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In a previous paper [2] an algebraic version of the central limit theorem was 
derived which contains the classical central limit theorem and the convergence 
to "quasi-free states" in the quantum mechanics of bosons. In the following 
paper these results shall be generalized in order to cover the convergence to 
"fermion quasi-free states". In the same way higher central limit theorems can 
be derived which become trivial in the case of positivity. The method of proof is 
somewhat different from [3]. The results are more general, as one does not 
presuppose a Clifford algebra, but the structure of Clifford algebra comes out in 
the limit theorem. 

We consider an associative algebra 92 with 1 over a field K and denote by 
@u~[ the tensor product of N copies of 91 as a vector space without any 
multiplicative structure. If in @N92 the product 

( f l  @ ' ' "  @fn),  (g 1 @ " '  @ gN) F---~fl g i @''" @fN gu 

is introduced, @u91 becomes an associative K-algebra and is then denoted by 
N @~ 92, called @N92 with the symmetric multiplication, emphasizing the fact that 

e . g . f | 1 7 4 1 7 4  and 1 | 1 7 4 1 7 4 1 7 4  commute. 
Let 92 be a semigraded algebra, i.e. 92=91o| 92i92jcg-lk, with k - i  

+j  mod 2, then in @u91 an antisymmetric multiplication [1] can be introduced. 
Define e!92oW92,~{0, 1}, e(x)=0, if xS92o, e (x)=l ,  if xe92,. Let f~, . . . , fu,  
gl, ' " ,  gN belong to 910 or 911, thcn put 

0"~ | | |174 +A g~ |  f= g~ 

where the +sign stands, if ~ e(ffl e(gi) is even and the - s ign  stands if this 
l <=i<j<N 

sum is odd. With this multiplication @u92 forms an associative semigraded 
N algebra [1] which is denoted by @~ 91, where c~ stands for antisymmetric, for e.g. 

f | 1 7 4 1 7 4  and l | 1 7 4 1 7 4  anticommute i f f  and g belong to 921- An 
important example is the free algebra 3 generated by xi, i6 i .  This algebra is 
semigraded, with 3o spanned by the monomials of even degree, and 31 spanned 
by the monomials of odd degree. 
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We prove first a combinatorial lemma which generalizes that of [2]. Iff~9.1, 
denote 

f(1 N) = f  | 1 @,.. @ 1,..., f(N)= 1 | | 1 | 1 7 4  

and 

fiN) = f~s) + f}N) +. . .  + f~s). 

Lemma 1. Let o~: 9.1 ~ K be linear and a(1)=  1. Assume that 9.1 is semigraded and 
that in (~'9.1, naN, either the symmetric or the antisymmetric multiplication has 
been introduced. Let f t  . . . . .  fk~9.1. Then 

O~| ) . f~ ) )=  ~ (N) ~ ,,~| c(p) , 
�9 ' ~ "  ~J 1 ,  r  " "  dk, ~(k)J 

p= 1 P r p) 

where a~| ~ |  is defined by linear extension from 09|174174 
=co(f1) ... 09(fN) and F(n, p) denotes the set of all functions .from {1, ..., n} onto 
{1, . . . ,p}.  

Proof. The lemma uses only the following coherence property of the multipli- 
cation laws of (~)~gX resp. ~)~gJ. Let ~ be the class of all finite ordered sets. Let 
S,S 'a$  and ~p: S ~ S '  be order-preserving and injective. Define the mapping 
~(~o): |174 by 

where f~ = 5  if fl = ~9(a) and f~ = 1 if fl~ ~9(S). 
We say a family of multiplication laws in |  Sa~, is coherent if ~/(~o): 

| 1 7 4  is a multiplicative homomorphism, for every order-preserving 
injection qg. It is easy to prove that the families | SE~ and ( ~ ,  S a ~  
have this coherence property. 

Even without any coherence property one has 

~| ~/(~o) = ~| s'. 

Multiplying out the left-hand side below one sees 

f ~N)  (N) (N) r  
. . . .  3 k, Otk) 

where ~ runs over all mappings $: {1, .,. , k} --* {1, ... , N}. Fix $ and set S 
=Ira  g'={71, ..-, Vp}, ~ < "'" <?p. Let ,9 be the mapping {1 . . . . .  p} ~ {1 . . . . .  N}, 
i~--~7~. As ,9 is order-preserving and injective, ~/(,9) is a multiplicative homomor- 
phism from | into | with either symmetric or antisymmetric multipli- 
cation. For j~S 

, J  

and 

fi N) --~,Lq~ ,c(p) , ~ ( i ) - - f l \ t t ] J i ,  q)(j) 
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with tO = ~ -  1 o g). Hence 

(N) (N) (p) f(p) 
f~.  ~(1) �9 f~, ,(k) = ~ (0)  (]'I, o(1) �9 �9 . . . .  Jk,~o(k)] 

and 

u)| r .f(N) ~ . . . .  |  {'(P) 
U 1,  ~ ( 1 )  " " J k , ~ ( k ) ,  I - u J  U 1,  (p(1)  " " J k , r  

= Cr say. 

Fix qo. Then for any subset of  {1 . . . .  , N} with p elements there can be defined 

O and 0 such that ~o=O-lo~p.  So to any ~ there belong (N)  mappings 0. 
Hence the result sought 

k N 

L e m m a  2. Let  co: 9.1~ K be linear and co(1)=l .  Assume that in @Ng.I either the 
symmetric or the antisymmetric multiplication has been introduced. Let  f l  . . . .  , fkegX 
and assume that 

o)~), ~o~, f~), ..., o ~  . . .s  

for  l < i l  < i 2 < . . . < i s _ l  <k .  Then as N---~oo 

co| x- ' / ' ) . . .  (f~N). N-'i~)) 

goes to 0 if  k is not a multiple of  s and to 

1 
P ! ~ ...| r 4"(p) "~ - -  v~ u1,~o(1)...Jk,~(kV if  k = p s  

toeF(k, p, s) 

where F(k, p, s) is the set o f  all mappings q) from {1, ..., k} onto {1, ..., p} such that 
# ( p - l ( i ) = s f o r  i = 1  . . . .  ,p. 

Proof. We use the following fact which holds for symmetr ic  and ant isymmetr ic  
multiplications in @ ~ 1 :  

09 | P { F(P) { ( P )  
t 3  1 ,  r  . -  �9 dk, ~o(k)~ 

vanishes if there exists an i, 1 < i < p ,  such that  # qo-1(i)<s. By L e m m a  1 

co| N -  l/s) ... (fk(N) . N -  l/s)) 

u J  k} 1 ,  rp(1)  �9 - - ,}k, qo(k)] 
p= 1 ~oeF(k, p) 

and in the r ight-hand sum only those q~ appear  for which # ~ 0 - t ( i ) > s  for i 
= 1 . . . .  , p. This implies that  sp < k, p < k/s. For  N --, oo and k not  a multiple of  s, 

the highest term in N vanishes at least like N-11~, as ( N )  behaves like NV/p!. If 

k is a multiple of s, k = p o s ,  only the term with P=Po survives and gives the 
stated result. 
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From the Lemmata 1 and 2 immediately follow Lemma 1 and Theorem 1 of 
]-2] and hence the rest of the results for symmetric multiplication. In the 
following therefore we treat only @ ~ I .  We introduce some notation. Let ai, i d ,  
be a family of elements of an algebra A, assume I to be ordered and S c I, S 
= { i l  . . . . .  ik} with i x <i2 < . . . < i k  a finite subset. Then we denote by a s the 
product as=a h ... a~k. If S is a finite ordered set and (Sz, ..., Sp) a sequence of 

subsets of S w i t h  SI~Sj=j~ for i4=j and O Si=S, then(~ ) denotes the 
i = 1  1 " "  Sp 

permutation of S, which is defined in the following way: map the first element of 
S onto the first element of $1, the second element of S onto the second element 
of S~ and so on until S 1 is exhausted. Then map the following element of S onto 
the first element of S 2 and so on. 

If (0 is a mapping from {1 . . . .  , k} onto {1, ..., p} and f l ,  . . . ,fk belong to ~i1, 
then 

' (1 ...k)c0(fs~ ) o)(fs~ ) ,.,| f~'e)~(k)) = sg S 1 S; u~  k / i ,  ~ , (1)  . . . . . .  

with S~ = (p- 1 (i), i -- 1, ..., p. 

Lemma 3. Assume that in @Ng.I the antisymmetric multiplication has been 
introduced, that f l ,  ...,fk69.1D and that ~o(fs)=O for S o { l ,  . . . ,  k}, # S < s. Then 

co| N-1/~)... (f~N). N - i / s ) )  

converges as N---, oo to 0 if k is not a multiple of s and to 

coffl ...fp) if k=p  

and to 0 if k=sp, s odd and greater than 1, p>2, and to 

sg (  1 "" PS) co(fsl) ... o)(fsp) 
{S1 . . . .  , Sp}E~s(1 .... , ps) S 1 Sp 

if s even, p> l. Here ~s(1, . . . ,ps) is the set of all partitions of {1, . . . ,ps} into 

(1 . . .ps)  does not depend upon the order of subsets of s elements. As sg S1 Sp 

$1, ..., Sp, this number depends only on the partition {$1, ..., Sp}. 

Proof This lemma follows from the fact that 

sg (Ss1 ... Sp ) '  #Si=s '  S = { l ' " " k }  

changes sign upon interchanging S~, Sj, i+-j, if s is odd and does not change sign 
if s is even. This yields immediately the case of even s. That the expression of 
Lemma 2 vanishes for p > 2  follows from the equation ~ sgzc=0 for p>2.  

r c s ~ p  

Let a~, i~I, be a family of elements of 9A, a~e~I~. Denote by ~ the free algebra 
generated by xg, ieI. Let Q: P ~ K  be an s-dimensional matrix, s even. Define 
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the antigaussian functional ~o of order s on ~ with respect to Q by 

~o(1)  = 1, 

c~a(xil ... x J = 0 ,  if k is not a multiple of s, 

( " "PS)Q~(s~)" 'O .~ ( s~)  C~Q(Xil... xips)= ~ sg 1 
{Sl ..... Sv} e gas(1 ..... ps) S1 Sp 

where Qi(s~)=Qiu~} ... i(js) if S 1 = {Jl, -.., is}, Jl < " "  <is- Then one has 

Theorem 1. Let  co(ai~)=0 . . . . .  o0(% ... ai~ 1)=0for  il, . . . ,  i s_ l~ I  and let s be even. 
Ttwn 

co| (P(a} ~ . N -  1/9) ~ %(P)  

as N--* o% where P is any polynomial and P(a~ N}. N- l / s )  signifies that in P the xi 
have been replaced by a! N) . N-1/~ 

We did not formulate the case of odd s in such a solemn way, as this case is 
trivial by Lemma 3. 

Let 9.1 be a semigraded algebra. Define in 9~ a non-associative multiplication 
o by linear extension from the definition 

f l  ~  = f i r 2  - - ( - -  1) ~('q} ~(Y~)f2 f l  

iff~ belong to 95[o or to 9.I,. So f l  ~ is the commutator unless both f ,  and f2 
belong to 9.i1. In that case it is the anticommutator. 

Let ~ r  be the o-subalgebra generated by xr ieI.  So ~c is the linear span 
of 1, x~, x~ o x j, (x~ o x j)o Xk, X, o (Xjo Xk), etc. ~c is nothing else than the Lie 
superalgebra generated by x~ [4]. 

Theorem 2. The antigaussian functional %:  ~--* K of  order s vanishes on the two- 
sided ideal generated by the elements of  the form 

p - c~o. (P), 

where P runs through all homogeneous polynomials of  degree s in q~. 

Proof. One gets immediately for 9 .1-5 that 

g|174 N -  l /s))  ___> Q t- t~i  ' ctQ(P) 

for P e ~ .  As @ ~ l  is again semigraded, if ~l is semigraded [1], we can define o in 
@~9.I as well as in 9.I. We state then that (W1 ~ W2)(N)=wt (N)~ W2 (N) for mo- 
nomials W1, W2E~, for 

N N 
w(N)  W2 (N) s I/F(,N~ ~ I/Iz(N)'' 2, j E IaT(N) o W, (N) o ~ ~ Vrl, i 2, i 

i , j= l  i=1 
N 

= y~ (W~o w g } ~ ) = ( G  o w~)~ ~} 
i=1 

hence for P ~  one has 

P (xl N)) _- p %  



140 W. von Waldenfels 

Then for k = p s  

(2Q(Xi(1) "'" Xi( j )  Pxi(j+ 1) . ' -  Xi(k)) 

- lim ,| ,. (N) ~/~) - ~Q t~i(1)" N 1/~) . . .  (x i ( j )  �9 N -  
N ~ o o  

P (x (~) N -  ~/~ {X (N) i/s) (y(N) I t  i ( j+ l )  N -  �9 N-1/~)) �9 . . . . .  t ~ i ( k )  

= lim N -  (p+ ~) ~| ~(N) p(N) .AN) ~(N)5 ~'Q U'~i(1)-'" "vi(ji "~i(j+ 1 ) ' "  ~i(k))  

= l im N -(P+ ~)q~= 

E | (q) ~-(q) lo(q) ~(q) v(q) '~ 
�9 ~Q (Xi(1), (p(1) . . . .  i(j), q~(j) zrp(A) "a'i(j+ 1), tp(j+ i) "'" "~i(k), r 

~0 

where the last sum runs over  all ~0 f rom {1 . . . .  ,j, A, j +  1, . . . ,  k} onto  {1, . . . ,  q}, 
and A has been inserted to take care of  P. 

The te rm corresponding to (p vanishes unless (p-~ (i) contains > s elements or 
A for 1 < i<_p. Hence  as N-~  ~ only those (p survive for which (p -~ ( i ) c  {1, ... ,j,  
j + l ,  . . . ,  k} and @ g o - l ( i ) = s  or qo- l ( i )={A}.  

The limit becomes 

1 r174 1){v(p+ I) y (p+  1) p ( p +  1) ~(p+ 1) .v(k+ 1) 
( p + l ) !  ~Q k-~i(1), ~o(1) . . . . .  i t j ) , r  . ~ i ( j + l ) , c ~ ( j + l )  . . . .  i(k),q~(k)] 

= ee(P) c~Q(xi(1).., xi(j) xi(j+ 1).." Xi(k)) 

as s is even, P is an even po lynomia l  and Po(~) commutes  with x~( ~. For  k = p s  
one has therefore 

c~Q(xi(1) ... x i ( j ) (P-  ao_ (P)) xi(j+ 2) . . .  Xi(k)) = O. 

For  k not  divisible by p this formula  is trivial. Hence  the theorem. 

Discussion of  the Results. The mos t  interesting case is s = 2. If  s > 3, K = II~ and 9i 
is a *-algebra, a* = ai and 0)>0,  then Q = 0  as has been pointed  out in [2]. If  s 
-=2, then theorem 2 reads that  c~Q vanishes on the ideal I generated by x ix j  
+ x j x i - ( Q i j + Q j i ) .  So ~ / I  is the Clifford algebra generated by ~i, ieI ,  and the 
quadra t ic  form defined by the matr ix  (Qij + Qai)~, a. If  K = ~2 and ~ is considered 
as a *-algebra as in [2], then the connect ion with the quan tum mechanics  of  
fermions is well-known, c~Q can then be interpreted as a "quasi-free s ta te"  and 
Theo rem 1 and 2 together  yield a central  limit theorem for non -commut ing  
quantities~ 
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