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Summary. This paper treats the problem of existence of optimal controls in 
partially observable systems whose dynamics are described by a nonlinear 
stochastic differential equation. The technique applied is based on weak 
convergence of probability measures and on the construction of stochasti- 
cally equivalent processes. 

1. Introduction 

This paper concerns the control of a system whose dynamics are governed by 
the nonlinear stochastic differential equation 

dx=f(t,x,u(t,x))dt+a(t,x)dw, O<_t<_T, (1.1) 

with initial condition 

x(O)=x o. (1.2) 

Here w is an r-dimensional Brownian motion, f and a are r-vector valued and 
r x r-matrix valued nonanticipating functions, respectively, and the control u is a 
function whose value at time t may depend at most on specified information 
about the past of x ( ' )  up to time t. The control is to be chosen so as to 
minimize the expected cost 

J(x,u)=E{il(t,x,u(t,x))dt}+E{g(x)}. (1.3) 

Existence results for this type of problems involve heavily the information 
pattern available to the controller. The techniques based on the Girsanov 
measure transformation method (cf. [1, 5]) seem to work only in the case of 
complete information about the past. 

Here we use a method applied by Kushner (cf. [6]), which is based on weak 
convergence of probability measures, and extend it to the case of partial 
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observation. The underlying concept of solution to (1.1), (1.2) is that of weak 
solutions (cf. [7]), which takes into account only the distributions of the 
processes involved. 

The results that will be obtained in this paper require only mild regularity 
assumptions about the drift f ( t ,  x, u). In particular, Roxin's condition (which 
requires the convexity of the velocity sets f ( t ,  x, ~), ~ll being the space of control 
points) is not needed here. Moreover, a fairly large class of information patterns 
is covered. However, this is at the price of a more restrictive class of control laws 
to be admitted. 

2. Assumptions and Formulation of the Problem 

The following notations and assumptions will be used throughout. 

C~=space of IRCvalued continuous functions on [0, T] with the sup-norm 
topology. 
c~[ =a-algebra on C~ induced by the continuous functions on (0, t] for 0_<t_< T; 
i.e. (g~ is the a-algebra generated by all sets of the form {~: ~(s)~F}, where 
0_<s___ t, F is an arbitrary Borel set in IRk and ~ denotes the generic element of 
C~. 
In the sequel, r, l and m are positive integers, and ~, ~/and ~ denote the generic 
elements of C), C; r and C}, respectively. 

(A1) Let ~9: C~r---,C;r be a continuous function satisfying q)-l(~l)~cg[ for all 
t~[0, T]. 

(p is the 'observation function', which means that cp(x)(s), 0 < s < t, represents the 
information available on the process x at time t. The measurability condition 
expresses that this information comprises at most the past of x( . )  prior to t. It is 
equivalent to requiring that the process (p(~)(t), 0<t__<T, in C) be adapted to 
fig[). Let us give some examples of information patterns fitting our assumption. 

1) Only certain components of the system process x can be observed: 

q0(~)= ~2, where ~ =(4], ~i)'. 

2) Delayed observation: 

q)(~) ( t )=~( t - r ) ,  where z is some fixed delay time and the convention ~(s) 
= ~(0) for negative values of s is adapted. 

3) (p(~)(0 = i ~(s)ds. 
o 

The choice of C~ as sample space for the observed process is not crucial. For 
instance, one might alternatively take the space of piecewise constant functions 
with jumps occuring at specified times tl, t2, ..., This would allow for obser- 
vation taking place only at discrete times. 

(A2) Let 0//: [0, T] x C~-,IR m be a continuous point-to-set mapping (with 
respect to the Hausdorff metric) assigning to each pair (t, 0) a closed set q/(t, ~/) 
in IRm. 
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Denote by ~ o some measurable set containing all the sets Y/(t, rl), and by Nr  and 
N~o the Borel a-algebras on [0, T] and q/o, respectively. 

(A3) Let f :  [0, T] x C~. x q/o ~IR r be measurable with respect to the o-algebra 
Nr  |174 . For each pair (t, u)el-0, T] x ~o let the function f( t ,  ", u) be cg]-_ 
measurable, and for each tel0,  T] let f( t ,  ", ") be continuous. 

(A4) Let a: [0, T] • C) -~r x r-matrices be measurable with respect to Nr| 
For each tel0,  T], let o(t,-) be continuous and ~g(-measurable. 

(A5) Let I: [-0, T] x C~-x~o--,IR be a nonnegative function measurable with 
respect to N r | 1 7 4  For each pair (t,u)~[0, T] x ~  0 let l(t, ",u) be cg[_ 
measurable, and for each t~[0, T] let l(t, . ,  .) be continuous. 

(A6) g: C~--,IR is continuous and bounded. 

Let us now make precise what we understand by an admissible control law. 
To make clear the principal ideas, we shall first deal with the case where only 
controls with continuous trajectories are admitted. The general case of measur- 
able controls is postponed to Sect. 4. 

A function u: [0, T] • C~-~IR ~ is called an admissible control if it satisfies 
the following set of assumptions (i)-(vi). 

(i) u(.,tl)EC" ~ for all ~/~C~. 

There exists a process x(t), 0 < t < T, defined on some probability space (f2, ~ ,  P), 
with continuous trajectories, such that the following conditions are fulfilled. 

(ii) x(0) has the prescribed distribution F 0. 

(iii) For every p > 0  there is a continuous function rp: [0, p ] ~ R  +, ro(0)=0 , 
such that for all 0 <_ t <_ T 

ilu( ", ~)  - u ( . ,  ~')il1 _-< ro(il ~ - ~' ll,) 

for all r/,r/'~N=cl(qo(x(f~)) satisfying llr/-t/']Lt<p. Here i1"][t denotes the sup- 
norm on [0, t]. 

Example. rp(z)=Kp]z[ ~, e > 0  (local H/51der condition). In particular, (iii) means 
that u(s, t/)=u(s, t/') for all O<s<_t if r/,=t/', (with t/t denoting the restriction of ~/ 
to [0, t]). As a consequence, the process u(t, r/), 0 < t < T, defined on N is adapted 
to ((r the a-algebra induced on N by (qf]). Since the trajectories are continuous, 
it follows that u(-, -): [0, T] x ~--.]R" is measurable with respect to NT|162 

(iv) u(t, tl)~ql(t,~l) for all ~/6~, te[0, T]. 

(v) There exists an r-dimensional Brownian motion (w(t), ~) ,  O<t< T, on 
(~2, g , P )  such that x(t) is nonanticipative with respect to (~)  and the Ito 
equation 

t 

x(t) = x o + ~ f (s, x, u(s, q0(x))) ds + i a(s, x) dw(s) 
0 0 

(2.1) 

holds with probability one for all 0 <_ t < T. 
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Remark. It is easily seen that the process u(t, (p(x)), O<t< T, is adapted to (~).  
The process x will be called a solution of (2.1) corresponding to the control u. 

(vi) There  is a constant K such that, uniformly in 0_< t_%< t + A < T, 

t + A  

a) E ~ [f(s,x,u(s,~o(x)))ldsZ<gA 2, 
t 

T 

E ~ If(s, x, u(s, (p(x)))t z ds<=K; 
0 

T 

b) E ~ [X(s,x)[+ds<K, 
0 

where 2; = a a'; 

T 

c) g ~ II(s, x, u(s, (p(x)))l 2 ds<K; 
0 

d) E[u(0, (p(x))12 =<g, E[u(t+A, (p(x))-u(t, (p(x))12<KA 2. 

Note that the functions r o in (iii) as well as the constant K in (vi) are assumed to 
be the same for all admissible u. 

Let d denote the class of admissible controls. A rigorous formulation of the 
control problem can now be given: 

minimize 

(p) J(x 'u)=E{il( t 'x 'u(t ' (~ 

in the class d of admissible controls u and 
corresponding solutions x. 

By virtue of (A5) and (A6) J=inf{J(x, u): u ~ d ,  x solution corresponding to u} 
is finite. 

3. Existence of Optimal Controls 

Every u ~ d  defines a function U: C~-~ C~ by setting U(~)(t)=u(t, ~). If x is a 
solution corresponding to u, then the mapping V=U(~o(x(.))): Q~C'~ is 
measurable with respect to J r  by virtue of (iii). 

Define functions 

t t 

F(O=~ f(s,x,u(s, cp(x)))ds , B(t)=~a(s,x)dw(s), (3.1) 
0 0 

and 

�9 (t) =(x(0, F(0, ~(0, V(O). (3.2) 
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_ 3~ C~. I t  induces on the The process ~ is adapted to (~ )  with paths in S - C  r x 
Borel field of S a probability measure Q by 

Q(A)= P~(A)= P[ ~ A ] .  

Let ~ denote the class of all probability measures generated in this way with u 
ranging in d .  Then condition (vi) implies that ~ is tight (cf. [2], p. 95), hence 
every sequence in ~ contains a weakly convergent subsequence. The verification 
of the moment condition (12.51) in [2] is non-trivial only for the B-component 
of ~b. By Satz 1.3.6 in [-5] 

E t+a dw(s) 4 EIB( t+A)-B( t ) I  4= ~ ~(s,x) 
t 

t + A  

-<_6r2A'ZE ~ a4k(s,x)ds, 
i , k  t 

and by H61der's inequality 

t + A  F T ]1/2 [ T ]1/2 

t 0 A 

whence 

E [B(t + A) - B(t)[ 4 ~ 6 r 4 K 1/2 A 3/2. (3.3) 

The following lemma shows that ~ is weakly closed. 

Lemma 1. Let u., n= 1, 2, ..., be a sequence of admissible controls with cor- 
responding solutions x.  defined on probability spaces (~., ~.,  P.). Let Q. denote the 
probability measures induced on S, i.e.Q. = (P.)~., where 4~. is defined by (3.1), (3.2) 
with x = x . ,  u=u. ,  and suppose that Qn~Qo weakly, where Qo is a probability 
measure on S. Then there exists a sequence fin, n = 0, 1, 2 .. . .  , of admissible controls 
with corresponding solutions 2~, all defined on the same probability space (~, ~,, P), 
such that 

e~ ,=o, 1,2,..., 

and 

45 ~450 /5-a.e. 

in the topology of S (45n is defined analogously to ~ ) .  

Proof In the first step, we shall use a modification of Skorokod's proof of his 
lemma ([9], p. 10) to construct processes ~n in such a way that the fourth 
(=  control-) component can be factorized via the first (=  state-) component (cf. 
(3.9)). 

Since S is a complete separable metric space, we can find Borel sets Sil,i ...... i~ 
in S as well as subintervals AI~),~ ...... z~ if [-0, 1], left open and right closed, for all 
natural numbers k, il, i 2 ,  . . .  , ik, n = 1 ,  2 ,  . . . ,  with the properties required in [-9]. For 
the reader's convenience, we repeat them here. 
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Assumpt ions  abou t  Sii ,z ...... ik: 

1. Sii,i  ...... ik and Si, ,i, ~ ..... ix are disjoint for ik @ i ~. 

2. U Si~,~ ...... ~ . . . .  ~ = S ~  ~ ~,~ ~; ~ S ~ = S .  
i ~ = 1  ' ' " "  - i = 1  

3. The  d iameter  of  Sa,~; ..... ~ does not  exceed 2 -k. 

4. For  every il ,  i2, ..., ik, 

Qo(~Sil,~2 ..... i )  = O, 

where c?A denotes  the topological  bounda ry  of A. 
Assumpt ions  abou t  A! n). . n = 1, 2, " 

1. Al:),i ...... ik and Al~),i, ..... i~ are disjoint for ik=# i' k. 

2. The  interval  A,,,~!'). ..... ~k. is to the left of  the interval  A,~,,~!~). ..... ~. if ij = i) for j < r 
and i~ < i'~ for some r. 

3. The  length of the interval  A! ").,,,~,...,,~. is equal to Q , ( S ~ , ~  ..... J .  

Note  that  the intervals AI:I~ ...... ~ satisfy the same relat ion as is required form 
the Sil,~ ...... ~ in condi t ion 2. 

Next,  choose points  

z! n). . = $  (m! "). ~ S .  (3.4) 
l ~ 1 2 , . . . , t k  - - ; ' l \ ~ l [ , 1 2 , . . . , l k ] - - - - l l , 1 2 , . . . ~ l k  

(with o91~)~ ...... , e r a , ) ,  if possible, and  set 

~ ( c 5 ) = , {  ")..,,,,~,...,,k. for &eAlT),,= ..... ~. (3.5) 

Since the choice (3.4) is possible whenever  Q , ( S h .  ~ ...... ~) is positive, and A{ "). 
. ~ 1 ,  / 2 ~ . . . -  } t k  

= 0  when Q,(S~,,~ ..... ~ ) = 0 ,  ~k is defined on the whole interval  [0, 1] = ~  and is 
obviously  Borel measurable .  

N o w  consider the r a n d o m  functions r ob ta ined  by direct appl ica t ion of 
Skorokhod ' s  technique, which differ f rom the above  functions by the fact that  in 
(3.4) points  z~,,~ ...... ~ eS~,~  ..... ~ are chosen independent ly  of  n: 

. . . . .  for . . . . . .  , .  

Then,  as is shown in [9~, the limits 

45(&) = l im r n = l, 2 , . . . ,  
n ~ o  

and 

,~o(&) = lim q3(&) (3.6) 
r l ~ o o  

exist a.e.; moreover ,  

Q, = &n, n = 0, 1, 2 . . . . .  (3.7) 

But since, for cSeAl~ ...... ,k, bo th  45~(&) and ~ ( & ) l i e  in S~l,~ ...... ,~, it is easily 
established tha t  

~, (cb)  = l im  ~5~(~) a.e., n = 1, 2 , . . . .  (3.8) 
k ~ c o  
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To proceed, write 

By construction ((3.4) and (3.5)) and by the continuity properties of U, and p 

17 (c5)= lira V~(cS) 
k ~ o o  

= lira U,(~o(2~(c5))) (3.9) 
k ~ c o  

= G(o(~ . (6) ) )  

for almost every &. Morevoer, 

~(~~ ~ cl(~(~.(G))).  

Now proceed in the same way as in [6]. The mapping 

-i Gt(~, ~)-  f(s,  ~, ~(s)) ds 
0 

being measurable on its domain in C ) x  C~ for each t, F~(t)=G,(x,, U,(~o(x,))), n 
= 1, 2, ..., together with (3.7) implies 

~ ( t ) -  i - f ( s ,  Yc,, G ( s ,  (p(2,))) ds (3.10) 
0 

a.e. for each t, and by continuity this holds for all t with probability one. 
Further,/3.(t), 0 < t <  T, is a continuous vector-valued martingal with respect to 
(~(t))  = (a {2.(s),/~.(s), 0 < s < t}) with quadratic variation 

t 

(B , )  (t)=- ~ S(s, 2.) ds 
0 

for all n=0,  1,2 . . . . .  Hence there exist Brownian motions (#.( t) ,~(t))  on the 
(possibly augmented) probability space (O, ~,,/5) such that both 2.( 0 and/3.(t), 
0 <_t_< T, are adapted to (~.(t)) and 

t 

B.( t) = ~ a(s, Y%) d#.(s). (3.11) 
0 

Now it is easy to see that for n = 1, 2,... 

~.(t) = ~.(0) + P.(t) + t?.(t) 
t (3.12) 

= s + j f(s,  2., u.(s, g0(2.))) ds+ ~ a(s, 2.) d~.(s) 
0 0 

holds for all t with probability one. This means that Y. is a solution of (2.1) 
corresponding to the admissible control a .=u . ,  n =  1, 2 . . . .  (the tightness con- 
dition (vi) is easily verified by measurability arguments in connection with (3.7)). 
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It remains to show that we can find a function io:  [0, T] x C~r~R '~ such 
that  

fJo ((5) = ffo((0(2o((5)))=~2o( ", (0(20((5))) (3.13) 

holds for almost every (5 and ~o is an admissible control with 20 as a 
corresponding solution. 

To this end, define a function 0 o on (0(2o(~)) by setting 

[7o(t/) = Vo((5) for (0(2o((5))= r/. (3.14) 

We have to make sure that  the definition is unambiguous.  This will follow from 
a more general result. For  t /= (0(27o(CO)) , r/ '= (0(20((5')) and arbitrary tel-0, T] we 
obtain the estimate 

il 0 o ( ~ ) -  Oo(~')[It = il ~o ( (5) -  ~o((5')Jl~ 
_-< fl Vo((5)- ~.((5)ilt + il ~(,7.)  - ~(~)P/ ,  

+ Jl ~=((5')- Vo((5')iF, 

where p is any positive number  such that  [Ir/-~/'rl,<p as well as it*l.- ~/'.il~<p for 
all n large enough, with t/= = (0(2,((5)), r1',=(0(2,((5')). (To account for those (5 for 
which 45,((5)++~bo((5), suppose that  the 43, n = 0 ,  1, ..., have been redefined on 
this nullset to ensure convergence.) Now, since lr~.-~;il,--'il~-r it follows 
from the continuity of rp that  

il go(~/)- go(~/')il~ < 2 e + rp( i ) / -  t/'[13; 

since this estimate holds for arbitrary e > 0, we find that 

il g o ( v ) -  go(~')il, < rp(il~ - ~'i1~) 

for all q, tfe(0(2o(f2)) such that  l [~-t / ' l l ,< p. In particular this means that (r o is 
uniquely defined by (3.14) and ~o(t, ~/)= Oo(q)(t ) satisfies the admissibility con- 
dition (iii) if extended to c1((0(2o(~)) ) by continuity. Furthermore,  with t / and  t/, 
as above, 

~o(t, ~)-- Vo((5)(t) 
= lim 17.((5)(t) 

n + o o  

= lim U.01.) (0- 

Since U.0/.)(t)ea//(t, ~/~) and ~/~ ~ ,  ~o(t, q )e~( t ,  ~/) follows from (A2). 
Next let us show that  (vi) is satisfied. Writing f~(s,(5)=f(s, 2,((5), 

~,(s, (0(2,((5)))), n = 0 ,  1, 2, . . . ,  it follows from (3.6) and (A3) that  

f,--+ fo, If,12 -+ Ifol 2 P x ZT-a.e. (3.15) 
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(2r=Lebesgue measure on [0, T]), hence the second relation in (vi) a) follows 
from Fatou's lemma. To show the first relation, observe that the f ,  are uniformly 
integrable and thus 

t + A  t + A  

]f~l ds- ,  ff If0[ ds in Ll(f~, ~-,/5). 
t t 

Then, for a subsequence (n')c (n), 

[s ds ~ [folds P-a.e. 

Fatou's lemma completes the proof. The proof of the other conditions b)-d) 
follows the same arguments. Furthermore, it follows from 

F, , ( t )= iXds -+i fods  in L l ( a , ~ , / 5 )  
0 0 

for all t and (3.6) that 

t 

Fo(t) = ~ fods /5-a.e. (3.16) 
o 

for all t, and by continuity (3.16) holds for all t with probability one. Hence, by 
(3.12), (3.6), (3.11) and (3.16), 

2o(t)= 2o(O) + ff o(t) + Bo(t) 
t t 

= 20(01 + y f(s, Y%, ~o(S, 0(20)))ds + ~ ~(s, 20) d#o(S ) 
0 0 

holds for all 0 _< t _< T with probability one. 
This completes the proof of the Lemma. 
The following theorem gives the existence result for the case of continuous 

controls. 

Theorem 1. Assume that conditions (AI)-(A6) are satisfied and that the class d of 
admissible controls is nonvoid. Then there exists an optimal admissible control in 

Proof Consider a minimizing sequence (un, x,) of admissible controls u, and 
corresponding solutions xn, i.e. J(x,,, u,) -+J. Then, in, the notation of Lemma 1, 
the sequence Qn=(P,)e, of measures induced on S is tight, and we can extract a 
subsequence - indexed equally by n in the sequel - converging to some Q0eN. 
Passing to the equivalent processes qS, 

T T 

E. ~ l(s, xn, u~(s, ~0(x~))) ds =~ ~ l(s, ~., ~.(s, ~o(~~ ds 
0 0 

T 

since the mapping (~, () --, y l(s, ~, ((s)) ds from C r x C m to IR is measurable. Since 
o 

the sequence l( . ,  2~, ~ ( - ,  ~o(2,))) is uniformly integrable and converges /5 x 2 r- 
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a.e. to l( ' ,  20, ~o(',  q)(2o)), 

T T 

s ~ t(s, ~z,, ~,(s, q,(~,))) ds--,s ~ I(s, ~o, C,o(S, q,(&))) ds. 
o o 

Finally, since g is continuous and bounded, 

E.{g(x~ =/~ {g(&)} --,~ {g(~o)}- 

Hence, 

Y(x,, u,)=a(2,,  ~,)-+ J(xo, Uo) =y- 

N. Christopeit 

4. The Case of  Measurable Controls 

The situation becomes more complex when the admissible controls are allowed 
to have paths in L'] [0, T] instead of C~. Let us first look at the obvious changes 
to be made in the definition of admissibility. To begin with, (i) has to be replaced 
by 

�9 m (i') u( , q)d21[0, T] for all t /oCt .  

(iii) can be overtaken in the above form if the symbol [I �9 [I, on the left hand 
side of the inequality is interpreted as the restriction of the L"[ [0, T]-norm to 
[0, t], i.e. 

llvil, = i Ms)l ds. 
0 

Let us refer to this modification of (iii) as condition (iii'). To see what measur- 
ability properties are implied by (iii') consider the functions 

1 
Uh(t, tl)-=~t~_ h u(s, tl) ds (4.1) 

defined for all t/~C~, t~[0, T] and h > 0  (put u(s,r/)=0 for s<0).  Then 
uh( ", */)~ C~. 

Lemma 2. I f  u satisfies (iii'), then u h satisfies (iii) (with ro/h ). 

Proof For 0_<s_<t, t/, t / ' ~ ,  [It/-t/'ilt<p, 

, 1 
luh(s, rl)--Uh(S, rl )l <~ i lu(r, rl)--u(r, rf)l dr 

s - h  

1 
_-<~ iru(', ~)-u(. ,  ~l')[I, 

1 
<-rp(il~-~'ilt). =h  
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It follows that the restriction of the process uh(t,.), 0 < t <  T, to ~ is adapted to 
(c~) and measurable for every h>0.  Take a sequence h~',~0. Then 

u(t, t/) = lim Uh,(t , rl) 
n~co 

for every t /and for almost every t (cf. [8]). The exceptional set E = {(t, t/)~[0, T] 
x .,~: Uh~(t , rl)-4--~u(t, r/)} is measurable with respect to NT|  and its t-sections 

are measurable with respect to c~], since they are just those sets where uh,(-, ") 
and Uh,(t,'), respectively, do not converge. Hence, by redefining u on E, we can 
find a modification of u which is NT| and adapted to @D. 

(iv) has to be changed in that the relation u(t, tl)~U(t, tl) is required to hold 
only a.e. in t. 

Finally, we have to replace (vi) by a suitable tightness criterion in L 1. To 
this end, define the Steklow functions 

21 t +h Vh(t )= ~ V(S) dS 
t--h 

for veL~,  h>O (put v(s)=O for s<O and s > T ) .  Then a sufficient condition for a 
subset A of L" 1 [0, T] to be relatively compact is the following: 

a) sup [[v[] < oo; 
v~A 

b) lim sup lJv h-viI =0,  
h E 0  ueA 

where i[" [l = il "ilr denotes the L'] [0, T]-norm (cf. [10]). This yields the following 
condition for tightness in L~: 

Lemma 3. A sequence (t:),) of  probability measures on (the Borel f ield of) L~ [0, T]  
is tight if the following conditions are fulfilled: 

a) For every ~ > 0  there exists a number M such that 

P~{v: [[v[[>M}<~ for all n; 

b) For every e > O, 6 > O, there exists an h > 0 such that 

P.{v: plvh,-vpl > ~)} <=~ 

for all n and all 0 < h' < h. 

Lemma 3 simply transforms the concept of tightness in L" I by substituting for 
relative compactness the above characterization. Its proof is analogous to the if- 
part of the proof of Theorem 8.2 in [2]. 

For a sequence of random functions V,: f2--+L'~ 1 tightness means tightness of 
the measures induced on L'I; hence a) and b) take on the form 

a) Pill r,[I > M ]  <e  (i.e. the sequence (l[ V,H) is tight on the line); 

b) P[I[(V~) h -  V.[] >=(~] <e. 

The V, may be defined on different probability spaces. For simplicity we omitt the index n 
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By Ceby~ev's inequality we obtain the following tightness condition to be 
required from an admissible L~-control u and its corresponding solution x: 

(vi') d) There exist a constant K and a positive function r(h), decreasing 
monotonically to 0 as h'~0, such that, uniformly in u and x, 

gllu(',~o(x))[I < K  and 

El[uh(', r ~0(x))il <r(h) for h>0.  

This is to be substituted for (vi) d), a)-c) remaining unchanged. The class d '  of 
admissible controls now consists of all functions u satisfying the modified set of 
assumptions (i')-(vi'). 

Now, proceeding as in Chap, 3, we can define functions U: t ,, CT--*/21[0 , T~ by 
U(t/)( ')=[u( ' ,~/)3 (the equivalence class of u(.,~/)), V=U(cp(x(.))): 
~2~L'[[0, r ]  and a measurable function q~: (2---,S=C~" L"~[0, T] as in (3.2). 
Then the proof of Lemma 1 carries over to the Ll-case in its essential parts. 
Only the verification of conditions (vi') and (v) for the equivalent processes 
(~n,2,), n=0,  1,2, ..., turns out to be somewhat more involved. In principle, 
however, it runs along the same lines as the corresponding part in the proof of 
Lemma 1, making use of certain measurability and continuity properties of 
mappings of the type 

t 

(x, v) -*5 h('c, x, v('c)) d'c 
s 

defined on some domain in C~ x/2"[, and whose application to the functions f 
and l require the additional assumption of joint continuity. For the technical 
details cf. [3]. 

With the help of the properties just mentioned, the proof of Theorem 1, too, 
carries over to the case of Ll-controls. 

Theorem 2. Suppose that conditions (A1)-(A6) are satisfied and that, in addition, 
f ( t ,  x, u) and l(t, x, u) are jointly continuous in (t, x, u). I f  the class d '  of admissible 
controls is nonvoid, then there exists an optimal control in J ' .  

Remark. It should be clear that the proof of the weak compactness of ~ '  (or ~)  
remains valid if the tightness criterion (vi')d) (or (vi)d)) is replaced by some 
other condition (C) which is sufficient for tightness, provided the resulting class 
d c of admissible controls has the following closedness properties: 

1) If u ~ 4  c with corresponding solution x, then, for any distributionally 
equivalent pair (2, ~), ~(-, cp(2)) satisfies (C). 

2) If u ,~dc  with corresponding solutions x, and x , ~ x  in C T, 
u,( ' ,  (p(x~))~u(', cp(x)) in L 1 a.e., then u(. ,  ~p(x)) satisfies (C). 

Finally, let us remark that the methods used here are easily extended to 
include control of the diffusion term (cf. [3]). 

References 

1. Bene~, V.E.: Existence of Optimal Stochastic Control Laws. SIAM J. Control 9, 446-472 (1971) 
2. Bi]lingsley, P.: Convergence of Probability Measures. New York: Wiley 1968 



Existence of Optimal Stochastic Controls under Partial Observation 213 

3. Christopeit, N.: Optimal Control of Partially Observable Stochastic Systems. Technical Report. 
Bonn, 1979 

4. Duncan, T., Varaya, P.: On the Solutions of a Stochastic Control System. SIAM J. Control 9, 
354-371 (1971 t 

5. Gikhman, I.I., Skorokhod, A.V.: Stochastische Differentialgleichungen. Berlin: Akademie Verlag 
1971 

6. Kushner, H.J.: Existence Results for Optimal Stochastic Controls. J. Optimization Theory Appl. 
15, 347-359 (1975) 

7. Liptser, R.S., Shiryayev, A.N.: Statistics of Random Processes I, New York: Springer 1977 
8. Natanson, I.P.: Theorie der Funktionen einer reellen Veriinderlichen. Berlin: Akademie Verlag, 

1969 
9. Skorokhod, A.V.: Studies in the Theory of Random Processes. Reading Mass.: Addison-Wesley, 

1965 
10. Tulaikov, A.: Zur Kompaktheit im Raum Lp ftir p =  1. Nachr. Akad. Wiss. G6ttingen, Math.- 

Phys. K1. II (1933), 167-170 

Received February 12, 1979; in revised form October 10, 1979 


