An Algebraic Central Limit Theorem in the Anti-Commuting Case

W. von Waldenfels

Institut für Angewandte Mathematik der Universität, Im Neuenheimer Feld 294, 6900 Heidelberg 1, Federal Republic of Germany

In a previous paper [2] an algebraic version of the central limit theorem was derived which contains the classical central limit theorem and the convergence to "quasi-free states" in the quantum mechanics of bosons. In the following paper these results shall be generalized in order to cover the convergence to "fermion quasi-free states". In the same way higher central limit theorems can be derived which become trivial in the case of positivity. The method of proof is somewhat different from [3]. The results are more general, as one does not presuppose a Clifford algebra, but the structure of Clifford algebra comes out in the limit theorem.

We consider an associative algebra \mathfrak{A} with 1 over a field K and denote by $\bigotimes^{N} \mathfrak{A}$ the tensor product of N copies of \mathfrak{A} as a vector space without any multiplicative structure. If in $\bigotimes^{N} \mathfrak{A}$ the product

 $(f_1 \otimes \cdots \otimes f_n), (g_1 \otimes \cdots \otimes g_N) \mapsto f_1 g_1 \otimes \cdots \otimes f_N g_N$

is introduced, $\bigotimes^{N} \mathfrak{A}$ becomes an associative *K*-algebra and is then denoted by $\bigotimes_{\sigma}^{N} \mathfrak{A}$, called $\bigotimes^{N} \mathfrak{A}$ with the symmetric multiplication, emphasizing the fact that e.g. $f \otimes 1 \otimes \cdots \otimes 1$ and $1 \otimes g \otimes 1 \otimes \cdots \otimes 1$ commute.

Let \mathfrak{A} be a semigraded algebra, i.e. $\mathfrak{A} = \mathfrak{A}_0 \oplus \mathfrak{A}_1$, $\mathfrak{A}_i \mathfrak{A}_j \subset \mathfrak{A}_k$, with $k \equiv i + j \mod 2$, then in $\bigotimes^N \mathfrak{A}$ an antisymmetric multiplication [1] can be introduced. Define $\varepsilon: \mathfrak{A}_0 \cup \mathfrak{A}_1 \to \{0, 1\}, \ \varepsilon(x) = 0$, if $x \in \mathfrak{A}_0, \ \varepsilon(x) = 1$, if $x \in \mathfrak{A}_1$. Let f_1, \ldots, f_N , g_1, \ldots, g_N belong to \mathfrak{A}_0 or \mathfrak{A}_1 , then put

 $(f_1 \otimes \cdots \otimes f_N)(g_1 \otimes \cdots \otimes g_N) = \pm f_1 g_1 \otimes \cdots \otimes f_N g_N$

where the +sign stands, if $\sum_{\substack{1 \leq i < j \leq N \\ \alpha \leq m \leq N}} \varepsilon(f_j) \varepsilon(g_i)$ is even and the -sign stands if this sum is odd. With this multiplication $\bigotimes^N \mathfrak{A}$ forms an associative semigraded algebra [1] which is denoted by $\bigotimes_{\alpha}^N \mathfrak{A}$, where α stands for antisymmetric, for e.g. $f \otimes 1 \otimes \cdots \otimes 1$ and $1 \otimes g \otimes \cdots \otimes 1$ anticommute if f and g belong to \mathfrak{A}_1 . An important example is the free algebra \mathfrak{F} generated by $x_i, i \in I$. This algebra is semigraded, with \mathfrak{F}_0 spanned by the monomials of even degree, and \mathfrak{F}_1 spanned by the monomials of odd degree.

We prove first a combinatorial lemma which generalizes that of [2]. If $f \in \mathfrak{A}$, denote

$$f_1^{(N)} = f \otimes 1 \otimes \cdots \otimes 1, \dots, f_N^{(N)} = 1 \otimes \cdots \otimes 1 \otimes f \in \bigotimes^N \mathfrak{A}$$

and

$$f^{(N)} = f_1^{(N)} + f_2^{(N)} + \dots + f_N^{(N)}.$$

Lemma 1. Let $\omega: \mathfrak{A} \to K$ be linear and $\omega(1) = 1$. Assume that \mathfrak{A} is semigraded and that in $\bigotimes^n \mathfrak{A}$, $n \in \mathbb{N}$, either the symmetric or the antisymmetric multiplication has been introduced. Let $f_1, \ldots, f_k \in \mathfrak{A}$. Then

$$\omega^{\otimes N}(f_1^{(N)}\dots f_k^{(N)}) = \sum_{p=1}^k \binom{N}{p} \sum_{\varphi \in F(k, p)} \omega^{\otimes p}(f_{1, \varphi(1)}^{(p)} \dots f_{k, \varphi(k)}^{(p)})$$

where $\omega^{\otimes N}: \mathfrak{A}^{\otimes N} \to K$ is defined by linear extension from $\omega^{\otimes N}(f_1 \otimes \cdots \otimes f_N)$ $=\omega(f_1)\ldots\omega(f_N)$ and F(n,p) denotes the set of all functions from $\{1,\ldots,n\}$ onto $\{1, \ldots, p\}.$

Proof. The lemma uses only the following coherence property of the multiplication laws of $\bigotimes_{\sigma}^{N} \mathfrak{A}$ resp. $\bigotimes_{\alpha}^{N} \mathfrak{A}$. Let \mathfrak{S} be the class of all finite ordered sets. Let $S, S' \in \mathfrak{S}$ and $\varphi: \check{S} \to S'$ be order-preserving and injective. Define the mapping $\eta(\varphi): \bigotimes^{S} \mathfrak{A} \to \bigotimes^{S'} \mathfrak{A}$ by

$$\eta(\varphi)(\bigotimes_{\alpha\in S} f_{\alpha}) = \bigotimes_{\beta\in S'} \tilde{f}_{\beta}$$

where $\tilde{f}_{\beta} = f_{\alpha}$ if $\beta = \varphi(\alpha)$ and $\tilde{f}_{\beta} = 1$ if $\beta \notin \varphi(S)$. We say a family of multiplication laws in $\bigotimes^{S} \mathfrak{A}$, $S \in \mathfrak{S}$, is coherent if $\eta(\varphi)$: $\otimes^{S} \mathfrak{A} \to \otimes^{S'} \mathfrak{A}$ is a multiplicative homomorphism, for every order-preserving injection φ . It is easy to prove that the families $\bigotimes_{\sigma}^{S} \mathfrak{A}$, $S \in \mathfrak{S}$ and $\bigotimes_{\alpha}^{S} \mathfrak{A}$, $S \in \mathfrak{S}$ have this coherence property.

Even without any coherence property one has

$$\omega^{\otimes S} \circ \eta(\varphi) = \omega^{\otimes S'}$$
.

Multiplying out the left-hand side below one sees

$$f_1^{(N)} \dots f_k^{(N)} = \sum_{\psi} f_{1, \psi(1)}^{(N)} \dots f_{k, \psi(k)}^{(N)}$$

where ψ runs over all mappings $\psi: \{1, ..., k\} \rightarrow \{1, ..., N\}$. Fix ψ and set S = Im $\psi = \{\gamma_1, \dots, \gamma_p\}, \gamma_1 < \dots < \gamma_p$. Let ϑ be the mapping $\{1, \dots, p\} \rightarrow \{1, \dots, N\},$ $i \mapsto \gamma_i$. As ϑ is order-preserving and injective, $\eta(\vartheta)$ is a multiplicative homomorphism from $\otimes^p \mathfrak{A}$ into $\otimes^N \mathfrak{A}$ with either symmetric or antisymmetric multiplication. For $i \in S$

$$f_{i, j}^{(N)} = \eta(\vartheta) f_{i, \vartheta}^{(p)} - \tau_{(j)}$$

and

 $f_{i,\psi(i)}^{(N)} = \eta(\vartheta) f_{i,\varphi(i)}^{(p)}$

with $\varphi = \vartheta^{-1} \circ \psi$. Hence

$$f_{1,\psi(1)}^{(N)}\dots f_{k,\psi(k)}^{(N)} = \eta(\vartheta)(f_{1,\varphi(1)}^{(p)}\dots f_{k,\varphi(k)}^{(p)})$$

and

$$\omega^{\otimes N}(f_{1,\psi(1)}^{(N)}\dots f_{k,\psi(k)}^{(N)}) = \omega^{\otimes p}(f_{1,\phi(1)}^{(p)}\dots f_{k,\phi(k)}^{(p)})$$

= C_{ϕ} , say.

Fix φ . Then for any subset of $\{1, ..., N\}$ with p elements there can be defined ψ and ϑ such that $\varphi = \vartheta^{-1} \circ \psi$. So to any φ there belong $\binom{N}{p}$ mappings ψ . Hence the result sought

$$\omega^{\otimes N}(f_1^{(N)}\dots f_k^{(N)}) = \sum_{p=1}^k \binom{N}{p} \sum_{\varphi} C_{\varphi}.$$

Lemma 2. Let $\omega: \mathfrak{A} \to K$ be linear and $\omega(1)=1$. Assume that in $\bigotimes^{\mathbb{N}} \mathfrak{A}$ either the symmetric or the antisymmetric multiplication has been introduced. Let $f_1, \ldots, f_k \in \mathfrak{A}$ and assume that

$$\omega(f_{i_1}), \ \omega(f_{i_1} f_{i_2}), \dots, \omega(f_{i_1} \dots f_{i_{s-1}}) = 0$$

for $1 \leq i_1 < i_2 < \dots < i_{s-1} \leq k$. Then as $N \to \infty$

$$\omega^{\otimes N}((f_1^{(N)}\cdot N^{-1/s})\dots(f_k^{(N)}\cdot N^{-1/s}))$$

goes to 0 if k is not a multiple of s and to

$$\frac{1}{p!} \sum_{\varphi \in F(k, p, s)} \omega^{\otimes p}(f_{1, \varphi(1)}^{(p)} \dots f_{k, \varphi(k)}^{(p)}) \quad if \ k = ps$$

where F(k, p, s) is the set of all mappings φ from $\{1, ..., k\}$ onto $\{1, ..., p\}$ such that $\# \varphi^{-1}(i) = s$ for i = 1, ..., p.

Proof. We use the following fact which holds for symmetric and antisymmetric multiplications in $\bigotimes^{\mathbb{N}} \mathfrak{A}$:

 $\omega^{\otimes p}(f_{1,\varphi(1)}^{(p)}\dots f_{k,\varphi(k)}^{(p)})$

vanishes if there exists an i, $1 \leq i \leq p$, such that $\# \varphi^{-1}(i) < s$. By Lemma 1

$$\omega^{\otimes N}((f_1^{(N)} \cdot N^{-1/s}) \dots (f_k^{(N)} \cdot N^{-1/s})) = N^{-k/s} \sum_{p=1}^k \binom{N}{p} \sum_{\varphi \in F(k, p)} \omega^{\otimes p}(f_{1, \varphi(1)}^{(p)} \dots f_{k, \varphi(k)}^{(p)})$$

and in the right-hand sum only those φ appear for which $\#\varphi^{-1}(i) \ge s$ for i = 1, ..., p. This implies that $sp \le k$, $p \le k/s$. For $N \to \infty$ and k not a multiple of s, the highest term in N vanishes at least like $N^{-1/s}$, as $\binom{N}{p}$ behaves like $N^p/p!$. If k is a multiple of s, $k = p_0 s$, only the term with $p = p_0$ survives and gives the stated result.

From the Lemmata 1 and 2 immediately follow Lemma 1 and Theorem 1 of [2] and hence the rest of the results for symmetric multiplication. In the following therefore we treat only $\bigotimes_{\alpha}^{N} \mathfrak{A}$. We introduce some notation. Let $a_i, i \in I$, be a family of elements of an algebra A, assume I to be ordered and $S \subset I$, $S = \{i_1, \ldots, i_k\}$ with $i_1 < i_2 < \cdots < i_k$ a finite subset. Then we denote by a_S the product $a_S = a_{i_1} \ldots a_{i_k}$. If S is a finite ordered set and (S_1, \ldots, S_p) a sequence of subsets of S with $S_i \cap S_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^p S_i = S$, then $\binom{S}{S_1 \ldots S_p}$ denotes the permutation of S, which is defined in the following way: map the first element of S onto the first element of S_1 , the second element of S onto the second element of S onto the first element of S onto the first element of S_2 and so on.

If φ is a mapping from $\{1, ..., k\}$ onto $\{1, ..., p\}$ and $f_1, ..., f_k$ belong to \mathfrak{A}_1 , then

$$\omega^{\otimes p}(f_{1,\varphi(1)}^{(p)}\dots f_{k,\varphi(k)}^{(p)}) = \operatorname{sg} \begin{pmatrix} 1 \dots k \\ S_1 \dots S_p \end{pmatrix} \omega(f_{S_1})\dots \omega(f_{S_p})$$

with $S_i = \varphi^{-1}(i), i = 1, ..., p$.

Lemma 3. Assume that in $\bigotimes^{\mathbb{N}} \mathfrak{A}$ the antisymmetric multiplication has been introduced, that $f_1, \ldots, f_k \in \mathfrak{A}_1$, and that $\omega(f_s) = 0$ for $S \subset \{1, \ldots, k\}, \#S < s$. Then

 $\omega^{\otimes N}((f_1^{(N)} \cdot N^{-1/s}) \dots (f_k^{(N)} \cdot N^{-1/s}))$

converges as $N \rightarrow \infty$ to 0 if k is not a multiple of s and to

$$\omega(f_1 \dots f_p) \quad if \ k = p$$

and to 0 if k = sp, s odd and greater than 1, $p \ge 2$, and to

$$\sum_{\{S_1, \ldots, S_p\} \in \mathscr{P}_s(1, \ldots, p_S)} \operatorname{sg} \begin{pmatrix} 1 & \ldots & p_S \\ S_1 & \ldots & S_p \end{pmatrix} \omega(f_{S_1}) \dots \omega(f_{S_p})$$

if s even, $p \ge 1$. Here $\mathcal{P}_s(1, ..., ps)$ is the set of all partitions of $\{1, ..., ps\}$ into subsets of s elements. As $sg\begin{pmatrix}1 & ... ps\\S_1 & ... S_p\end{pmatrix}$ does not depend upon the order of $S_1, ..., S_p$, this number depends only on the partition $\{S_1, ..., S_p\}$.

Proof. This lemma follows from the fact that

$$\operatorname{sg} \begin{pmatrix} S \\ S_1 \dots S_p \end{pmatrix}, \quad \#S_i = s, \quad S = \{1, \dots, k\}$$

changes sign upon interchanging S_i , S_j , $i \neq j$, if s is odd and does not change sign if s is even. This yields immediately the case of even s. That the expression of Lemma 2 vanishes for $p \ge 2$ follows from the equation $\sum_{\pi \in \mathfrak{S}_p} \operatorname{sg} \pi = 0$ for $p \ge 2$.

Let $a_i, i \in I$, be a family of elements of $\mathfrak{A}, a_i \in \mathfrak{A}_1$. Denote by \mathfrak{F} the free algebra generated by $x_i, i \in I$. Let $Q: I^s \to K$ be an s-dimensional matrix, s even. Define

the antigaussian functional α_Q of order s on \mathfrak{F} with respect to Q by

$$\alpha_Q(1) = 1,$$

$$\alpha_Q(x_{i_1} \dots x_{i_k}) = 0, \text{ if } k \text{ is not a multiple of } s,$$

$$\alpha_Q(x_{i_1} \dots x_{i_k}) = \sum_{s \in Q} \left\{ s \in Q_{s,s}^{(1)} \dots s = Q_{s,s}^{(1)} \right\} = 0, \text{ or } s \in Q_{s,s}^{(1)}$$

$$\alpha_{\mathcal{Q}}(x_{i_1}\ldots x_{i_{p,s}}) = \sum_{\{S_1,\ldots,S_p\} \in \mathscr{P}_s(1,\ldots,p_s)} \operatorname{sg}\left(\sum_{i_1}^{i_1}\ldots \sum_{p}\right) Q_{i(S_1)}\ldots Q_{i(S_p)}$$

where $Q_{i(S_1)} = Q_{i(j_1) \dots i(j_s)}$ if $S_1 = \{j_1, \dots, j_s\}, j_1 < \dots < j_s$. Then one has

Theorem 1. Let $\omega(a_{i_1}) = 0, ..., \omega(a_{i_1} ... a_{i_{s-1}}) = 0$ for $i_1, ..., i_{s-1} \in I$ and let *s* be even. Then

$$\omega^{\otimes N}(P(a_i^{(N)} \cdot N^{-1/s})) \to \alpha_Q(P)$$

as $N \to \infty$, where P is any polynomial and $P(a_i^{(N)} \cdot N^{-1/s})$ signifies that in P the x_i have been replaced by $a_i^{(N)} \cdot N^{-1/s}$.

We did not formulate the case of odd s in such a solemn way, as this case is trivial by Lemma 3.

Let \mathfrak{A} be a semigraded algebra. Define in \mathfrak{A} a non-associative multiplication \circ by linear extension from the definition

$$f_1 \circ f_2 = f_1 f_2 - (-1)^{\varepsilon(f_1) \varepsilon(f_2)} f_2 f_1$$

if f_i belong to \mathfrak{A}_0 or to \mathfrak{A}_1 . So $f_1 \circ f_2$ is the commutator unless both f_1 and f_2 belong to \mathfrak{A}_1 . In that case it is the anticommutator.

Let $\mathfrak{F}_c \subset \mathfrak{F}$ be the \circ -subalgebra generated by x_i , $i \in I$. So \mathfrak{F}_c is the linear span of 1, x_i , $x_i \circ x_j$, $(x_i \circ x_j) \circ x_k$, $x_i \circ (x_j \circ x_k)$, etc. \mathfrak{F}_c is nothing else than the Lie superalgebra generated by x_i [4].

Theorem 2. The antigaussian functional $\alpha_Q: \mathfrak{F} \to K$ of order s vanishes on the twosided ideal generated by the elements of the form

$$P - \alpha_Q(P),$$

where P runs through all homogeneous polynomials of degree s in \mathfrak{F}_c .

Proof. One gets immediately for $\mathfrak{A} = \mathfrak{F}$ that

$$\alpha_Q^{\otimes N}(P(x_i^{\otimes N} \cdot N^{-1/s})) \to \alpha_Q(P)$$

for $P \in \mathfrak{F}$. As $\bigotimes_{\alpha}^{n} \mathfrak{A}$ is again semigraded, if \mathfrak{A} is semigraded [1], we can define \circ in $\bigotimes_{\alpha}^{n} \mathfrak{A}$ as well as in \mathfrak{A} . We state then that $(W_{1} \circ W_{2})^{(N)} = W_{1}^{(N)} \circ W_{2}^{(N)}$ for monomials $W_{1}, W_{2} \in \mathfrak{F}$, for

$$W_1^{(N)} \circ W_2^{(N)} = \sum_{i, j=1}^N W_{1, i}^{(N)} \circ W_{2, j}^{(N)} = \sum_{i=1}^N W_{1, i}^{(N)} \circ W_{2, i}^{(N)}$$
$$= \sum_{i=1}^N (W_1 \circ W_2)_i^{(N)} = (W_1 \circ W_2)^{(N)}$$

hence for $P \in \mathfrak{F}$ one has

 $P(x_i^{(N)}) = P^{(N)}.$

Then for k = ps

$$\begin{aligned} \alpha_{Q}(x_{i(1)} \dots x_{i(j)} P x_{i(j+1)} \dots x_{i(k)}) \\ &= \lim_{N \to \infty} \alpha_{Q}^{\otimes N}((x_{i(1)}^{(N)} \cdot N^{-1/s}) \dots (x_{i(j)}^{(N)} \cdot N^{-1/s})) \\ &\cdot P(x^{(N)} \cdot N^{-1/s})(x_{i(j+1)}^{(N)} \cdot N^{-1/s}) \dots (x_{i(k)}^{(N)} \cdot N^{-1/s})) \\ &= \lim N^{-(p+1)} \alpha_{Q}^{\otimes N}(x_{i(1)}^{(N)} \dots x_{i(j)}^{(N)} P^{(N)} x_{i(j+1)}^{(N)} \dots x_{i(k)}^{(N)}) \\ &= \lim N^{-(p+1)} \sum_{q=1}^{k+1} \binom{N}{q} \\ &\cdot \sum_{\varphi} \alpha_{Q}^{\otimes q}(x_{i(1), \varphi(1)}^{(q)} \dots x_{i(j), \varphi(j)}^{(q)} P_{\varphi(d)}^{(q)} x_{i(j+1), \varphi(j+1)}^{(q)} \dots x_{i(k), \varphi(k)}^{(q)}) \end{aligned}$$

where the last sum runs over all φ from $\{1, ..., j, \Delta, j+1, ..., k\}$ onto $\{1, ..., q\}$, and Δ has been inserted to take care of P.

The term corresponding to φ vanishes unless $\varphi^{-1}(i)$ contains $\geq s$ elements or Δ for $1 \leq i \leq p$. Hence as $N \to \infty$ only those φ survive for which $\varphi^{-1}(i) \subset \{1, \ldots, j, j+1, \ldots, k\}$ and $\# \varphi^{-1}(i) = s$ or $\varphi^{-1}(i) = \{\Delta\}$.

The limit becomes

$$\frac{1}{(p+1)!} \sum_{\varphi} \alpha_Q^{\otimes (p+1)} (x_{i(1), \varphi(1)}^{(p+1)} \dots x_{i(j), \varphi(j)}^{(p+1)} P_{\varphi(A)}^{(p+1)} x_{i(j+1), \varphi(j+1)}^{(p+1)} \dots x_{i(k), \varphi(k)}^{(k+1)})$$

= $\alpha_Q(P) \alpha_Q(x_{i(1)} \dots x_{i(j)} x_{i(j+1)} \dots x_{i(k)})$

as s is even, P is an even polynomial and $P_{\varphi(A)}$ commutes with $x_{i(l)}$. For k = ps one has therefore

$$\alpha_{O}(x_{i(1)} \dots x_{i(j)}(P - \alpha_{O}(P)) x_{i(j+1)} \dots x_{i(k)}) = 0.$$

For k not divisible by p this formula is trivial. Hence the theorem.

Discussion of the Results. The most interesting case is s=2. If $s \ge 3$, $K = \mathbb{C}$ and \mathfrak{A} is a *-algebra, $a_i^* = a_i$ and $\omega \ge 0$, then Q = 0 as has been pointed out in [2]. If s = 2, then theorem 2 reads that α_Q vanishes on the ideal I generated by $x_i x_j + x_j x_i - (Q_{ij} + Q_{ji})$. So \mathfrak{F}/I is the Clifford algebra generated by ξ_i , $i \in I$, and the quadratic form defined by the matrix $(Q_{ij} + Q_{ji})_{i,j}$. If $K = \mathbb{C}$ and \mathfrak{F} is considered as a *-algebra as in [2], then the connection with the quantum mechanics of fermions is well-known. α_Q can then be interpreted as a "quasi-free state" and Theorem 1 and 2 together yield a central limit theorem for non-commuting quantities.

References

- 1. Chevalley, C.: The Construction and Study of Certain Important Algebras. Publ. Math. Soc. Japan, 1 (1955)
- Giri, N., von Waldenfels, W.: An Algebraic Version of the Central Limit Theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 42, 129 (1978)
- 3. Hudson, R.L.: A Quantum Mechanical Central Limit Theorem for Anticommuting Observables. J. Appl. Probability 10, 502-509 (1973)
- 4. Kac, V.G.: A sketch of Lie superalgebra theory. Commun. Math. Phys. 53, 31-64 (1977)