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On Some Selection Procedures in Two-Way Layouts* 

P.K. Sen and M. L. Puri 

1. Introduction 

For  a two-factor complete block design with one observation per cell, we 
express the observable random variables X~, ( i=  1, . . . ,  c; e =  1 . . . . .  n) as 

c 

Xia=l.l..Jr-fla-t-'fi~-~ie, 2 Ti=O, (1.1) 
i = 1  

where # is the mean-effect, i l l , . . . ,  fin are the block effects (nuisance parameters  
for the f ixed effects model or random variables for the mixed effects model), 
"q, .. . ,  zc are the treatments effects, and the e~, are the error components.  It is 
assumed that n, = (el,, . . . ,  e J ,  e - -  1 . . . .  , n are independent  and identically distrib- 
uted stochastic vectors with a continuous cumulative distribution function (cdf) 
F(~), ~ R  c (the real c space), where F(~) is symmetric in its c arguments, that is, 
for any ~ R  c and any permutat ion (il, . . . ,  ic) of (1, .. . ,  c) 

F(el . . . . .  e~) = f ( e~ l  . . . . .  ~io)- (1.2) 

[Note that if all the nc errors are independent and identically distributed, (1.2) 
holds, but the converse is not necessarily true.] Our purpose is to study some 
(parametric as well as nonparametric)  multiple decision procedures for the fol- 
lowing three problems: (i) selection of the best t treatments without regard to 
order, (ii) selection of the best t treatments with regard to order, and (iii) selection 
of all the treatments which are as good as or better than a standard treatment. 
The quality of the treatments is judged by the largeness of the zl. 

In the parametric  case, Bechhofer [1] has studied the first problem under the 
assumption that the errors are independent and normally distributed. It is shown 
here that if the errors are jointly (within each block) normally distributed and are 
equally correlated then his procedure remains valid. This covers the situation (1.2) 
which may arise often in mixed effects model. It is also shown that if (1.2) holds 
and F admits of the existence of second order moments, then the Bechhofer 
procedure remains valid for large samples, even if F is not normal. 

In the nonparametr ic  setup, Puri and Puri [4] have considered these selection 
procedures for the one-way layout problems, and their procedures are based on 
a class of rank order statistics. Here, instead of these statistics, we consider the 
rank order estimators of {z~} by Purl and Sen [5] to provide asymptotically 

* Work supported by the National Institute of Health, Public Health Service, Grant No. GM-12868-04; 
and by the Air Force Office of Scientific Research, AFSC, USAF, under Grant No. AFOSR 71-2009. 



On Some Selection Procedures in Two-Way Layouts 243 

distribution-free selection procedures for the two-way layout problems. The 
asymptotic relative performances and efficiencies of the parametric as well as 
nonparametric procedures are studied. The cases of paired comparisons designs 
as well as one-way layout problems are also briefly presented. 

2. Parametric Solution to Problem 1 

In the case of independent and normally distributed errors, Bechhofer 1-1] 
considered the solution based on the order statistics associated with the treatment 
means. As the errors in (1.2) are not independent, his technique is not directly 
applicable. For this reason, we consider the following modification of his proce- 
dure, to be termed the Extended Bechhofer (B*-) procedure. 

Let tin=<...__< tt~ ] be the actual ranked r's (which are unknown), and let 

Z , i = X , i - ; , ,  X , i = n - l ~ X i ~ ,  i = l , . . . , n ;  X , = c - l i X ,  i. (2.1) 
c t= l  i=l 

We denote the ordered values of the Z,i by Z,[II__<... =< Z,tcl , and let Z,(1) be the 
statistic associated with "Clq, i = i, ..., c. Then, we select the t best treatments which 

are associated with Zntc_,+ll, . . . ,  Z,~c]. (2.2) 

Our basic problem is to determine the sample size n in such a way that for any 
preassigned ? (0 < ? < 1), the probability of correct selection of the t best popula- 
tion is >7, where t[cLt~ and tic_t+1] are subject to the condition that 

t[~_ t+ u - rt~-tl > ~, (2.3) 

being the smallest worth detecting difference. Note that the choice of ~ is left to 
tha practical considerations. We denote the condition in (2.3) by a sequence {~m} 
where m is a positive integer and ~m --> 0 as m --> oo. We denote the corresponding 
sequence of conditions by {(Am) } . In the context of one-way layout (which also 
extends to two-way layouts for independent errors), Bechhofer [1 ]  has shown 
that for the parent distribution being normal, 

P {correct selection of the t best treatments} =?  (2.4) 

when the following least favorable configuration holds: 

T[11 . . . .  = ~ [ c -  t] = T[c-  t +  11 - -  ~ '  (2.5) 
z[c_t+ll . . . . .  "Cl~ 1 . 

We denote by L(c, t; ~) the configuration in (2.5), and note that if ~ be replaced by 
{~m}, the corresponding sequence will be denoted by {L(c, t; (,,)}. 

We first show that L(c, t; ~) is the least favorable configuration for the entire 
class of symmetric dependent multinormal distributions. This basic result will be 
used throughout the paper. 

Theorem 2.1. Let (W1, ..., W~) have jointly a multinormal distribution with mean 
vector (till, ..., t[~]) and dispersion matrix I2 = 0 .2 E(1 - p )  I -~ p J], (0.2 > 0 ,  - -  1/(C-- 1) 
< p < 1, I is the identity matrix of order c and J = 1'~ lc). Then for given y, under (A), 

(2.4) holds when (2.5) holds. 
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Proof Denote by 

Uo=(Wi -Wj - [Z[ i l -Z[ j ] ] ) / [2az (1 -p ) ]  ~, l<_i<_c- t ,  c - t+l<=j<=c,  (2.6) 

and note that { Uij , 1 _< i _ c - t, c - t + 1 = j =< c} have jointly a (singular) multi- 
normal distribution with null mean vector and dispersion matrix with the elements 
Coy (Ui3 , Ui,j, ) = 1,2! or 0 according as i --- i', j =j ' ;  i = i',j :t:j' (i ~: i',j =j')  or i :t: i',j:t:j'. 
Now, by the procedure in (2.2), the probability of a correct decision is 

n {Max [W 1 . . . .  , We-t] < Min [W~_ t+ 1, -.., W~]} 

= P { W i - W j < 0 ,  i=1  . . . . .  c - t ,  j = c - t + l , . . . , c }  (2.7) 

=P{Uo<(ztil-z~o)/[2~r2(1 -p) ]~ ,  i= 1, . . . ,  c - t ,  j =  c - t +  1, . . . ,  c}. 

Now, in view of (2.3) the zt~l satisfy 

T[1] ~-~"" ~ T[c- t] ~ T[c--t+ I] - -  ~ ~ T[c- t+ 2] ~-~"" "~ T[c]" (2.8) 

Since the right hand side of (2.7) agrees with the corresponding expression in 
[1, pp.20-21], [with the only change that his a 2 is replaced by our a2 (1 -p ) ] ,  
the least favorable configuration for which (2.4) holds can easily be shown (as in 
[1, pp. 20-21]) to be (2.5). Hence the theorem. 

It may be noted that for the Z,, ,  defined by (2.1), 0 .2 in Theorem 2.1 has to 
be replaced by 0.2/n, and as in Sen [8], it follows that the mean square due to 
error consistently estimates 0.2(1--p), for all parent distribution having finite 
second moments. While proceeding to the large sample solutions to the problem, 
we note that by virtue of the consistency of the estimates Z,, ,  i=  1, ..., c, for any 
fixed ~ in (2.3), the probability of correct decision will tend to unity as n--* oe. 
Hence, to avoid this limiting degeneracy, we conceive of a sequence of worth- 
detecting differences which also converge to zero as n ~ 0% in such a way that (2.4) 
holds with a 7, strictly less than 1. The justification of the use of such a sequence 
can be made in the same light as the use of the well-known Pitman-efficiency is 
justified in nonparametric inference procedures. Theoretically speaking, we 
replace the single sequence {X~,, e =  1, ..., n, i=  1, . . . ,  c} by a double sequence 
{[X}~ ), ~=  1 . . . . .  n, i=  1, . . . ,  c], n=> 1}, where for the X}~ "), the corresponding zLi 1 
(say -(")~ satisfy (2.3) with ( replaced by ~,, and (,--* 0 as n--* oo. On the other ~[i1 J 
hand, to practicing people, the solution can be made justified for small values 
of (; small enough to make the applied approximations to be valid and reasonable. 

We now drop the assumption of multinormality of the errors, and, as in (1.2), 
we let F to be arbitrary. For  the parametric procedures based on sample means, 
we require that F possesses second order moments. 

Theorem 2.2. Suppose in (2.4) 7 is fixed, and in (2.3), ~ is replaced by ( , .  Then 
for a 7-probability of  correct selection, we have 

In~r as n ~ ,  (2.9) 

where a 2 is the variance of ei,, p is the common correlation of ei~, eir (fl =i = ~), and 
6 is determined by the condition: 

])=tQ.c_l((~/]/2,c_t[.~mes, ~/V ~ ,  0, t - l'"times' 0) ,  (2.10) 
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Qc-1 being the cumulative distribution function of  a normally distributed (c-1)-  
vector (U 1 . . . . .  U~_t, W~_t+ 2 . . . . .  W~), with EU/=EW~=0, Cov[U/, Ui,-]=�89 +6w) , 
Cov[Wj, Wj,] =�89 I + fjj,) and C o v [ U / , W i ] = -  �89 for i, i'= l, ..., c -  t, j, j ' = c - t  
+ 2 , . . . , c ;  5~=0,  1 according as r+s  or r=s.  

The proof follows as a special case of (4.4) [with simplified (4.1)], and hence is 
omitted. 

Suppose now we are given a small (* and we wish to determine n such that 
(2.4) holds [subject to (2.2), with ( replaced by ~*]. Then Theorem 2.2 provides 
the following large sample solution: 

n-~ 62 0 .2 (1 - p)/(~,)2, (2.11) 

and as s 2, the mean square due to error estimates a2(1 -p )  consistently, we have 
also asymptotically n-- 52 s2/(~*) 2. 

3. Procedures Based on Rank Order Estimates 

Let us define 

X*,~=Xi~-Xj~ ,  eij,~=ei~-ej~, e = l , . . . , n ;  Afj=~g-zj ,  l < i < j < c . ( 3 . 1 )  

, By (2.1), eij,~(X~j,~ ) is symmetrically distributed about 0 (Aij), and we denote its 
* -  * .., it, n), consider the usual one-sample rank distribution by G. For X i j - - ( X i j  ' 1 , .  X *  

order statistic (viz., Puri and Sen [5, 6]) 

h, (X*) -- n-1 ~ j~ ((n + 1)-1 Rij, ~) sgn X*,~, (3.2) 
~t=l 

where Rij ,~=Rank of IX*~I among IX* 11 . . . .  , IX* ,[, sgn u is equal to 1, 0 or - 1 
according as u is >,  -- or <0, and J~((n+ 1) -1 i) is the expected value of the ith 
order statistic of a sample of size n from the distribution ~g* (x) - -~ ' (x) -kg(-x) ,  
x > 0, i = 1, ..., n, where kg(x) is a symmetric (about 0) non-degenerate distribution 
satisfying the assumptions I, II and III in [5, 6]. Notable cases of h, are the Wilcoxon 
signed rank and the normal scores statistics for which ~ is the uniform over 
( -  1, 1) and the standard normal distribution respectively. As in [5], we let 

A(~)ij, 1 --sup{t: h . (X*-  t 1.)> 0}, z1~2)2 =inf{t:  hn(X*- t 1.) <0}; (3.3) 

A'i(n) = (n) (n) [A~j,I+Aij, 2]/2, l < i < j < c .  (3.4) 

Then, the compatible estimates of {Air } are {Y/(")- Yy}, where 

c 
Y/(n)--= C-1 • A~ (") AAi(n)=Aii=O, i= 1, c .  (3.5) ij ~ " " ~  

j = l  

Let then ~mv(")< ... < yell) be the ordered values of the Y/(n), and let v(,).(i) be the statistic 
associated with zm, i=  1, . . . ,  c. Our proposed procedure consists in selecting the t 
populations associated with 

Yt~_) t+ 11 . . . . .  Yt~] ) . (3.6) 
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We consider now the basic theorem of this section which extends Theorem 3.2 
of [5] along the multivariate set up in Sen and Puri [9] and Lemma 2.1 of [8]. 
For intended brevity, the proof is omitted. 

Theorem 3.1. Under the assumptions made before, ~ r v(,) _ " L~(i) Y( '~ ) -Ai j ; l<i<-c- t ,  
c -  t + 1 < j < c] has asymptotically a multivariate normal distribution with zero 
means and a dispersion matrix with elements {vi; ' i'j'}, where vii ' i'j' =~r2, a~/2 or 0 
according as i=i', j=j ' ;  i=i', j # j '  ( i#i ' ,  j=j ' )  or i#i ' ,  j#:j', and 

(r~ = [A 2 + ( c - 2 ) 2  s (F)]/(c B2), (3.7) 

1 

A2= ~J2(u) du, B= ~ (d/dx)J[G(x)] d~(x); J(u)= ~.-l(u),  (3.8) 
0 --co 

2s(F)= ~ ~ JEG(x)] J[G(y)] dG*(x,y), (3.9) 
~ c o  - c o  

where G* (x, y) is the joint cdf of (eij' ~, eiy' ,), j #j ' .  

Now, the probability of correct selection of t best populations is given by 

P {max [ Y(~]), (') " (") �9 " ,  Y(c-o] <man [Y(~-,+I) . . . . .  Y(~)]} 

) [ - - ' ~  rE(")-  (3.10) = P  [ ~ 2 a ~ ]  L (0 Y(~)-A,j]< Aji , 

. . . , c - t ;  j = c - t + l , . . . , c  t .  i=1 ,  

Thus, as in the asymptotic parametric case, we replace A~i by a sequence {AJ7 )} 
such that n �89 AJ~.)~ 2;i (real and finite) as n ~ ~ .  Then, by using Theorem 3.1, we 
conclude that the right hand side of (3.10) is asymptotically equal to 

P{Uii<(n/2ag)~Ai7 ), i=1  . . . .  , c - t ;  j = c - t + l ,  . . . ,c},  (3.11) 

where the U~i have a multinormal distribution with null mean vector and co- 
variance matrix ((v~j, ~, j,)). Since, this multinormal distribution satisfies the condi- 
tion of Theorem 2.1, we can again check easily that the least favorable configura- 
tion turns out to be (2.5) with ( replaced by (,. Moreover, by the same technique 
as in Theorem 2.2, it follows that 

I n � 8 9  as n ~ ,  (3.12) 

where a o is defined by (3.7) and 5 by (2.10). Thus, a large sample solution to the 
sample size needed for the probability of correct selection being equal to 7 is 
given by 

n-~ ~ a~/(~*) 2, (3.13) 

where if* is a given small worth-detecting difference. Now, a~ involves the two 
unknown parameters B and 2I(F ). B can be estimated (by/~) as in Sen [7], while 
2s(F ) can be estimated (by Lj(F)) as in [5]. Hence, we have 

n ~ 5  2 [A 2 + (c - 2 ) L j ( F ) ] / c B  z. (3.14) 
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Now, using the same notion of asymptotic relative efficiency (ARE) as in [4], 
it follows from (2.11) and (3.13) that the ARE of the rank order procedure (based 
on 0-scores) with respect to the B*-procedure is 

e(r B*)= t~ 2 (1 _p)/a2 (3.15) 

= { [212 (1 - p)] B z} {c/2 [A2 + ( c -  2) 2 s (F)}. 

Now, B relates to the cdf G [cf. (3.1)] whose variance is 212(1-p) .  Hence, the 
first factor on the right hand side of (3.15) is the ARE of the one-sample rank 
order tests (for location) with respect to the Student t-test when the parent distribu- 
tion is G(x) (cf. [6]), and we denote it by eO, B,(G). Further, it has been shown in 
[5] that 2s(F)<�89 2, where the equality sign holds iff J[F(x)] is linear in x, with 
probability one. As such, we have 

e(0, B*)> % ~,(G), (3.16) 

where the equality sign holds iff J [F (x ) ]=a+bx ,  with probability one. Now, 
various known bounds for % B,(G) can be used to provide bounds to e(O, B*). For 
example, if we use iV as the standard normal distribution, eo,~,(G ) is bounded 
below by 1, where the lower bound is at tained/ff  G is normal. Thus, the procedure 
based on the normal Scores estimators is asymptotically at least as efficient as the 
extended Bechhofer procedure. If we use the Wilcoxon-Scores estimator, it follows 
that e(O, B*) is bounded below by 0.864 (though not attainable) for all F(G), while 
the same can be greater than unity for many non-normal F. For normal F, it is 
bounded below by 3/~z for all c(__>2), while it can be as high as 0.98. 

4. Relative Performance Characteristics when (2.5) Is not Necessarily True 

To compare the iv-score procedure with the B*-procedure, we consider any 
sequence of parameter points satisfying 

z(n) ~(~)=(51")=n-~Oi+o(n-~), i=1,  c--t,  c - - t+2  . . . .  ,c,  (4.1) 
[ c - - t + l ] - - ~ [ i l  " ' "  ' 

where not all the 01 . . . .  , Oc_ t are equal to O, and/or not all the Oc_t+ 2 . . . . .  O~ are 
equal to zero, i.e. the least favorable configuration does not hold, but -t")<-<") ~[i1 ~--~ ~ [ j ]  

whenever 1 < i < j < c. Then, for the B*-procedure, we have 

lira P {correct selection of t best treatments} 
n ~ o o  

= lira P {max I-Z.(1) . . . . .  Z.(~_ o] < rain I-Z.(~_t+ 1), ..., Z . ( J }  

= lim P{all the Z~(a) . . . .  , Z,  tc_o<Zt~_t+t) (4.2) 
n ~ c o  1-- 

"1 

< rain [Z,(i), i = c - t +  1, ..., c ( :#c - t+l ) ]}]  

= ~ [  l imP[Z~(~)-Z'(O<O' s = l ' ' ' ' ' c - t '  }] 
z=l " ~  )Z,(z)-Z,(~)<O, r = c - t + l  . . . .  , c ( ~ c - t + l )  

t=1 r=c - - t  + l . . . . .  c( ~:c--t + l) 
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where /-U 1 . . . . .  U~_t, Wc_t+ 1 . . . .  , Wi_l, W~+I, . . . ,  W~] has the multivariate normal  
distr ibution Qc-t ,  defined in Theo rem 2.2, and 

it,) = [n/2 0 -2 (1 - ,~-l~ r,(,) _ ~ - ( n ) l  1 < r < (4.3) r ,s  P'J.I  k~[ r ]  ~ [ s l d ,  S ~ C ;  

the last identi ty in (4.2) is a direct consequence of the central limit theorem as 
applied to the Z,t~). Thus, f rom (4.1), (4.2) and (4.3), it follows that  (4.2) is equal to 

( 1  ) 
Qc-1 [ 0 1 ,  I '  "",Or �9 Ol 1 t, Ol+11 . . . . .  Oc, l] , (4.4) 

l = c - - t + l  ~ "'~ -- ' ' 

where 01, j = 0 i - Oj. 

Consider  now the rank procedures,  where the assumptions implicit in Sec- 
t ion 3 hold and the sequence in (4.1) also holds. Then, by Theorem 3.1, it follows 
as in (4.2) that  under  (4.1), for the 0-scores procedure  

lim P {correct solut ion of t best t reatments} 
n---~ oo 

= .... ,0, 
1 / 2 0 - o  - '  ' 

where 0-o 2 is defined by (3.7). Thus, compar ing  (4.4) and (4.5) (in the P i tman sense), 
we may  conclude that  the A R E  remains the same for (4.1), even when the least 
favorable configurat ion may not  hold. 

5. Selection of Best Treatments with Regard to Order 

Here  the Bechhofer procedure consists in selecting the t best t reatments  asso- 
ciated with Z,~c_t+11, . . . ,  Z ,  tc~ respectively. By virtue of our  Theorem 2.1, we can 
readily extend the original p rocedure  by Bechhofer  [1], and derive the following 
results. [The details are omit ted for intended brevity.]  

For a f i xed  7 ( 0 < 7 <  1) and under the condition that 

"C[i+ll--Z[il~n (worth detecting distance), i = c - t ,  . . . ,  c -  1, (5.1) 

let n be determined so that (a) the following (least favorable) configuration holds: 

-c[1 ] . . . . . .  "C[c_tl=Z[c_t+ll--~n, "C[i+l]--Z2[i]=~n, i = c - - t  . . . .  , C-- 1, (5.2) 

and (b) 
P{ max Z , , i , < Z , ,  c t + r < . . . < Z , ( c ) } = ~ .  (5.3) 

i < i < c _  t t ~ t -- J 

Then asymptotically, 

I n ~ , - 6 a l / 1 - p ] ~ O ,  (as n--* oo), (5.4) 

where 0- and p are defined as in Theorem 2.2 and 6 is determined by the condition 

. .  ( 5 . 5 )  
( c - -  t )  Q c _ l ( O , c _ t  . 1 t i m e s '  t t i m e s '  

and Q~-I is the cd f  of  a normally distributed vector (U1, . . . ,  Uc_t_l, W~_ t, . . . ,  W~_I) 
satisfying EUI=EWj=O,  i = 1  . . . . .  c - t - l ,  j = c - t  . . . . .  c - 1  and (i) C o v ( U  i, Ui,)= 
�89 + 6ii'), (ii) Cov (U~, Wj)= - � 8 9  if j = c -  t and O, otherwise, and (iii) Cov(W~, We)= 1, 
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- � 8 9  or 0 according as j =j ' ,  ] j - j ' l = l  or ] j - j ' l >  1, f o r  i, i '=  l,  . . . , c - t - I ,  j ,  f = 
c -  t, . . . ,  c -  1 ; 6 u, being the usual K r o n e c k e r  delta. 

Again by virtue of our Theorems 2.1 and 3.1, it follows along the same line 
as in 1-4] that for the rank scores procedure based on (3.6) (with regard to the 
order), the least favorable configuration turns out to be (5:2) (for small ~,), and 
hence, for this procedure 

I n ~ , - ~ O ' o l ~ 0 ,  as n ~ ,  (5.6) 

where a o is defined by (3.7) and 6 by (5.5). 

Hence, the ARE is the same as in (3.15) and (3.16). Also, the results of Section 4 
can readily be extended in this situation and similar conclusions be derived; for 
brevity the details are omitted. 

6. Selection of a Subset of Treatments Better than a Standard One 

Instead of (1.1), we consider the model 

Xia-.~#-3vfla-~-'f'i-]-.gia, i=O,  1 , . . . , c ;  ~= 1, ..., n, (6.1) 

where the notations are all explained after (1.1) and % is the standard treatment 
effect. We say the ith treatment is bet ter  than the standard if 

z i _>_ z o + ~; ~ = worth detecting difference. (6.2) 

For  the one-way layout case with normally distributed errors, Gupta and 
Sobel [2] proposed the procedure: Select the subset of treatments for which 
X,i - X,o >0,  where n 

Xni = n -  l ~ Xi~,  i =O, 1, . . . , c. 
a = l  

An elegant solution for the sample size (n) needed to achieve a 7 ( 0 < 7 < 1 )  
probability of correct selection has also been provided by them. Noting that for 
(within-block) symmetric dependent normally distributed errors, the distribution 
of [ n ~ ( X , i - X , o - Z i + Z o ) ,  i =  1, ..., c] is also multinormal with null means and 
covariance matrix 0 .2 ( 1 -  p)[ I  c + Jc], (where a 2 and p are defined in Theorem 2.2), 
it turns out that the only change needed in Gupta-Sobel solution for the two-way 
layout problem is to replace their 0 .2 by o-2(1-p). By virtue of the central limit 
theorem, the same solution holds asymptotically for the entire class of cdf's 
with finite second moments. 

For  the rank scores procedure, we define the estimators A~/~ ), i =  1 , . . . ,  c as 
in (3.3) and (3.4). Then, we select the subset of treatments for which A/<~)>0. 
Along the same line as in Theorem 3.1, it follows that [n ~ (A"/~) -- z~ + %), i = 1 . . . .  , c] 
have asymptotically a multinormal distribution with null means and covariance 
matrix a 2 [I~ + J~], where a 2 is defined by (3.7). Consequently, the Gupta-Sobel 
solution also asymptotically holds for the rank scores procedure provided we 
replace a z by ao 2. Hence, the ARE of the rank scores procedures with respect 
to the Gupta-Sobel procedure can again be measured by a z ( 1 - p ) / p  2, and it 
agrees with (3.15). The details are therefore omitted. However, the results clearly 
indicate the superiority of the normal scores procedure over the normal theory 
procedure (for large samples). 
I7 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 22 
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7. Few Additional Comments 

Unlike Puri and Puri [4], we have considered here the procedures based on 
the rank order estimates, not statistics. The same procedure can be suggested 
for the one-way layout problem as an alternative to the procedures in [4"1. Also, 
we note that the procedure considered in this paper can readily be extended to 
incomplete block designs (such as the paired comparisons designs, etc.), whereas 
the original procedures by Puri and Purl face considerable difficulties. 
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