Zeitschrift fur
Wahrscheinlichkeitstheorie
und verwandte Gebiete
(C) by Springer-Verlag 1978

An Algebraic Central Limit Theorem in the Anti-Commuting Case

W. von Waldenfels

Institut für Angewandte Mathematik der Universität,
Im Neuenheimer Feld 294, 6900 Heidelberg 1, Federal Republic of Germany

In a previous paper [2] an algebraic version of the central limit theorem was derived which contains the classical central limit theorem and the convergence to "quasi-free states" in the quantum mechanics of bosons. In the following paper these results shall be generalized in order to cover the convergence to "fermion quasi-free states". In the same way higher central limit theorems can be derived which become trivial in the case of positivity. The method of proof is somewhat different from [3]. The results are more general, as one does not presuppose a Clifford algebra, but the structure of Clifford algebra comes out in the limit theorem.

We consider an associative algebra \mathfrak{A} with 1 over a field K and denote by $\otimes^{N} \mathfrak{A}$ the tensor product of N copies of \mathfrak{A} as a vector space without any multiplicative structure. If in ()$^{N} \mathfrak{A}$ the product

$$
\left(f_{1} \otimes \cdots \otimes f_{n}\right),\left(g_{1} \otimes \cdots \otimes g_{N}\right) \mapsto f_{1} g_{1} \otimes \cdots \otimes f_{N} g_{N}
$$

is introduced, $\otimes \otimes^{N} \mathfrak{A}$ becomes an associative K-algebra and is then denoted by $\otimes_{\sigma}^{N} \mathfrak{U}$, called $\otimes^{N} \mathfrak{I}$ with the symmetric multiplication, emphasizing the fact that e.g. $f \otimes 1 \otimes \cdots \otimes 1$ and $1 \otimes g \otimes 1 \otimes \cdots \otimes 1$ commute.

Let \mathfrak{A} be a semigraded algebra, i.e. $\mathfrak{Z}=\mathfrak{H}_{0} \oplus \mathfrak{H}_{1}, \mathfrak{H}_{i} \mathfrak{A}_{j} \subset \mathfrak{M}_{k}$, with $k \equiv i$ $+j \bmod 2$, then in $\otimes^{N} \mathfrak{Q}$ an antisymmetric multiplication [1] can be introduced. Define $\varepsilon: \mathfrak{M}_{0} \cup \mathfrak{M}_{1} \rightarrow\{0,1\}, \varepsilon(x)=0$, if $x \in \mathfrak{U}_{0}, \varepsilon(x)=1$, if $x \in \mathfrak{A}_{1}$. Let f_{1}, \ldots, f_{N}, g_{1}, \ldots, g_{N} belong to \mathfrak{H}_{0} or \mathfrak{A}_{1}, then put

$$
\left(f_{1} \otimes \cdots \otimes f_{N}\right)\left(g_{1} \otimes \cdots \otimes g_{N}\right)= \pm f_{1} g_{1} \otimes \cdots \otimes f_{N} g_{N}
$$

where the $+\operatorname{sign}$ stands, if $\sum_{1 \leqq i<j \leqq N} \varepsilon\left(f_{j}\right) \varepsilon\left(g_{i}\right)$ is even and the $-\operatorname{sign}$ stands if this sum is odd. With this multiplication $\otimes^{N} \mathfrak{A}$ forms an associative semigraded algebra [1] which is denoted by $\otimes_{\alpha}^{N} \mathfrak{U}$, where α stands for antisymmetric, for e.g. $f \otimes 1 \otimes \cdots \otimes 1$ and $1 \otimes g \otimes \cdots \otimes 1$ anticommute if f and g belong to \mathfrak{A}_{1}. An important example is the free algebra \mathfrak{F} generated by $x_{i}, i \in I$. This algebra is semigraded, with \mathfrak{F}_{0} spanned by the monomials of even degree, and \mathfrak{F}_{1} spanned by the monomials of odd degree.

We prove first a combinatorial lemma which generalizes that of [2]. If $f \in \mathfrak{H}$, denote

$$
f_{1}^{(N)}=f \otimes 1 \otimes \cdots \otimes 1, \ldots, f_{N}^{(N)}=1 \otimes \cdots \otimes 1 \otimes f \in \otimes^{N} \mathfrak{A}
$$

and

$$
f^{(N)}=f_{1}^{(N)}+f_{2}^{(N)}+\cdots+f_{N}^{(N)}
$$

Lemma 1. Let $\omega: \mathfrak{A} \rightarrow K$ be linear and $\omega(1)=1$. Assume that \mathfrak{M} is semigraded and that in $\otimes^{n} \mathfrak{A}, n \in N$, either the symmetric or the antisymmetric multiplication has been introduced. Let $f_{1}, \ldots, f_{k} \in \mathfrak{H}$. Then

$$
\omega^{\otimes N}\left(f_{1}^{(N)} \ldots f_{k}^{(N)}\right)=\sum_{p=1}^{k}\binom{N}{p} \sum_{\varphi \in F(k, p)} \omega^{\otimes p}\left(f_{1, \varphi(1)}^{(p)} \ldots f_{k, \varphi(k)}^{(p)}\right)
$$

where $\omega^{\otimes N}: \mathfrak{A}^{\otimes N} \rightarrow K$ is defined by linear extension from $\omega^{\otimes N}\left(f_{1} \otimes \cdots \otimes f_{N}\right)$ $=\omega\left(f_{1}\right) \ldots \omega\left(f_{N}\right)$ and $F(n, p)$ denotes the set of all functions from $\{1, \ldots, n\}$ onto $\{1, \ldots, p\}$.
Proof. The lemma uses only the following coherence property of the multiplication laws of $\otimes_{\sigma}^{N} \mathfrak{A r}$ resp. $\otimes_{\alpha}^{N} \mathfrak{A}$. Let G be the class of all finite ordered sets. Let $S, S^{\prime} \in \mathbb{S}$ and $\varphi: S \rightarrow S^{\prime}$ be order-preserving and injective. Define the mapping $\eta(\varphi): \otimes \otimes^{s} \mathfrak{A} \rightarrow \otimes^{s^{\prime}} \mathfrak{A}$ by

$$
\eta(\varphi)\left(\otimes_{\alpha \in S} f_{\alpha}\right)=\otimes_{\beta \in S^{\prime}} \tilde{f}_{\beta}
$$

where $\tilde{f}_{\beta}=f_{\alpha}$ if $\beta=\varphi(\alpha)$ and $\tilde{f}_{\beta}=1$ if $\beta \notin \varphi(S)$.
We say a family of multiplication laws in $\otimes^{S} \mathfrak{A}, S \in \mathfrak{S}$, is coherent if $\eta(\varphi)$: $\left(\otimes^{s} \mathfrak{H} \rightarrow(\otimes)^{s^{s}} \mathfrak{A}\right.$ is a multiplicative homomorphism, for every order-preserving injection φ. It is easy to prove that the families $\otimes_{\sigma}^{S} \mathfrak{A}, S \in \mathbb{S}$ and $\otimes_{\alpha}^{S} \mathcal{H}, S \in \mathbb{S}$ have this coherence property.

Even without any coherence property one has

$$
\omega^{\otimes S} \circ \eta(\varphi)=\omega^{\otimes S^{\prime}}
$$

Multiplying out the left-hand side below one sees

$$
f_{1}^{(N)} \ldots f_{k}^{(N)}=\sum_{\psi} f_{1, \psi(1)}^{(N)} \ldots f_{k, \psi(k)}^{(N)}
$$

where ψ runs over all mappings $\psi:\{1, \ldots, k\} \rightarrow\{1, \ldots, N\}$. Fix ψ and set S $=\operatorname{Im} \psi=\left\{\gamma_{1}, \ldots, \gamma_{p}\right\}, \gamma_{1}<\cdots<\gamma_{p}$. Let ϑ be the mapping $\{1, \ldots, p\} \rightarrow\{1, \ldots, N\}$, $i \mapsto \gamma_{i}$. As ϑ is order-preserving and injective, $\eta(\vartheta)$ is a multiplicative homomorphism from $\otimes^{p} \mathfrak{A}$ into $\otimes^{N} \mathfrak{A}$ with either symmetric or antisymmetric multiplication. For $j \in S$

$$
f_{i, j}^{(N)}=\eta(\vartheta) f_{i, g-1(j)}^{(P)}
$$

and

$$
f_{i, \psi(i)}^{(N)}=\eta(\vartheta) f_{i, \varphi(j)}^{(p)}
$$

with $\varphi=\vartheta^{-1} \circ \psi$. Hence

$$
f_{1, \psi(1)}^{(N)} \ldots f_{k, \psi(k)}^{(N)}=\eta(\vartheta)\left(f_{1, \varphi(1)}^{(p)} \ldots f_{k, \varphi(k)}^{(p)}\right)
$$

and

$$
\begin{aligned}
\omega^{\otimes N}\left(f_{1, \psi(1)}^{(N)} \ldots f_{k, \psi(k)}^{(N)}\right) & =\omega^{\otimes p}\left(f_{1, \varphi(1)}^{(p)} \ldots f_{k, \varphi(k)}^{(p)}\right) \\
& =C_{\varphi}, \text { say } .
\end{aligned}
$$

Fix φ. Then for any subset of $\{1, \ldots, N\}$ with p elements there can be defined ψ and ϑ such that $\varphi=\vartheta^{-1} \circ \psi$. So to any φ there belong $\binom{N}{p}$ mappings ψ.
Hence the result sought

$$
\omega^{\otimes N}\left(f_{1}^{(N)} \ldots f_{k}^{(N)}\right)=\sum_{p=1}^{k}\binom{N}{p} \sum_{\varphi} C_{\varphi} .
$$

Lemma 2. Let $\omega: \mathfrak{N} \rightarrow K$ be linear and $\omega(1)=1$. Assume that in $\otimes^{N} \mathfrak{N}$ either the symmetric or the antisymmetric multiplication has been introduced. Let $f_{1}, \ldots, f_{k} \in \mathfrak{A}$ and assume that

$$
\omega\left(f_{i_{1}}\right), \omega\left(f_{i_{1}} f_{i_{2}}\right), \ldots, \omega\left(f_{i_{1}} \ldots f_{i_{s-1}}\right)=0
$$

for $1 \leqq i_{1}<i_{2}<\cdots<i_{s-1} \leqq k$. Then as $N \rightarrow \infty$

$$
\omega^{\otimes N}\left(\left(f_{1}^{(N)} \cdot N^{-1 / s}\right) \ldots\left(f_{k}^{(N)} \cdot N^{-1 / s}\right)\right)
$$

goes to 0 if k is not a multiple of s and to

$$
\frac{1}{p!} \sum_{\varphi \in F(k, p, s)} \omega^{\otimes p}\left(f_{1, \varphi(1)}^{(p)} \ldots f_{k, \varphi(k)}^{(p)}\right) \quad \text { if } k=p s
$$

where $F(k, p, s)$ is the set of all mappings φ from $\{1, \ldots, k\}$ onto $\{1, \ldots, p\}$ such that $\# \varphi^{-1}(i)=s$ for $i=1, \ldots, p$.

Proof. We use the following fact which holds for symmetric and antisymmetric multiplications in $(\otimes)^{N} \mathfrak{A}$:

$$
\omega^{\otimes p}\left(f_{1, \varphi(1)}^{(p)} \ldots f_{k, \varphi(k)}^{(p)}\right)
$$

vanishes if there exists an $i, 1 \leqq i \leqq p$, such that $\# \varphi^{-1}(i)<s$. By Lemma 1

$$
\begin{aligned}
\omega^{\otimes N} & \left(\left(f_{1}^{(N)} \cdot N^{-1 / s}\right) \ldots\left(f_{k}^{(N)} \cdot N^{-1 / s}\right)\right) \\
& =N^{-k / s} \sum_{p=1}^{k}\binom{N}{p} \sum_{\varphi \in F(k, p)} \omega^{\otimes p}\left(f_{1, \varphi(1)}^{(p)} \ldots f_{k, \varphi(k)}^{(p)}\right)
\end{aligned}
$$

and in the right-hand sum only those φ appear for which $\# \varphi^{-1}(i) \geqq s$ for i $=1, \ldots, p$. This implies that $s p \leqq k, p \leqq k / s$. For $N \rightarrow \infty$ and k not a multiple of s, the highest term in N vanishes at least like $N^{-1 / s}$, as $\binom{N}{p}$ behaves like N^{p} / p !. If k is a multiple of $s, k=p_{0} s$, only the term with $p=p_{0}$ survives and gives the stated result.

From the Lemmata 1 and 2 immediately follow Lemma 1 and Theorem 1 of [2] and hence the rest of the results for symmetric multiplication. In the following therefore we treat only $\otimes_{\alpha}^{N} \mathfrak{Q}$. We introduce some notation. Let $a_{i}, i \in I$, be a family of elements of an algebra A, assume I to be ordered and $S \subset I, S$ $=\left\{i_{1}, \ldots, i_{k}\right\}$ with $i_{1}<i_{2}<\cdots<i_{k}$ a finite subset. Then we denote by a_{S} the product $a_{S}=a_{i_{1}} \ldots a_{i_{k}}$. If S is a finite ordered set and $\left(S_{1}, \ldots, S_{p}\right)$ a sequence of subsets of S with $S_{i} \cap S_{j}=\emptyset$ for $i \neq j$ and $\bigcup_{i=1}^{p} S_{i}=S$, then $\left(\begin{array}{ll}S \\ S_{1} \ldots & S_{p}\end{array}\right)$ denotes the permutation of S, which is defined in the following way: map the first element of S onto the first element of S_{1}, the second element of S onto the second element of S_{1} and so on until S_{1} is exhausted. Then map the following element of S onto the first element of S_{2} and so on.

If φ is a mapping from $\{1, \ldots, k\}$ onto $\{1, \ldots, p\}$ and f_{1}, \ldots, f_{k} belong to \mathfrak{A}_{1}, then

$$
\omega^{\otimes p}\left(f_{1, \varphi(1)}^{(p)} \ldots f_{k, \varphi(k)}^{(p)}\right)=\operatorname{sg}\left(\begin{array}{ccc}
1 & \ldots & k \\
S_{1} & \ldots & S_{p}
\end{array}\right) \omega\left(f_{S_{1}}\right) \ldots \omega\left(f_{S_{p}}\right)
$$

with $S_{i}=\varphi^{-1}(i), i=1, \ldots, p$.
Lemma 3. Assume that in $\otimes^{N} \mathfrak{A}$ the antisymmetric multiplication has been introduced, that $f_{1}, \ldots, f_{k} \in \mathfrak{U}_{1}$, and that $\omega\left(f_{s}\right)=0$ for $S \subset\{1, \ldots, k\}, \# S<s$. Then

$$
\omega^{\otimes N}\left(\left(f_{1}^{(N)} \cdot N^{-1 / s}\right) \ldots\left(f_{k}^{(N)} \cdot N^{-1 / s}\right)\right)
$$

converges as $N \rightarrow \infty$ to 0 if k is not a multiple of s and to

$$
\omega\left(f_{1} \ldots f_{p}\right) \quad \text { if } k=p
$$

and to 0 if $k=s p, s$ odd and greater than $1, p \geqq 2$, and to

$$
\sum_{\left\{S_{1}, \ldots, S_{p}\right\} \in \mathscr{\mathscr { S }}_{s}(1, \ldots, p s)} \operatorname{sg}\left(\begin{array}{lll}
1 & \ldots p s \\
S_{1} & \ldots & S_{p}
\end{array}\right) \omega\left(f_{S_{1}}\right) \ldots \omega\left(f_{S_{p}}\right)
$$

if s even, $p \geqq 1$. Here $\mathscr{P}_{s}(1, \ldots, p s)$ is the set of all partitions of $\{1, \ldots, p s\}$ into subsets of s elements. As $\operatorname{sg}\left(\begin{array}{lll}1 & \ldots & p s \\ S_{1} & \ldots & S_{p}\end{array}\right)$ does not depend upon the order of S_{1}, \ldots, S_{p}, this number depends only on the partition $\left\{S_{1}, \ldots, S_{p}\right\}$.
Proof. This lemma follows from the fact that

$$
\operatorname{sg}\binom{S}{S_{1} \ldots S_{p}}, \quad \# S_{i}=S, \quad S=\{1, \ldots, k\}
$$

changes sign upon interchanging $S_{i}, S_{j}, i \neq j$, if s is odd and does not change sign if s is even. This yields immediately the case of even s. That the expression of Lemma 2 vanishes for $p \geqq 2$ follows from the equation $\sum_{\pi \in \mathbb{S}_{p}} \operatorname{sg} \pi=0$ for $p \geqq 2$.

Let $a_{i}, i \in I$, be a family of elements of $\mathfrak{A}, a_{i} \in \mathfrak{H}_{1}$. Denote by \mathfrak{F} the free algebra generated by $x_{i}, i \in I$. Let $Q: I^{s} \rightarrow K$ be an s-dimensional matrix, s even. Define
the antigaussian functional α_{Q} of order s on \mathfrak{F} with respect to Q by

$$
\left.\left.\begin{array}{l}
\alpha_{Q}(1)=1, \\
\alpha_{Q}\left(x_{i_{1}} \ldots x_{i_{k}}\right)=0, \text { if } k \text { is not a multiple of } s, \\
\alpha_{Q}\left(x_{i_{1}} \ldots x_{i_{p s}}\right)=\sum_{\left\{S_{1}, \ldots, S_{p}\right\} \in \mathscr{P}_{s}(1, \ldots, p s)} \operatorname{sg}\left(\begin{array}{c}
1 \\
1
\end{array} \ldots p s\right. \\
S_{1} \ldots S_{p}
\end{array}\right) Q_{i\left(S_{1}\right)} \ldots Q_{i\left(S_{p}\right)}\right) .
$$

where $Q_{i\left(S_{1}\right)}=Q_{i\left(j_{1}\right) \ldots i\left(j_{s}\right)}$ if $S_{1}=\left\{j_{1}, \ldots, j_{s}\right\}, j_{1}<\cdots<j_{s}$. Then one has
Theorem 1. Let $\omega\left(a_{i_{1}}\right)=0, \ldots, \omega\left(a_{i_{1}} \ldots a_{i_{s-1}}\right)=0$ for $i_{1}, \ldots, i_{s-1} \in I$ and let s be even. Then

$$
\omega^{\otimes N}\left(P\left(a_{i}^{(N)} \cdot N^{-1 / s}\right)\right) \rightarrow \alpha_{Q}(P)
$$

as $N \rightarrow \infty$, where P is any polynomial and $P\left(a_{i}^{(N)} \cdot N^{-1 / s}\right)$ signifies that in P the x_{i} have been replaced by $a_{i}^{(N)} \cdot N^{-1 / s}$.

We did not formulate the case of odd s in such a solemn way, as this case is trivial by Lemma 3.

Let \mathfrak{A} be a semigraded algebra. Define in \mathfrak{M} a non-associative multiplication - by linear extension from the definition

$$
f_{1} \circ f_{2}=f_{1} f_{2}-(-1)^{\varepsilon\left(f_{1}\right) \varepsilon\left(f_{2}\right)} f_{2} f_{1}
$$

if f_{i} belong to \mathfrak{A}_{0} or to \mathfrak{A}_{1}. So $f_{1} \circ f_{2}$ is the commutator unless both f_{1} and f_{2} belong to \mathfrak{A}_{1}. In that case it is the anticommutator.

Let $\mathfrak{F}_{c} \subset \mathscr{F}$ be the o-subalgebra generated by $x_{i}, i \in I$. So $\tilde{\mathscr{F}}_{c}$ is the linear span of $1, x_{i}, x_{i} \circ x_{j},\left(x_{i} \circ x_{j}\right) \circ x_{k}, x_{i} \circ\left(x_{j} \circ x_{k}\right)$, etc. \mathfrak{F}_{c} is nothing else than the Lie superalgebra generated by x_{i} [4].

Theorem 2. The antigaussian functional $\alpha_{Q}: \mathfrak{F} \rightarrow K$ of order s vanishes on the twosided ideal generated by the elements of the form

$$
P-\alpha_{Q}(P)
$$

where P runs through all homogeneous polynomials of degree s in \mathfrak{F}_{c}.
Proof. One gets immediately for $\mathfrak{X}=\mathscr{F}$ that

$$
\alpha_{Q}^{\otimes N}\left(P\left(x_{i}^{\otimes N} \cdot N^{-1 / s}\right)\right) \rightarrow \alpha_{Q}(P)
$$

for $P \in \mathscr{F}$. As $\otimes_{\alpha}^{n} \mathfrak{H}$ is again semigraded, if \mathfrak{A} is semigraded [1], we can define \circ in $\otimes_{\alpha}^{n} \mathfrak{H}$ as well as in \mathfrak{H}. We state then that $\left(W_{1} \circ W_{2}\right)^{(N)}=W_{1}^{(N)} \circ W_{2}^{(N)}$ for monomials $W_{1}, W_{2} \in \mathscr{F}$, for

$$
\begin{aligned}
W_{1}^{(N)} \circ W_{2}^{(N)} & =\sum_{i, j=1}^{N} W_{1, i}^{(N)} \circ W_{2, j}^{(N)}=\sum_{i=1}^{N} W_{1, i}^{(N)} \circ W_{2, i}^{(N)} \\
& =\sum_{i=1}^{N}\left(W_{1} \circ W_{2}\right)_{i}^{(N)}=\left(W_{1} \circ W_{2}\right)^{(N)}
\end{aligned}
$$

hence for $P \in \mathcal{F}$ one has

$$
P\left(x_{i}^{(N)}\right)=P^{(N)} .
$$

Then for $k=p s$

$$
\begin{aligned}
& \alpha_{Q}\left(x_{i(1)} \ldots x_{i(j)} P x_{i(j+1)} \ldots x_{i(k)}\right) \\
&= \lim _{N \rightarrow \infty} \alpha_{Q}^{\otimes N}\left(\left(x_{i(1)}^{(N)} \cdot N^{-1 / s}\right) \ldots\left(x_{i(j)}^{(N)} \cdot N^{-1 / s}\right)\right. \\
&\left.\cdot P\left(x^{(N)} \cdot N^{-1 / s}\right)\left(x_{i(j+1)}^{(N)} \cdot N^{-1 / s}\right) \ldots\left(x_{i(k)}^{(N)} \cdot N^{-1 / s}\right)\right) \\
&= \lim N^{-(p+1)} \alpha_{Q}^{\otimes N}\left(x_{i(1)}^{(N)} \ldots x_{i(j)}^{(N)} P^{(N)} x_{i(j+1)}^{(N)} \ldots x_{i(k)}^{(N)}\right) \\
&= \lim N^{-(p+1)} \sum_{q=1}^{k+1}\binom{N}{q} \\
& \cdot \sum_{\varphi} \alpha_{Q}^{\otimes q}\left(x_{i(1), \varphi(1)}^{(q)} \ldots x_{i(j), \varphi(j)}^{(q)} P_{\varphi(\Delta)}^{(q)} x_{i(j+1), \varphi(j+1)}^{(q)} \ldots x_{i(k), \varphi(k)}^{(q)}\right)
\end{aligned}
$$

where the last sum runs over all φ from $\{1, \ldots, j, \Delta, j+1, \ldots, k\}$ onto $\{1, \ldots, q\}$, and Δ has been inserted to take care of P.

The term corresponding to φ vanishes unless $\varphi^{-1}(i)$ contains $\geqq s$ elements or Δ for $1 \leqq i \leqq p$. Hence as $N \rightarrow \infty$ only those φ survive for which $\varphi^{-1}(i) \subset\{1, \ldots, j$, $j+1, \ldots, k\}$ and $\# \varphi^{-1}(i)=s$ or $\varphi^{-1}(i)=\{\Delta\}$.

The limit becomes

$$
\begin{aligned}
& \frac{1}{(p+1)!} \sum_{\varphi} \alpha_{Q}^{\otimes(p+1)}\left(x_{i(1), \varphi(1)}^{(p+1)} \ldots x_{i(j), \varphi(j)}^{(p+1)} P_{\varphi(4)}^{(p+1)} x_{i(j+1), \varphi(j+1)}^{(p+1)} \ldots x_{i(k), \varphi(k)}^{(k+1)}\right) \\
& \quad=\alpha_{Q}(P) \alpha_{Q}\left(x_{i(1)} \ldots x_{i(j)} x_{i(j+1)} \ldots x_{i(k)}\right)
\end{aligned}
$$

as s is even, P is an even polynomial and $P_{\varphi(\Delta)}$ commutes with $x_{i(l)}$. For $k=p s$ one has therefore

$$
\alpha_{Q}\left(x_{i(1)} \ldots x_{i(j)}\left(P-\alpha_{Q}(P)\right) x_{i(j+1)} \ldots x_{i(k)}\right)=0 .
$$

For k not divisible by p this formula is trivial. Hence the theorem.
Discussion of the Results. The most interesting case is $s=2$. If $s \geqq 3, K=\mathbb{C}$ and \mathfrak{Y} is a ${ }^{*}$-algebra, $a_{i}^{*}=a_{i}$ and $\omega \geqq 0$, then $Q=0$ as has been pointed out in [2]. If s $=2$, then theorem 2 reads that α_{Q} vanishes on the ideal I generated by $x_{i} x_{j}$ $+x_{j} x_{i}-\left(Q_{i j}+Q_{j i}\right)$. So \mathfrak{F} / I is the Clifford algebra generated by $\xi_{i}, i \in I$, and the quadratic form defined by the matrix $\left(Q_{i j}+Q_{j i}\right)_{i, j}$. If $K=\mathbb{C}$ and \mathfrak{F} is considered as a $*$-algebra as in [2], then the connection with the quantum mechanics of fermions is well-known. α_{Q} can then be interpreted as a "quasi-free state" and Theorem 1 and 2 together yield a central limit theorem for non-commuting quantities.

References

1. Chevalley, C.: The Construction and Study of Certain Important Algebras. Publ. Math. Soc. Japan, 1 (1955)
2. Giri, N., von Waldenfels, W.: An Algebraic Version of the Central Limit Theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 42, 129 (1978)
3. Hudson, R.L.: A Quantum Mechanical Central Limit Theorem for Anticommuting Observables. J. Appl. Probability 10, 502-509 (1973)
4. Kac, V.G.: A sketch of Lie superalgebra theory. Commun. Math. Phys. 53, 31-64 (1977)
