt)(~+o(l)), a.s., t ~ ,  we get by 
(14) 

1 
vy.>~.~<7< vy.~_~.~. (15) 

Let us now inverse Y(.) in the following way 

Definition. I f  Y(t)=Z(Logt), Z(.) being defined in (10), we define the ineerse 
process { W(u), u >= O} by 

W(u) = Min {t; Y(t) >___ u} = Max {t; Y(t) <u}. (16) 

Using (16), we can see that leg(.) is left continuous, W(u-O)=W(u), that 
W(0)=0, and that for u>O, u<Y(W(u)), so that putting t =  W(u) in (15), we get 

1 
W(u-~ < Vr(w(u)) r < V~,_r (17) 

To get a bound on the other side, note that r and ~ can be assumed to be 
constant in each interval such as (v k 1, vk), Y(.) and z~/. having same points of 
increase, so that, by an eventual good choice of these functions, 

1 
Vi"+~ < W(u)" (18) 

Lemma 3. For any g > O, almost surely for t large enough, 

t 
(Log t) ~ +~ =< v I/' < t(t + g) LogLog t. (19) 

Proof See [3], or equivalently [1]. 

It follows from (11) and (19), that Lim/LogW(u)~ u,o~ ~ L~Tugu ] = 1  a.s. 

Note that (15) is valid for t>=l, and thus, that (17) and (18) assume 
implicitely that W(u)>l .  By the preceding relation, L imW(u)=+c~ ,  W(.) 

u~.oo 
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being an increasing step function, and this will always be satisfied for u large 
enough a.s. 

We have now obtained our final result. 

TheoremS. I f  e,(t)=nVt,tl , where V,=Min(U 1 . . . .  ,U,), then there exists two 
functions of t>=O, p(t) and 7(0, such that almost surely for nt large enough, say 
t > C/n, 

n 

G(t+p(nt))<= <=en(t--y(nt)), 
W(nt) 

with 

O<p(nt)< 3(L~ + o(1)), 0<7(n t )<  (Logn t)(~ + o(1)) 

when ntT + oe. 

, a . s .  

Proof. It is a direct consequence of (11), (17), (18), (19). 
We can see here that {n/W(nt), t>O} is a process with distribution inde- 

pendent of n. It defines in that case the approximating sequence of extremal 
processes. 

Since by (3) and (4) we can deduce the general approximating sequences for 
an arbitrary extremal process, we can define such processes by 

E 2 (t) = H -  1 (n/W(n t)). (20) 

This formula gives the general structure of extremal processes. 
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