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On the Robustness of Rank Order Tests 
and Estimates in the Generalized Multivariate 

One-Sample Location Problem* 

P.K. Sen and M.L. Puri 

1. Introduction 

In an earlier paper [9], the authors developed the theory of rank order tests 
for location in the multivariate one-sample problem. A later paper [5], dealing 
with the univariate case, relaxes the basic regularity conditions to some extent. 
An alternative novel approach to the same problem by Pyke and Shorack [6] 
also deserves special mention. Further, one of the authors [-8] has shown that 
for the univariate one-sample location problem, the homogeneity of the distri- 
butions of the sample observations is redundant. In the present paper, generalizing 
the approach of [-8] to the multivariate case, the results of [9] are extended to 
nonidentically distributed (independent) stochastic vectors. It is shown here that 
the permutation distribution theory of multivariate rank order statistics (under 
the finite group of sign-invariant transformations), developed in [9], readily 
extends to the case of heterogeneous distributions. The asymptotic (multi-) nor- 
mality of the rank order statistics, when the null hypothesis of sign-invariance is 
not necessarily true, is also extended to the heterogeneous case. An interesting 
feature is the role played by the average distribution function in this theory. In 
this context, a useful result on the asymptotic covariance matrix of the rank 
statistics is obtained. As in [-4], these statistics are used to derive suitable estimates 
of location, and the asymptotic relative efficiencies of these tests and estimates 
are studied. 

2. Preliminary Notions 

Let X~=(X 1 . . . . . .  Xp~)', ~ = I , . . . , N  be N independent stochastic vectors 
having continuous p ( > 1)-variate cumulative distribution functions F 1 (x) . . . .  , FN (x), 
respectively, where x 6 R  p, the real p-space. We denote by ~ ( ~ o )  the class of all 
p-variate continuous cdfs (diagonally summetric about 0), so that ~ ~  
(For the definition of diagonal symmetry, see [-1, 9].) Let F N = (F1, ..., FN), and let 

, ~ s =  {FN: F / e ~ ,  i= 1, . . . ,  N} ,  

~ v =  {FN: F i e ~  ~ i= 1, ..., N} .  
(2.1) 
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Also, let ~*(~p~ be the subset of o~N(o~ ) for which F 1 . . . . .  F N. We desire to 
test the null hypothesis 

Ho: F N e ~  against K: FNr (2.2) 

without unnecessarily imposing the restriction that ~*  FNe~pN. With the notable 
exception of the bivariate sign test by Chatterjee Eli, all the other multivariate 
rank type tests available in the literature (cf. [-9] for the references cited therein), 
are proposed and worked out only for the situation where FNe~pN. We propose 
to show here that the general class of rank order tests, developed by the authors [-9] 
for the situation ~*  FNe~pN, are valid and robust for the situation FNe~N.  For 
this, we introduce the following notations. Let R j, be the rank of ]Xj~] among 
[Xjll, ..., IXj,[ i.e., 

N 

Rj,=�89 ~, c([Xj,[-[Xipl), a=l  .... , N ; j = I ,  . . . ,p ,  (2.3) 

where c(u) is 1, 1 3, or 0 according as u is > ,  = ,  or < 0. Also, let 

Sj~=2c(Xj,)-I ,  a---1 . . . .  , N ; j = I ,  . . . ,p .  (2.4) 

Then, define the rank order statistics 
N 

T N j = N-  1 ~ r(J) Sj~,, j = 1, , p, (2.5) �9 ~ N ,  R j  ~ " " " 
a = l  

where the rank scores ~N,Iz"J)~,=JNj(~). , I_<a<N,  j = l  . . . .  ,p, satisfy the 
following conditions (cf. [5, 8, 9]): \ [ / ' /  "fi- l )  / 

(a) for each j ( = l ,  ...,p), lira Jmj(u)=Jj(u) exists for 0 < u < l  and is not a 
constant; 

M -- -- -- -- 

N - ~  JN, j (~T--7~V-) -J j (~- -7~):o(N-~, ,  i : 1  . . . . .  p; (2.6, (b) 
\ l W ' 3 - 1  I \ 1~ d - i  I 

and 

(c) Jr(u) is absolutely continuous with 

( ~--~-) Jj(u, <K{u(1-u)}  - ' - '+' ,  6 > 0 ,  (2.7) 

for r=0 ,  1 ; i=  1 . . . .  , p, where K(>0)  is a finite constant. 

Finally, we define 
N 

V N ,  i j = N - 1 2  C C 12(i) 12(J) i , j=l,  p; (2.8) 
c t = l  

VN=((VN, I) ) and V~71=((v~)). (2.9) 

Then, our proposed test statistic is 
P P 

~ceu=NZ Z 'i vN TN, I TN, j. (2.10) 
i = 1  j = l  

(Note that the same statistic was proposed in [-9] for testing the hypothesis that 
F = ~o~-o, The robustness will be studied here.) Further, when all the F/(i= 1, N) N ~ p N  . . . .  , 

are diagonally symmetric around a common 0, we may use the statistics T~,~, 
j = 1 . . . .  , p to estimate 0. The properties of such estimators are studied in Section 7. 
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3. The Basic Permutation Principle 

Let Z N = (X1, ..., XN) be the sample point and ,3N be the sample space. Con- 
sider the finite group f~N of transformations {gN}, where typically a gN is given by 

- * -  ly '  gNZN--ZN--[(-- X~, ..., (-- 1)JNXs], j , = 0 ,  1; ~=1 . . . .  ,N ,  (3.1) 

and ( - 1 ) X = ( - X 1 , . . . ,  - Xp)'. Since, for F N ~ v ,  X~ and ( -1)X~ both have the 
common cdf F~, ~=  1 . . . . .  N, the distribution of Z* is the same as that of Z N 
for all gN~N,  when F N ~  v. Also, f#N has 2 N distinct elements {gN}. Thus, if 
S (ZN) = {Z*: Z* = gN ZN, gN ~ f#~}, we have 

P {ZN- ZN IS (Zu), Ho} = 2-  N, (3.2) 

for all * * o ZN~S(ZN), whatever be F N e ~ u .  Let us denote the permutational (condi- 
tional) probability measure in (3.2) by ~N. Since ~ is completely specified, we 
can always select a test function q~(Z~)[0< q~ < 1], chosen in such a way that 

E~ ,  [r (Zu) ] = ~ (0 < e < 1), the desired level of significance. (3.3) 

In particular, we shall let 
1, 

q, (Z~)= l ~r (~,,), 
(0,  

~N > ~e~, ~(~), 
~e~ = ~ , , ( r  
~ < ~N,~(~), 

(3.4) 

where 5~N,~(~N) and ~r ( 0 < d ~ < l )  are so chosen that (3.3) holds. (3.3) and 
(3.4) characterize the existence of a conditionally distribution-free test for 
14o: FNe~,~ based on the statistic 5r N . 

As in [9], for small values of N, 5~N,~(~N) and d ~ ( ~ )  are to be determined 
from the exact permutation (conditional) distribution of 2 '  s (under (3.2)). For 
large values of N, we have the simplifications to be considered in the next section. 

4. Large Sample Permutation Distribution of ~N 

Let us denote the marginal cdf of Xj~ by Fj, ~(x) and the joint cdf of (Xj~, Xk~ ) 
by Fjk ' ~(X, y), for j =4= k = 1 . . . .  , p, ~ = 1 . . . . .  N. Let then 

N N 

F~(N)(X) =N-1 E F L ~ ( X ) ;  * __ - 1  Fjk(s)(X,y)-N ~ Fjk,~(x,y), j + k = l , . . . , p ;  (4.1) 

Hj,~(x)=F~,~(x)-Fj,~(-x) if x_->0 

= 0, otherwise, (4.2) 
N 

, __ - -1  Hj(N)-N Y'Hj,~(x), j = l  . . . .  ,p; (4.3) 
or 

Ujk,~(X, Y)=Fjk,~(X, Y) + Fjk,~,(--X, Y) + Fjk,~(X, -- Y) + Fjk,~,(-- X, -- y), 
(4.4) 

for x>=O,y>=O,j=k=l,.. . ,p; e = l  . . . . .  N; 
N 

Uj*(m(x,y)=N -1 ~ Hjk,,(x,y ), j 4 : k = l  . . . . .  p. (4.5) 
a = l  
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Also, define the corresponding empirical cdFs as 

N 

FN, j ( x )=N -1 ~ c ( x - X j , ) ,  j = l  . . . . .  p. (4.6) 

N 

FN.jk(x,y)=N -1 ~ c ( x - X j , ) c ( y - X k , ) ,  i = k =  1, . . . ,p ;  (4.7) 
~t=l 

hN " " fF,~ j ( x ) - F ~  ~ ( - x - ) ,  x>_O, 
"JtX)= ) 0 , '  " -- (4.8) x < O , j = l , . . . , p ;  

HN,jk(X, Y)=Fn,2k(X, Y) + FN,jk(-- X--, Y) + FN, jk(X, --y--)  
(4.9) 

+FN,2k(--X--, --y--) ,  for j4=k=l  . . . .  ,p.  

Our first problem is to study the stochastic behavior of V s ,  which, in turn, 
governs the large sample distribution of s For  this, let us define 

,,tin_ (4.10) "jk -- I Jj(n~m(x)) Jk(n~'(m(Y)) dn*k(m(x, Y), J, k= 1, . . . ,  p, 
0 0 

v(N) _ (N) 
- ( ( V j k ) ) .  (4.11) 

Then, we assume that  (a) 

v (m is positive definite for all N > N  o (i.e., the characteristic roots (4.12) 
of v (m are all bounded away from zero as N ~ oo), 

and (b) for each j ( =  1, .. . ,  p) 
1 

lim o~ [JN, j(u)-Jj(u)] 2 du=O. (4.13) 
N~oo 

Theorem 4.1. Under the assumptions (a), (b), (c) of  Section 2 and (4.13), Vu is 
stochastically equivalent to v (N), that is, V N -  v (m P ~0 p • p as N--+ oo. Thus, under 
(4.12), V (N) is positive definite, in probability as N--+ oo. 

Proof Using (2.8) and (4.9), we can write 

) ) VN,jk'~" f JN, j HN, j (X)  JN,k - ~ H N , k ( Y )  dHN, j k (X ,Y ) ,  (4 .14)  
0 o 

for j, k = 1 . . . .  , p. Note  that  for j = k, 

1 1 

(m_ [dj(u)] a du=vjj .  (4.15) vN,jj= ~ [Jmj(u)] 2 du, and vjj - I 
0 0 

Thus, by (4.13), we have . . . .  ( m ~ 0 ,  as N--+oo. Consequently,  it suffices to vN, ij  r i j  
prove the result only for j4=k= 1, . . . ,p. Now, using (4.13) and the Schwarz in- 
equality, we can write (4.14) as 

Vn,jk = ~ ~ Jj HN,j(X) Jk - ~ - H n , k ( Y )  dHmjk(x,y)+o(1).  (4.16) 
0 0 
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The first term on the right hand side of (4.16) can be written as 

; Jj(Hj*'(N)(x)) Jk(H~N)(Y)) dHu,jk(X, Y) 
0 0 

0 0 

Now, the first term of (4.17) is an average over the N independent random variables 
* {Jj(H~m(Xj,)) Jk(H~,(N)(Xk~))}, ~= 1, ..,N. Hence, using (2.7)(with r = 0 ) a n d  a 

theorem by Lo6ve ([2], p. 275) on the law of large numbers, it readily follows 
,(m defined by (4.10). that it is asymptotically equivalent, in probability, to Vjk, 

Hence, we require only to show that the second and the third terms of (4.17) 
both converge, in probability, to zero, as N---~oo. Now, applying Schwarz- 
inequality, we obtain that the absolute value of the second integral in (4.17) is 
bounded above by 

. [ f [ J k ( N ~ H N ,  k(y))]ZdHN, k(y)]}~, (4.18) 

where, by (2.7), the second factor is finite. Let us now define two sequences of 
~ real numbers {aN, j} and {bN, j} by 

H* N (aN, j) = 1 -- H* N (bN, j) = eu = 0 (N- ~). (4.19) 
Then, 

I JJ /-/N,j(~)-J~(H%(~)) dH,,,j(~) 
0 

<2  

(4.20) 

Now, using (2.7) and the fact that HN, j (x)-H*N(x)~O [cf. (4.21)], it can be 
easily shown that the right hand side of (4.20) is bounded above (in probability) 
by (4/6)(e~) ~, and thus converges, in probability, to zero as N---~ oo. Similarly, 

Jj Hu, j(x ) -Jj(H~,j(x) dHu,j(x) p ,0 as N ~ o e .  
bN,j  

Now, it follows from Theorem 5.2 of Sen I-8] that for every e>0  there exists a 
finite c(e) (>0) such that for 0 < 6 ' < � 8 9  and N>No(e ), 

{ , } N~ [HN'j(x)--HJ'N(X)I >C(e) <~, P sup VVN  N. (4.21) 
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Consequently, writing 

jj N H -Jj(H*N) 

(4.22) 
N , 

~ -  HN, j-- Hj, N Jj ( ~ ' ~  HN j +(1-O)  j,N) , 
O N  

and making use of (2.7) (with 6 '<  fi) and (4.21), it can be easily shown that 

[( ) b•,jl J j ~  H -Jj(H*N), dHNj, p ,0,  as N--+oe. (4.23) 
aN, j 

Consequently, Consequently, 
v p .(m for all j, k = 1, , p. (4.24) N , j k ~ r j k  . . .  

The second part of the theorem directly follows from (4.12) and (4.24). Q.E.D. 

Remark. The theorem generalizes the results of Theorem 4.2 of Purl and 
Sen [3] to non-identically (even groupwise) distributed random variables. 

Theorem 4.2. Under the conditions of Theorem4.1, 5a N has asymptotically a 
chi-square distribution with p d.f 

The proof follows precisely on the same line as in Theorem 3.2 of Sen and 
Puri [9] (with their Theorem 3.1 replaced by the present Theorem 4.1), and hence 
is omitted. 

Thus, for the test function ~0(ZN) in (3.4), we have 

,~N,e(~N ) P ,•p,2 ~ and ~ r  0, (4.25) 

where 2 Zp,~ is the upper 100e % point of the chi-square distribution with p degrees 
of freedom (d. f.). 

Thus, the rank order tests proposed in Sen and Puri [9] remain valid and 
robust for the entire class ~ v  of p-variate distributions. Next, we intend to study 
the power properties of the test based on Aeu in the general case of heterogeneous 
distributions. For this we require first the following. 

5. Asymptotic Multinormality of T N for Arbitrary F N 

As in Sen and Puff [9], we shall, for the sake of convenience of presentation, 
consider the following statistics, linearly reI~i'ted to T N. Let 

N 

*-- * * " T,* E (j) (5.1) T n -  (T~, 1 . . . .  ,T~,p), N,j:N-1Z N,  R j  C ( X j a ) ,  j = l , . . . , p .  

We introduce the following notations: 
ao 

IJn, j,~-=- I Jj(H~N)(X))dF~,~(x), j = l  . . . . .  p, a = l  . . . . .  N.  (5.2) 
0 

N 
. . .  , _ _  , , t [l~J =N-1 Z ~Nj, o:, j = l ,  ,P; [IIN--(PN, 1 . . . . .  #N,p)" (5.3) 
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It may be noted that 
oo 

#*~= f Jj(H~N)(X)) dFf~m(x), j =  1 . . . .  , p. (5.4) 
0 

In the sequel, we denote by l~)k,~(x,y) a bivariate cdf, which for j = k  means 
Hjk(N). bj(min [x, y]). A similar notation is used for Hjk ,~ and * 

Theorem 5.1. Under the conditions (a), (b) and (c) of Section 2, N �89 ( T } -  u}) has 
asymptotically a multinormal distribution with a null mean vector and dispersion 
matrix I" u = ((?N, jk))j, k= 1 ..... O' defined by (5.18), provided Fu is positive definite for 
all N sufficiently large. 

Proof. We write T,~ j equivalently as 

7;,* - ~ , , (5.5) N,j-- JN,j HN,j(X ) dF N j(x), j=  1,... p. 
tj  

Also, we write 

N H 

(5.6) 

[ j~,j N H N H 

{ 

and finally, dF m j = dFj~ m + d [F m j -  Fj(m], j = 1 . . . .  , p. Then, from the preceding 
three equations we have 

2 B,, (Xj0+ Z (5.8) 
~ = 1  r = l  

= BNj (Xj~) + BNj (X j,), and where Buj(Xj~ ) (1) (2) 

(1) , BNj (Xj~) = Jr [H~m (Xj~)] c (X~); (5.9) 

B~)(Xj,) = f [ e ( x - - ] X S ) - H j ,  ~(x)] J; [H~m(x)] dF~N,(x); (5.10) 
o 

C1,Nj: i [JN, j N H N H 
4 

by (2.6); 

[ 1 ]  ~ ( N +  1) C2"NJ= ~o HmJOJ(Hs*~N))dFuj' (5.12) 

Ca, us = ~ [Hm j - H~m] Sj (Hj*~N)) d [FNj -- Fj*(m], (5.13) 
o 
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and 

c~,,,r= Jr W T i - H N , J  -Jr(H~N)) 

- [ N ~  HN,r-H~N>] Jj(Hj*(m)} dFNj �9 

(5.14) 

As in Sen [8], it follows that C~,Nr, r =  1, 2, 3, 4 , j =  1 . . . . .  p are all op(N-�89 Hence, 
N 

N ~ ( T * - p * )  ' and IN  -�89 ~ {BNj(Xj,)--/~Nj,~}, j =  1, . . . ,p]  J have the same limiting 

distribution, if they have any at all. Thus, it suffices to show that BN(X,)= 
[BN1 (X~),..., BNv(X~)]' , a =  1,. . . ,  N satisfy the conditions of the (multivariate) 
central limit theorem. With this end in view, we consider first the moments of 
these variables. By definition in (5.9) and (5.10), we have 

oo 

"> = I Jr dFj..(x) =,Nj.. .  E {BNr (Xr~)} [H*, r(X)] 
0 

E{B(~](Xr,)}=O, for all j = l  . . . .  ,p; c~=l , . . . ,n .  

(5.15) 

(5.16) 

Also, upon writing H~k,~ (x, y) = P {]X j, ] < x, ]Xk~ ] __< y} = Fig,, (X, y) -- Fjk,, ( - -  X, y)- -  
Fjk,,(x, -- y)+ Frk,,(--x, -- y), x >=O, y >O, it follows that 

TNrk, �9 = cov [BNj (Xj~), BNk ( X J ]  

2 2 

= Buk (Xk~)] 
r = l  s = l  

oo 

= ~ ~ Jj [H~( m (x)] Jk [H~(s)(Y)] dFjk,~ (x, y) - ltNr,~ Pm,,~ 
0 0 

+ Jr (,)l 
x ~ O  y = O  Z = - - c O  

�9 dF~m (x) dFjk,~ (v, z) 

+ T 
x = O  y = O  z = - - ~  

�9 dF~N)(X ) dFkr,,(y,z) 
0(3 

+ ~ [H}k,~(X y)_Hr,~(x ) Hk,~(y)] jj [Hj(m(x) ] ji[Ht(m(y)] 
0 0 

�9 d~(N)(x) dF;(N)(y) 

(5.17) 

for j, k = 1 . . . . .  p, e = 1 . . . . .  N. Let then 

N 

r~=((~j~)); ~ k  =N-~ Y, ~Nj~,~, 
~ t = l  

16 a Z. Wahrscheinlichkeitstheorie verve. Geb., Bd. 22 

j , k = l  .. . .  ,p. (5.18) 
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Thus,  f rom the preceding four equat ions,  we obta in  that  

E BNj(Xj~) =P~vj, j =  1, . . . ,  p; (5.19) 

N c o v { N - I  ~=IBNj(Xj~), N - I  ~IBNg(Xg~)}=yNjk , (5.20) 

for j, k= 1 . . . . .  p. Now,  by (5.4), #*j depends  on (F1, . . . ,  FN) only through the 
cdfFj~m, j=  1 . . . . .  p. But, F N depends  on F1, . . . ,  F N in a ra ther  involved way. We 
shall show next that  F N satisfies certain interesting mat r ix  inequality. Fo r  this, let 

oo oo 

~k(~*))= I I Jj(Hj(,,)) Jk(H1(N)) * 
o o 

x = O  y = O  z = - - o o  

�9 dF:(N)(x) dF?~(~)(y, z) 

~=o y=o . . . .  (5.21) 
�9 dF~ (m(x  ) dF~j(m(y, z) 

oo co 

o *  * t + ~ ~ [H~k(N)(X, Y)-- H~cN)(X) H:(N)(Y)] Jj [H~N)(X)] Jk [H:(N)(Y)] 
o o 

�9 dFff(m(x ) dF~m(Y), 

N 

where H~*(N)= N -1 ~. H~k,~; j, k= 1, . . . ,  p. Let  then 

r(F&) = ((Tj~ (F(*)))), (5.22) 

so that  F(F(})) is the value of F N when F 1 - . . -  - F u -  F(*). Also, let 

f l ( 1 )  _ , N j ,  a - -  ]AN j ,  a - -  ]2N j ' 

(5.23) co 

~'Nj,~O(2) _-- I [Hj~(x)-  H~r Jj [H~N)(X)] dVff(N)(x ), 
0 

N 

for j =  l, . . . , p ,  e = l  . . . . .  N. Thus,  N -~ ~ f i ~ . ~ = 0  for i = l ,  2 ; j = l ,  . . . ,p .  Finally, 
let ~ = 1 

N 
__ - 1  F R O )  - I _ R ( 2 )  ] ~ljk, N - N  2 FRO) --t-R(2) l L,Nk,~ -- ,Nk,~J, j, k= 1, .., p. (5.24) k i " N j , a  ~ ~ N j , a d  

HN = (0?jk, N)). (5.25) 

N o t e  that  by definition, H N is a posit ive semi-definite matr ix ;  it ceases to be 
posit ive definite only when pNj,,~ + pNj,~~ = 0  for all c( = 1, . . . ,  N and for at least one 
j ( =  1, . . . ,  p). 

Lemma 5.2. r~ = r ( F & ) - H u ;  0__< Ir(F&)l < ~ ,  for all F 1 . . . . .  F u. 
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To prove the Lemma, we consider first the following identities whose proofs 
are evident and therefore omitted. 

(5.26) N 

~. [H~,~(x, y) - H~,~(x) H~,~(y)] = [H~%(x, y) - Hj%(x) H:(,,)(y)] 

N (5.27) 
�9 - 2 [Hj,~(x)-HJ*(N)(X)] [Hk,~(Y)-H~,(m(Yl], 

0~=1 

I~nj, ~ #Nk,, -- I~uj Pug = ~ (Pnj,, -- PUj)(l~nk,, -- liNk), (5.28) 
a = l  a = l  

; ~ Jj[H~(j)(y)]d[Fjk,,(y,z)-F~(m(y,z)]=fi(~,~ , (5.29) 
y=O Z=- -~ )  

for all j , k = l ,  . . . ,p. The first part of the lemma then follows from (5.17) and 
(5.18) after using (4.1) and (5.22) through (5.29). Since F(F~)) is a covariance 
matrix, the proof of the second part follows directly by showing that yjj(F(%))< 
for all j = 1 . . . .  , p. This directly follows from (5.21) by noting that for j = k, y = z and 

dFff(m(x)<dH~m(x) for all x>0~ (5.30) 

SS ur( 1-v)~lJ(f)(u)lIJ(~)(v)ldudv<c~, (5.31) 
0 < u < v < l  

for all r, s=0,  1, where (5.31) follows from assumption (c) of Section2. Hence 
the lemma. 

Now, it follows from Lemma 3.2 of Sen [8] that for ~(>0), defined by (2.7), 

N 

N-'ZE{IBm(Xj=)I2+O}<oo,  forala j = l , . . . , p ,  (5.32) 
i = l  

uniformly in FNe~N.  Hence, it remains only to show that for any non-null 
l, I'BN(X~), ~= 1 . . . .  , N satisfy the Lindeberg condition of the classical central 
limit theorem. Now, for any non-null !, 

N 

N - '  Z Var (1' B N (X,)) = I 'F N 1 > 0, (5.33) 
a = l  

as F u is assumed to be positive definite (in the sense that the characteristic roots 
o f f  N are all bounded away from zero). Also, by (5.32), we have for 6, defined by (2.7), 

N N 

u -~ y~ E {FI' {B~(X , ) -E  B~(X,)} J~ +q __< 21+~ N -~ Z E {Jl' B,,(XJ ? +q 
~=i ~=i 

<(2P) 1+~ ~ Ilj 12+5 (5.34) U-1 Z E{IBNj(Xj~)[} 2+~ <oo. 
j = l  {. a= l  

16 b Z, Wahrscheinlichkeitstheorie verw. Geb., Bd. 22 
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Now (5.33) and (5.34) imply the Lindeberg condition. Hence Theorem 5.1 gen- 
eralizes the results of Sen [8] to the multivariate case and of Sen and Puri [-9] to 
the case when the cdfs are not all identical. When F I ( x ) - . . . - F N ( x ) = F ( x  ), it 
follows from (5.23) that a(1) = 0  for i=  1, 2 and j =  1, p, and hence, from P ' N j ,  a " " " , 

Lemma 5.2, we obtain the following: 

Lemma 5.3. I f  F, - . . .  -- F N = F, then F N = F(F), where F(F) is defined by (5.22) 
with F~) = F. 

In fact, we have a stronger result, as follows: 

Lemma 5.4. I f  F~ have univariate marginals all symmetric about O, for  c~ = 1, . . . ,  N,  
then H N = 0 p • p for  all F 1 . . . .  , F N. 

Proof. If Fj~ is symmetric about 0, then H j ~ ( x ) = 2 F j ~ ( x ) - l ,  x>O,  for all 
= 1 . . . . .  N. Hence H~m (x) = 2 Fj~ m (x) - 1 for all x > 0, j = 1, ..., p. Consequently, 

�9 �9 o ( i )  writing [ N j ,  o~ a s  

ao 1 

Jj [-Hj*.(N ) (x)] d [Fy, a (x) - Fff(N)(x)] = �89 ~ Jj [ H ~ N  ) (X)]. d [H j ,  a (x) - Hj*.(N ) (x)], 
o o 

0(2)  R(1) _i.. /2(2) - -  (~ and integrating it by parts and finally adding to vNj,,, we obtain vNj, ~ - v N j ,  ~ - , ,  
for all j = l ,  . . . ,p,  e = l ,  . . . ,N.  Hence, by (5.24), HN=0. Q.E.D. 

It also follows that when F~js are all symmetric about 0, 

oo 1 

S * 1 . . ,  ( 5 . 3 5 )  dFj (N)(X)=gfJ j (u )du ,  1 =1 , .  p. 
0 0 

1 

7jj(V~))=�88 S J2(u) du, j =  1 , . . . ,  p (5.36) 
0 

are all independent of F~). However, 7~k(F~)) depends on the unknown cdf F~) 
for all j +  k = 1, . . . ,  p. We consider next the following lemma, whose proof is 
omitted. 

Lemma 5.5. I f  F,, ~=  1 . . . .  , N are all diagonally symmetric about O, then 
r t F *  ' 1 is defined by (4.10) and (4.11). I, ( N ) ) = ~ V N ,  where v N 

We are now in a position to consider also a class of asymptotically distribution- 
free tests for H o in (2.2) based on T* in (5.1). Let F(F(~)) be any consistent estimate 
of F(F~)) [-in the sense that P(F~))s  as N--~ ~ ] .  Then, using Theorem 5.1, 
Lemma 5.3, and (5.35), we propose the test statistic 

, _ _  , , t  ^ , --1 * * ~ - N ( T N - # o  ) [F(F(N)) ] (TN--/~o) , (5.37) 
where 

1 

. . . _1  (5.38) #* = (#~o . . . . .  #po), #jo - 3  ~ Jj(u) du, j = 1 . . . . .  p. 
0 

It follows from Theorem 5.1 that under H o in (2.2), ~ *  has asymptotically a )~2 

distribution with p d. f., where of course, by virtue of Lemma 5.5 and Theorem 4.1, 
F(F(*N) ) is assumed to be positive definite. We shall now study the large sample 
properties of the tests based on 2~~ N in (2.10) and 2~o, in (5.37), and show that 
they are asymptotically power-equivalent. 
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For this purpose, we consider the following sequence of admissible alternative 
hypotheses {Hn} which specifies that 

HN: F,(x)=F~,N(x)=F~,o(X'N-~d~), d~=(dl~,...,dp~)', a = l  . . . .  ,N ,  (5.39) 

where dj~'s are all real and finite and F,o, ~ = 1, ..., N are all diagonally symmetric 
about 0. Furthermore,  it is assumed that the score E(z~),~ is the expected value of 

�9 the ~-th smallest observation of a sample size N drawn from a distribution ~(x), 
where 

~ ,  , ( 2 ~ * ( x ) - l ,  x > 0 ,  and ~ * ( x ) + ~ * ( - x ) = l  for all x. (5.40) 
ix) = ]0, x < O. 

(5.40) implies that Jj(0)= 0 and 

J j ( u ) = ~ - l ( u ) = % * - l (  1 2  ~ u ) = J * ( 1 2 u ) ,  0 < u < l , j = l , . . . , p .  (5.41) 

Thus, in this case (2.7) holds. We also denote F~m as in (4.1) and let 

, d 
fJ(N)= (~-x)FJ~m= ( 1 )  ~ (~x)Fj ,~(x) ,  j = l  . . . . .  p. (5.42) 

a = l  

Furthermore,  we assume that 

fj~u)(X)J*'[F~(u)(X)] is bounded as x---,_+oo, j = l  . . . .  ,p.  (5.43) 

Finally, we let 
* - -  * * , .  e(N ) -  (Cl(N), ..., Cp(N)), 

( 2 @ )  ~1 ~ (5.44, c~*(N) = dr, J* '  EF~N ) (x)] [ finN)(X)] 2 dx, 

j =  1 . . . .  , p; it is of course assumed that F~'s are all absolutely continuous density 
functions. Let us define 

v},jk= ~ ~ J*[F~(m(x)]J~[F/~*(u)(y)]dFj*(s)(X,y), (5.45) 
- o o  - -0(3  

for j ,  k = l  . . . .  ,p, and l e t  * -  * vu-((vN,j~)). Then the following Corollary is an imme- 
diate consequence of Theorem 5.1, Lemma 5.5, (5.41), and the fact that v*=v N 
for diagonally symmetric F~). 

Corollary 5.1. Under {HN} in (5.39), the conditions of Theorem 5.1, (5.41), and 
(5.43), N~(TN-~t *) (where p* is defined by (5.38)) has asymptotically a p-variate 

1 * and dispersion matrix �88 v* where v* has normal distribution with mean vector ~ C(N ) 
the elements ynjk* , defined by (5.45). In particular, when F a - . . .---Fn~-F , C~N ) = 
(d-l(m B 1 .... , dp(N)Bp)' and VNj k* is given by (5.45), where 

dJ(s)- =N1 ~dJ~=l and B j = _ ;  j = l , . . . , p .  (5.46) 
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Corollary5.2. The limiting distribution of N~(TN-p~v) is singular if one or 
more J*[Fj~N)(Xj~)] can be expressed as a linear function of J*[F~m(Xk~) ], 
k = j =  1, ..., p. 

The proof is simple and is omitted. 

We shall now consider the large sample distribution of A~ in (2.10), when 
the null hypothesis (2.2) may not hold. To justify the limiting distribution theory, 

, 1 ~ F~ (x) it will be assumed in the sequel that as N ~ ,  F(m(x)= converges 
a=l 

to a limiting cdf F* (x). Under fairly general conditions, such an assumption may 
be made, and we refer to Sen (1968) for various common models where this 
assumption is justified. Also, in (5.39) we make the following assumption for 
simplification of the results: 

Either d~ = d, V ~ and the F~ possibly differ, or F~ = F, V ~, and d jim, (5.47) 
defined by (5.46), tends to ~ ,  as N---~ oo ; j =  1 . . . . .  p. 

We also define Bj as in (5.46), and let 

c*=(c*, . . . ,c*) ' ;  c~.=djB(F~*) or djBj, j = l , . . . , p ,  (5.48) 

where B(F2* ) is defined as in (5.46) with F replaced by F*. Finally, let v* =((v~'k) ), 
where v j* is defined by (5.45) with F(~) replaced by F*. Then, we have the following 

Theorem 5.6. I f  (i) limo~ F~)=-F* exists and (ii) the conditions of Corollary 5.5.1 

are satisfied, then the limiting distribution of ~N in (2.10) is noncentral chi-square 
with p d.f  and the non-centrality parameter 

A s =c*'  v* -1 c*. (5.49) 

The proof of the theorem follows from (5.45), Corollary 5.1, and some 
straightforward computations. The details are omitted. 

Now, in (5.37), we have considered/" to be any consistent estimate of F(F~)). 
Since, under (5.38), F u in (5.17) is asymptotically equivalent to F(F~)), of which 
F is a consistent estimator, it follows from Theorem 5.6 that 5r has asymptotically 
the same distribution as of ~"(PN, and ~q~ p Ar N. Hence the permutation test based 
on A~ and the asymptotically distribution-free test based on 5r are asymptoti- 
cally power equivalent. Moreover, the choice of P is of no importance in the limit. 

6. Asymptotic Relative Efficiency and Robust Efficiency of A~ 

If F 1 . . . . .  F N = F is a multi-normal cdf, the optimum invariant test for H o 
in (2.2) is based on the Hotelling T~-statistic 

N 
2 - - t  - T;=NXNS~lXN; XN=N -1 X~X~, 

a = l  ( 6 . 1 )  
N 

SN=(N--1) -1 ~ - _ , (x~-x~)(x~-x~). 

Suppose now, the null hypothesis in (2.2) holds but the F~ are neither all identical 
nor normal, but have finite moments up to the order 2+& 6>0.  Define by Z~ 
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the covariance matrix of X~, e--1, ..., N, and le t  * - ( 1 )  ~ 1 ~(n)- ,~. Using then 

the multivariate central limit theorem, it follows that under H o in (2.2) 

~q~( N~ Xs) -+ N(0, Z~)). (6.2) 
Also writing 

t - -  - - t  X~ X ~ - X  N X N (6.3) S s -  N - 1  N-,  

using (6.2) and Markov's law of large numbers, it follows that S N Z Z~*m" Conse- 
quently, omitting some routine computations we find that when F~ . . . .  , F N have 
all finite moments up to the order 2 + 6, ~ > 0, then 

S(T2[Ho)--~ Z 2. (6.4) 

In this sense, Hotelling's T2-test has also the same rejection rule as the test based 
on -~r or ~r We shall now consider the sequence of alternative hypotheses in 
(5.39) [under the further simplifications in (5.47)] and study the asymptotic 
distribution of T 2. Since, for such a sequence of alternative hypotheses, 

~q~(N ~ XNIH~) --~ N(d, l;*), (6.5) 

[where (i = (d- 1 . . . .  , alp)' has the elements defined by (5.47), and l;* is the covariance 
matrix of F * =  lim F~)], and even for such alternatives SNs m ~ Z * ,  it follows 

N ~ o o  

that T~ has asymptotically a non-central chisquare distribution with non- 
centrality parameter 

AT~ =d'(2*) -~ d. (6.6) 

Thus, T 2 and the two other test statistics Zr N and ~ have asymptotically 
the same distribution (namely, non-central X 2 with p d.f.) differing only in their 
non-centrality parameters, a comparison of the non-centrality parameters reveals 
their asymptotic efficiencies. Hence, denoting by eT-~,, T~ the asymptotic relative 
efficiency (A.R.E.) of a test T N with respect to a second test Tfl, we have from 
Theorem 5.6 and (6.6) that 

e~eN, r~ = [(e*' v* -1 e.)/(d,(~,)- ~ d)]. (6.7) 

It is quite clear that the A.R.E. in (6.7), in general, depends not only on v* and 
but also on e* and d. Consider the two situations in (5.47). In the first situation, 
where d~=d for all ~ but F~'s possibly differ, (6.7) reduces to 

e~)~, Tb= [(d'(T*) -1 d)/(d' 2" -2  d)], (6.8) 
where 

T* - t t z*~ .  * -  * * * (6.9) - , ,  jk,,, Zjk--Vjk/[B(F j )B(F;~ )2, j , k = l  . . . . .  p, 

and B(Fj*)'s are defined by (5.46). Thus, in this case, the A.R.E depends on d, T*, 
and ~*. In the second case, when F~=-F but d~'s are not all equal, (6.7) reduces to 

e (2) [(d' T-1 z~, rk = d)/(d' 2;-1 d)], (6.10) 
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where Z is the Common covariance matrix and T=T*IF._--F. Thus, in this case, 
the A.R.E. depends on d, T, and Z. In any case, unlike the univariate situation, 
the A.R.E. is not independent of d or (l, in general. However, a classical theorem 
due to Courant  provides bounds for the variation of the values of (6.8) and (6.10) 
over d or d*. 

T h e o r e m  6.1. The maximum and minimum values of e (1) 2 ~,,, r~r are given by the 
maximum and minimum eigen values of Z*(T*) -1. Similarly, the maximum and 

_(2) ~2 minimum values of e~N ' ,~, are given by the maximum and minimum eigen values 
of ~,T -1. 

Now the bounds for ~* (T*) -1 have been studied in detail by Sen and Puri [9] 
for the special case F1 . . . . .  F N = F. It follows that the same results hold in this 
general case provided we simply replace F by F*. For  brevity, the details are 
therefore omitted. Further, generalizing the results of Sen [8] it can be shown 
that in many cases (such as coordinate wise independent or equally correlated 
variates), these A.R.E. values are higher in the heterogeneous case than in the 
homogeneous case, and this accounts for robust efficiency of T 2. 

7. R o b u s t  E s t i m a t i o n  o f  the  C o m m o n  M e d i a n  ( V e c t o r )  

Here we assume that F1, ..., F N all have the common median 0 but these may 
be otherwise quite arbitrary. Thus, each F~ is assumed to be diagonally symmetric 
about 0. Define TN, j, j =  1 . . . .  , p as in (2.5), and let 

O*N=SUp{O: TN, j ( X j 1 - 0 ,  . . . ,  X jN- -O)>O} ,  (7.1) 

0**=inf{0 :  TN, j ( X j l - O ,  . . . ,XjN--0)<0} ,  j = l ,  . . . ,p ,  (7.2) 

where TN, j (X j I - -O, . . . ,X jN- -O ) stands for the statistic TN, j computed for the 
values expressed in the arguments. As in [4], we consider , 

, ,. _ 1 . ** ., (7.3) ON:(OI, N . . . .  Op, N) , Oj, N--~(Oj, N"J-Oj, N) , j = l ,  .. p, 

as a suitable estimate of 0. The estimate in (7.3) forms a general class of estimates, 
two important members of which are the Wilcoxon scores estimator and the 

c~ 
normal scores estimator obtained respectively by taking E (j) - and the 

N.~ N + I  
expected value of the c~-th smallest observation of a sample of size N from a 
chi-distribution with 1 degree of freedom. 

The properties of the continuity (absolute continuity) of the distribution of ON, 
its invariance under translation, and the diagonal symmetry of the distribution 
of O N around 0 have all been studied in detail in [-4] for the particular case 
F 1 . . . . .  F N =F .  Since the same proof goes through readily in the heterogeneous 
case, we refer to Theorems 3.1, 3.2, and 3.4 of [4J for details of these properties. 
Further, if we proceed exactly on the same line as in Theorems 4.3 and 4.4 of [4] 
and use our Theorem 5.1 with (5.41) (where d~= 1, V c~), we readily arrive at the 
following. 

T h e o r e m  7.1. Under the assumptions of Theorem 5.1, N~(ON--O) has asymptoti- 
cally a p-variate normal distribution with null mean vector and dispersion matrix T*, 
defined by (6.7). 
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Now to compare O N and XN, we employ the measure of"  generalized variance" 
due to Wilks [10] and explained in detail in Section 5 of [4]. Thus, if we assume 
that lim F~)=F* exists, so that 2~)-- ,~* as N-~o% we obtain from (6.2) and 

N ~ a o  

Theorem 7.1, that the A.R.E. of O N with respect to XN is equal to 

eo, x = { ]l Z* II/l[ T* [[ }l/p, (7.4) 

where HAIl refers to the determinant of a square matrix A. This again agrees with 
the expression for the A.R.E. in the particular case F~ . . . . .  FN=F, studied in 
detail in [4], with the only change that F has to be replaced by F*. As such, the 
various bounds for (7.4) studied in [4] remain valid even in the general case of 
heterogeneous distributions. 
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