The Converse of the Hartman-Wintner Theorem

W. L. Steiger and S. K. Zaremba

Let $\left\langle X_{t}\right\rangle$ be a sequence of independent and identically distributed random variables. Hartman and Wintner [1] proved that if $E\left(X_{t}\right)=0$ and $E\left(X_{t}^{2}\right)=$ $\sigma^{2}<\infty$, then

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{\left(2 n \sigma^{2} \log \log n\right)^{\frac{1}{2}}}=-\varliminf_{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{\left(2 n \sigma^{2} \log \log n\right)^{\frac{1}{2}}}=1 \quad \text { a.s. } \tag{1}
\end{equation*}
$$

Strassen [2] proved the converse, using quite sophisticated methods. In view of the importance of the law of the iterated logarithm, it may be worth giving a simple and elementary proof of Strassen's result. We show that if there exists a number K such that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{\left|X_{1}+\cdots+X_{n}\right|}{\left(2 n K^{2} \log \log n\right)^{\frac{1}{2}}}=1 \quad \text { a.s. } \tag{2}
\end{equation*}
$$

then $E\left(X_{t}^{2}\right)<\infty$. It follows immediately that $E\left(X_{t}\right)=0$, and the value of $E\left(X_{t}^{2}\right)$ is determined by (1). As noticed by Strassen, the reduction of the general case to that of symmetrically distributed variables presents no difficulty.

We assume then that the distribution of X_{t} is symmetric and show that (2) and $E\left(X_{i}^{2}\right)=\infty$ are inconsistent. Given K, and assuming $E\left(X_{t}^{2}\right)=\infty$, choose $T>0$ so that

$$
\begin{equation*}
P\left[\left|X_{t}\right| \leqq T\right]>\frac{1}{2}, \tag{3}
\end{equation*}
$$

and so that the conditional expectation of X_{t}^{2} given $\left|X_{t}\right| \leqq T$ is bigger than, or equal to, $16 K^{2}$. We define the sequences $\langle\kappa(i)\rangle$ and $\langle\lambda(j)\rangle$ as follows:

$$
\begin{aligned}
\kappa(1)=\min \left(t:\left|X_{t}\right| \leqq T\right) ; & \kappa(i+1)=\min \left(t>\kappa(i):\left|X_{t}\right| \leqq T\right) ; \\
\lambda(1)=\min \left(t:\left|X_{t}\right|>T\right) ; & \lambda(j+1)=\min \left(t>\lambda(j):\left|X_{t}\right|>T\right) .
\end{aligned}
$$

Put $\xi_{i}=X_{\kappa(i)}, \eta_{j}=X_{\lambda(j)}$. Since, by the Borel-Cantelli lemma, there are a.s. infinitely many values of t for which $\left|X_{t}\right| \leqq T$ and infinitely many values for which $\left|X_{t}\right|>T$, the random sequences $\langle\kappa(i)\rangle$ and $\langle\lambda(j)\rangle$ and, therefore, also $\left\langle\xi_{i}\right\rangle$ and $\left\langle\eta_{j}\right\rangle$ are a.s. well defined.

Let p and q be arbitrarily fixed positive integers. Given the increasing sequences $\langle k(1), \ldots, k(r)\rangle$ and $\langle l(1), \ldots, l(s)\rangle$ such that $r \geqq p, s \geqq q, r=p$ or $s=q$, and that $\langle k(1), \ldots, k(r), l(1), \ldots, l(s)\rangle$ is a permutation of $\langle 1, \ldots, r+s\rangle$, let $A(k(1), \ldots, k(r)$; $l(1), \ldots, l(s))$ denote the event " $\left|X_{k(1)}\right| \leqq T, \ldots,\left|X_{k(r)}\right| \leqq T,\left|X_{l(1)}\right|>T, \ldots,\left|X_{l(s)}\right|>T$ ". These events are pairwise disjoint, and their union has probability 1. Given $A(k(1), \ldots, k(r) ; l(1), \ldots, l(s))$, the conditional joint probability distribution of $\xi_{1}, \ldots, \xi_{r}, \eta_{1}, \ldots, \eta_{s}$, that is of $X_{k(1)}, \ldots, X_{k(r)}, X_{l(1)}, \ldots, X_{l(s)}$, is easily written, and factorizes into univariate probability distributions. One deduces from it, as a
marginal distribution, that of $\xi_{1}, \ldots, \xi_{p}, \eta_{1}, \ldots, \eta_{q}$. Since it does not depend on $A(k(1), \ldots, k(r) ; l(1), \ldots, l(s))$, it is simply the joint probability distribution of these variables, which are thus found to be independent.

In view of $16 K^{2} \leqq E\left(\xi_{i}^{2}\right) \leqq T^{2}$, by the Hartman-Wintner theorem, the set S of indices m for which

$$
\begin{equation*}
\left|\xi_{1}+\cdots+\xi_{m}\right|>\left(16 K^{2} m \log \log m\right)^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

is a.s. infinite. Let B denote the event " $\left(\xi_{1}+\cdots+\xi_{m}\right)\left(\eta_{1}+\cdots+\eta_{\kappa(m)-m}\right) \geqq 0$ for infinitely many m in S ". In view of the symmetric distribution and of the independence of $\xi_{1}+\cdots+\xi_{m}$ and $\eta_{1}+\cdots+\eta_{\kappa(m)-m}, P(B) \geqq \frac{1}{2}$. But, by (3) and the strong law of large numbers, the set of values of m for which $\kappa(m) \geqq 2 m$ is a.s. finite. Thus, with probability $\geqq \frac{1}{2}$, there remain infinitely many m in S for which both $\kappa(m)<2 m$ and

$$
\left(\xi_{1}+\cdots+\xi_{m}\right)\left(\eta_{1}+\cdots+\eta_{\kappa(m)-m}\right)>0
$$

and for which, by (4),

$$
\begin{aligned}
\left|X_{1}+\cdots+X_{\kappa(m)}\right|= & \left|\xi_{1}+\cdots+\xi_{m}+\eta_{1}+\cdots+\eta_{\kappa(m)-m}\right|>\left(16 K^{2} m \log \log m\right)^{\frac{1}{2}} \\
& >\left(4 K^{2} \kappa(m) \log \log \kappa(m)\right)^{\frac{1}{2}}
\end{aligned}
$$

which contradicts (2).

References

1. Hartman, P. and Wintner, A.: On the law of the iterated logarith. Amer. J. math. 63, 169-176 (1941).
2. Strassen, V.: A converse to the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Geb. 4, 265-268 (1966).

W. L. Steiger
S. K.Zaremba
Centre de Recherches Mathématiques
Université de Montréal
Case Postale 6128
Montréal 101, Canada

