The Converse of the Hartman-Wintner Theorem

W. L. Steiger and S. K. Zaremba

Let $\langle X_t \rangle$ be a sequence of independent and identically distributed random variables. Hartman and Wintner [1] proved that if $E(X_t)=0$ and $E(X_t^2)=\sigma^2 < \infty$, then

$$\overline{\lim_{n \to \infty}} \frac{X_1 + \dots + X_n}{(2n\,\sigma^2\log\log n)^{\frac{1}{2}}} = -\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{(2n\,\sigma^2\log\log n)^{\frac{1}{2}}} = 1 \quad \text{a.s.}$$
(1)

Strassen [2] proved the converse, using quite sophisticated methods. In view of the importance of the law of the iterated logarithm, it may be worth giving a simple and elementary proof of Strassen's result. We show that if there exists a number K such that

$$\overline{\lim_{n \to \infty}} \frac{|X_1 + \dots + X_n|}{(2n K^2 \log \log n)^{\frac{1}{2}}} = 1 \quad \text{a.s.},$$
(2)

then $E(X_t^2) < \infty$. It follows immediately that $E(X_t) = 0$, and the value of $E(X_t^2)$ is determined by (1). As noticed by Strassen, the reduction of the general case to that of symmetrically distributed variables presents no difficulty.

We assume then that the distribution of X_i is symmetric and show that (2) and $E(X_i^2) = \infty$ are inconsistent. Given K, and assuming $E(X_i^2) = \infty$, choose T > 0 so that

$$P[|X_t| \le T] > \frac{1}{2},\tag{3}$$

and so that the conditional expectation of X_t^2 given $|X_t| \leq T$ is bigger than, or equal to, $16K^2$. We define the sequences $\langle \kappa(i) \rangle$ and $\langle \lambda(j) \rangle$ as follows:

$$\kappa(1) = \min(t: |X_t| \le T); \quad \kappa(i+1) = \min(t > \kappa(i): |X_t| \le T);$$

$$\lambda(1) = \min(t: |X_t| > T); \quad \lambda(j+1) = \min(t > \lambda(j): |X_t| > T).$$

Put $\xi_i = X_{\kappa(i)}$, $\eta_j = X_{\lambda(j)}$. Since, by the Borel-Cantelli lemma, there are a.s. infinitely many values of t for which $|X_t| \leq T$ and infinitely many values for which $|X_t| > T$, the random sequences $\langle \kappa(i) \rangle$ and $\langle \lambda(j) \rangle$ and, therefore, also $\langle \xi_i \rangle$ and $\langle \eta_i \rangle$ are a.s. well defined.

Let p and q be arbitrarily fixed positive integers. Given the increasing sequences $\langle k(1), \ldots, k(r) \rangle$ and $\langle l(1), \ldots, l(s) \rangle$ such that $r \ge p$, $s \ge q$, r = p or s = q, and that $\langle k(1), \ldots, k(r), l(1), \ldots, l(s) \rangle$ is a permutation of $\langle 1, \ldots, r + s \rangle$, let $A(k(1), \ldots, k(r); l(1), \ldots, l(s))$ denote the event " $|X_{k(1)}| \le T, \ldots, |X_{k(r)}| \le T, |X_{l(1)}| > T, \ldots, |X_{l(s)}| > T$ ". These events are pairwise disjoint, and their union has probability 1. Given $A(k(1), \ldots, k(r); l(1), \ldots, l(s))$, the conditional joint probability distribution of $\xi_1, \ldots, \xi_r, \eta_1, \ldots, \eta_s$, that is of $X_{k(1)}, \ldots, X_{l(r)}, X_{l(1)}, \ldots, X_{l(s)}$, is easily written, and factorizes into univariate probability distributions. One deduces from it, as a

marginal distribution, that of $\xi_1, \ldots, \xi_p, \eta_1, \ldots, \eta_q$. Since it does not depend on $A(k(1), \ldots, k(r); l(1), \ldots, l(s))$, it is simply the joint probability distribution of these variables, which are thus found to be independent.

In view of $16K^2 \leq E(\xi_i^2) \leq T^2$, by the Hartman-Wintner theorem, the set S of indices m for which

$$|\xi_1 + \dots + \xi_m| > (16 K^2 m \log \log m)^{\frac{1}{2}}$$
 (4)

is a.s. infinite. Let B denote the event $(\xi_1 + \dots + \xi_m)(\eta_1 + \dots + \eta_{\kappa(m)-m}) \ge 0$ for infinitely many m in S". In view of the symmetric distribution and of the independence of $\xi_1 + \dots + \xi_m$ and $\eta_1 + \dots + \eta_{\kappa(m)-m}$, $P(B) \ge \frac{1}{2}$. But, by (3) and the strong law of large numbers, the set of values of m for which $\kappa(m) \ge 2m$ is a.s. finite. Thus, with probability $\ge \frac{1}{2}$, there remain infinitely many m in S for which both $\kappa(m) < 2m$ and

$$(\xi_1+\cdots+\xi_m)(\eta_1+\cdots+\eta_{\kappa(m)-m})>0,$$

and for which, by (4),

$$|X_1 + \dots + X_{\kappa(m)}| = |\xi_1 + \dots + \xi_m + \eta_1 + \dots + \eta_{\kappa(m)-m}| > (16 K^2 m \log \log m)^{\frac{1}{2}} > (4 K^2 \kappa(m) \log \log \kappa(m))^{\frac{1}{2}},$$

which contradicts (2).

References

- 1. Hartman, P. and Wintner, A.: On the law of the iterated logarith. Amer. J. math. 63, 169-176 (1941).
- Strassen, V.: A converse to the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Geb. 4, 265-268 (1966).

W. L. Steiger S. K. Zaremba Centre de Recherches Mathématiques Université de Montréal Case Postale 6128 Montréal 101, Canada

(Received January 20, 1971)