An Algebraic Version of the Central Limit Theorem

N. Giri ${ }^{1}$ and W. von Waldenfels ${ }^{2}$
${ }^{1}$ Université de Montréal, Dept. des Mathématiques, Montréal, Canada
${ }^{2}$ Institut für Angewandte Mathematik der Universität Heidelberg, Im Neuenheimer Feld 294, 6900 Heidelberg, BRD

Abstract

Summary. A non-commutative analogue of the central limit theorem and the weak law of large numbers has been derived, the analogues of integrable functions being non-commutative polynomials. Without the assumption of positivity higher central limit theorems hold which have no analogy in the classical probabilistic case. The treatment includes this classical case and the convergence to so-called "quasi-free states" in the quantum mechanics of bosons [3, 4].

The second author wants to thank the Canadian National Research Council for his stay at the Université de Montréal where most of this paper was written.

This paper took its origin from the work of Hepp and Lieb [1] on the laser. There a central limit theorem for stochastic quantities in quantum physics has been derived. The subject of this paper is to generalize Hepp's and Lieb's approach and to bring it into a more abstract frame. The paper covers the algebraic but not the by far more difficult analytical content of Cushen and Hudson's work [2] on the quantum mechanical central limit theorem.

In order to perform the transition to non-commutativity one considers measures not as functionals on continuous functions or as set functions but as functionals on polynomials. Assume a probability measure μ on \mathbb{R}^{d} such that all moments exist. Then μ defines linear a functional $\hat{\mu}$ on the algebra \boldsymbol{p} of all polynomials in d indeterminates by

$$
\hat{\mu}(P)=\int \mu(d x) P(x)
$$

It is well known that in general μ is not completely determined by $\hat{\mu}$. But this does not matter to us here. We want now to formulate the central limit theorem in an algebraic way for functionals on polynomials.

In the central limit theorem one considers usually a product space, e.g. $\left(\mathbb{R}^{d}\right)^{N}$ for large N, the product measure $\mu^{\otimes N}\left(d x^{1}, \ldots, d x^{N}\right)=\mu\left(d x^{1}\right) \ldots \mu\left(d x^{N}\right)$ on $\left(\mathbb{R}^{d}\right)^{N}$. One assumes that μ is a probability measure on \mathbb{R}^{d} such that the first moments
$\int x_{i} \mu(d x)=0$ for $i=1, \ldots, d, x=\left(x_{1}, \ldots, x_{d}\right)$. One is interested in the behaviour of functions of

$$
x^{(N)}=x^{1}+\cdots+x^{N}
$$

where $x^{j}=\left(x_{1}^{j}, \ldots, x_{d}^{j}\right)$ is the coordinate in the j-th factor in $\left(\mathbb{R}^{d}\right)^{N}$. The central limit theorem asserts that for any suitable $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\int d \mu^{\otimes N} f\left(x^{(N)} / \sqrt{N}\right) \rightarrow \int g_{Q}(d x) f(x) \quad(N \rightarrow \infty)
$$

where $g_{Q}(d x)$ is the Gaussian measure on \mathbb{R}^{d} with the covariance matrix Q,

$$
Q_{i k}=\int \mu(d x) x_{i} x_{k}
$$

Let us formulate this theorem in an algebraic way. We consider the tensor product $\mathfrak{p}^{\otimes N}$ and the functional $\hat{\mu}^{\otimes N}$ on it

$$
\hat{\mu}^{\otimes N}\left(P_{1} \otimes \cdots \otimes P_{N}\right)=\hat{\mu}\left(P_{1}\right) \ldots \hat{\mu}\left(P_{N}\right) .
$$

Set

$$
x_{i}^{(N)}=x_{i} \otimes 1 \otimes \cdots \otimes 1+\cdots+1 \otimes \cdots \otimes 1 \otimes x_{i} .
$$

Then the central limit theorem induces

$$
\hat{\mu}^{\otimes N}\left(P\left(x_{1}^{(N)} / \sqrt{N}, \ldots, x_{d}^{(N)} / \sqrt{N}\right)\right) \rightarrow \hat{\mathrm{g}}_{Q}(P)
$$

for any polynomial $P \in \mathfrak{P}$. There $P\left(x_{1}^{(N)} \cdot N^{-\frac{1}{2}}, \ldots, x_{d}^{(N)} \cdot N^{-\frac{1}{2}}\right)$ denotes the polynomial in $\mathfrak{i}^{\otimes N}$ which arises by replacing x_{i} by $x_{i}^{(N)} \cdot N^{-\frac{1}{2}}, i=1, \ldots, d$. From this formulation one gets by easy transition to more general cases.

We consider an associative algebra \mathfrak{A} with unity over a field K and a family $\left(a_{i}\right)_{i \in I}$ of elements of \mathfrak{H} and a K-linear functional $\omega: \mathfrak{A} \rightarrow K$ with $\omega(1)=1$. We consider $\mathfrak{A l}^{\otimes N}$ with the usual multiplication and the functional $\omega^{\otimes N}: \mathfrak{A l}^{\otimes N} \rightarrow K$ defined by $\omega^{\otimes N}\left(f_{1} \otimes \cdots \otimes f_{N}\right)=\omega\left(f_{1}\right) \ldots \omega\left(f_{N}\right)$ and define

$$
a_{i}^{(N)}=a_{i} \otimes 1 \otimes \cdots \otimes 1+\cdots+1 \otimes \cdots \otimes 1 \otimes a_{i} \in \mathfrak{A}^{\otimes N} .
$$

The easiest way to formulate non-commutative polynomials is to introduce free algebras. Let \mathfrak{F} be the free algebra generated by $x_{i}, i \in I$ and let $P \in \mathscr{F}$ and $b_{i}, i \in I$ be a family of some elements of an algebra. Then by $P\left(b_{i}\right)$ we understand the polynomial in the b_{i} which arises by replacing the x_{i} in P by the b_{i}.

Let Q be a function $I^{s} \rightarrow K$. Then a Gaussian functional γ_{Q} on \mathscr{F} order s with covariance matrix Q is defined by $\gamma_{Q}(1)=1$,

$$
\begin{aligned}
& \gamma_{Q}\left(x_{i(1)} \ldots x_{i(k)}\right)=0, \quad \text { if } k \text { cannot be divided by } s, \\
& \gamma_{\underline{Q}}\left(x_{i(1)} \ldots x_{i(s)}\right)=Q_{i(1), \ldots, i(s)}, \\
& \gamma_{Q}\left(x_{i(1)} \ldots x_{i(p s)}\right)=\sum_{\left\{S_{1}, \ldots, s_{p}\right\} \in \mathscr{F}_{s}(1, \ldots, p s)} Q_{i\left(S_{1}\right)} \ldots Q_{i\left(S_{p}\right)}
\end{aligned}
$$

where \mathscr{P}_{s} is the set of all partitions $\left\{S_{1}, \ldots, S_{p}\right\}$ of $\{1, \ldots, p s\}$ with $\# S_{k}=s$ for k $=1, \ldots, p$. If $S_{k}=\left\{j_{1}, \ldots, j_{s}\right\}$ and $j_{1}<j_{2}<\cdots<j_{s}$, then $Q_{i\left(S_{k}\right)}=Q_{i\left(j_{1}\right), \ldots, i\left(j_{k}\right)}$. From the monomials γ_{Q} is defined on \mathfrak{F} by linear extension.

If $P, Q \in \mathscr{F}$, we denote the commutator by $[P, Q]=P Q-Q P$. The free Lie algebra $\mathfrak{F} \mathbb{E}$ generated by x_{i} can be considered as a K-linear subspace of \mathfrak{F}. It is spanned by $x_{i},\left[x_{i}, x_{k}\right],\left[\left[x_{i}, x_{k}\right], x_{j}\right],\left[x_{i},\left[x_{k}, x_{j}\right]\right], \ldots$. We are now able to formulate our results.

Theorem 1. Let $\omega\left(a_{i(1)}\right), \omega\left(a_{i(1)} a_{i(2)}\right), \omega\left(a_{i(1)} \ldots a_{i(s-1)}\right)=0$ for all $i(1), \ldots, i(s-1) \in I$ and $1 \leqq s<\infty$ fixed. Then for $N \rightarrow \infty$

$$
\omega^{\otimes N}\left(P\left(a_{i}^{(N)} \cdot N^{-1 / s}\right)\right) \rightarrow \gamma_{Q}(P)
$$

where γ_{Q} is the Gaussian functional on \mathfrak{F} of order s with the covariance matrix Q, $Q(i(1), \ldots, i(s))=\omega\left(x_{i(1)} \ldots x_{i(s)}\right)$.
Theorem 2. The functional γ_{Q} vanishes on the two-sided ideal generated by the elements of the form

$$
P-\gamma_{Q}(P) 1
$$

where P runs through all homogeneous polynomials of degree sin $\mathfrak{F} \mathbb{E}$.
Before proving the theorems we want to discuss them, especially the character of γ_{Q}.

1) $s=1$. This is the generalization of the weak law of large numbers. The matrix Q is one-dimensional and defined by $Q_{i}=\omega\left(x_{i}\right)$ and $\gamma_{Q}\left(x_{i(1)} \ldots x_{i(h)}\right)$ $=Q_{i(1)} \ldots Q_{i(h)}=\omega\left(x_{i(1)}\right) \ldots \omega\left(x_{i(h)}\right)$. So $\gamma_{Q}(P)=P\left(\omega\left(x_{i}\right)\right)$.
2) $s=2, K=\mathbb{R}, \mathfrak{A}$ is commutative and Q is symmetric and positive. This is the classical case. By Theorem 2 one gets that \mathfrak{F} might be divided without harm by the ideal generated by the commutators $x_{i} x_{k}-x_{k} x_{i}$ and this is the polynomial algebra \mathfrak{P} in the commuting indeterminates, say again x_{1}, \ldots, x_{d}. One has by the definition above $\gamma_{Q}=\hat{g}_{Q}$, where g_{Q} is the centered Gaussian measure on \mathbb{R}^{d} with covariance matrix Q.
3) $s=2, K=\mathbb{C}, I=\{1, \ldots, 2 d\}, Q$ is hermitian, $Q_{j k}=G_{j k}+i H_{j k}$. There G is a real symmetric and H a real skew-symmetric matrix. If H is non-degenerate then by a linear transformation of generators H gets the form

$$
\frac{1}{2}\left(\begin{array}{rrrr}
0 & 1 & & 0 \\
-1 & 0 & & \\
& & \ddots & \\
& & 0 & 1 \\
& & -1 & 0
\end{array}\right)
$$

By Theorem 2 one obtains that γ_{Q} vanishes on the ideal \mathfrak{I} generated by

$$
x_{j} x_{k}-x_{k} x_{j}-Q_{j k}+Q_{k j}=\left[x_{j}, x_{k}\right]-2 i H_{j k} .
$$

Therefore $\mathfrak{F} / \mathfrak{T}$ may be interpreted as the algebra \mathbb{E} generated by $p_{1}, q_{1}, \ldots, p_{d}, q_{d}$ where all generators commute except that $\left[p_{k}, q_{k}\right]=i$ for $k=1, \ldots, d$. These are
the well-known canonical commutation relations of quantum mechanics. If the matrix Q is positive definite, then γ_{Q} can be identified with a so-called "quasi-free state" in quantum mechanics [2, 3].
4) $s \geqq 3, K=\mathbb{C}$ and \mathfrak{A} is a *-algebra, $a_{i}^{*}=a_{i}$ and ω is $\geqq 0$, i.e. $\omega\left(f^{*} f\right) \geqq 0$ for $f \in \mathfrak{H}$. Then $\omega\left(a_{i}^{2}\right)=0$ and Schwarz's inequality implies that $\omega\left(f a_{i}\right)=0$ for all $f \in \mathfrak{A}$. Hence $Q=0$ and $\gamma_{Q}(1)=0$ and $\gamma_{Q}(M)=0$ for any non-constant monomial. So assuming positivity one does not get non-trivial results unless $s \leqq 2$.

We now want to prove the theorems.
Lemma 1. Let $f_{1}, \ldots, f_{k} \in \mathfrak{A}$, denote

$$
f_{i}^{1}=f_{i} \otimes 1 \otimes \cdots \otimes 1, \ldots, f_{i}^{N}=1 \otimes \cdots \otimes 1 \otimes f_{i} \in \mathfrak{H} \otimes N
$$

and

$$
f_{i}^{(N)}=f_{i}^{1}+\cdots+f_{i}^{N}
$$

Then

$$
\omega^{\otimes N}\left(f_{1}^{(N)} \ldots f_{k}^{(N)}\right)=\sum_{p=1}^{k} N_{p} \sum_{\left\{S_{1}, \ldots, S_{p}\right\} \in \mathscr{T}(1, \ldots, k)} \omega\left(f_{S_{1}}\right) \ldots \omega\left(f_{S_{p}}\right) .
$$

There

$$
N_{p}=N(N-1) \ldots(N-p+1)
$$

and $\mathscr{P}(1, \ldots, k)$ is the set of all partitions of $\{1, \ldots, k\}$. If $\pi=\left\{S_{1}, \ldots, S_{p}\right\}$ is a special partition and $S_{j} \in \pi, S_{j}=\left\{i_{i}, \ldots, i_{m}\right\}$ with $i_{1}<\cdots<i_{m}$, then $f_{S_{j}}=f_{i_{1}} \ldots f_{i_{m}}$ (remark the conservation of order).
Proof of Lemma 1. One has

$$
\omega^{\otimes N}\left(f_{1}^{(N)} \ldots f_{k}^{(N)}\right)=\sum_{j(1), \ldots, j(k)=1}^{N} \omega^{\otimes N}\left(f_{1}^{j(1)} \ldots f_{k}^{j(k)}\right)
$$

Consider one fixed function $j:\{1, \ldots, k\} \rightarrow\{1, \ldots, N\}, l \mapsto j(l)$ as occurring in the right sum and denote by $\pi_{j}=\left\{S_{1}, \ldots, S_{p}\right\}$ the associated partition of $\{1, \ldots, k\}$, i.e. the S_{l} are the sets where j is constant. Then

$$
\omega^{\otimes N}\left(f_{1}^{j(1)} \ldots f_{k}^{j(k)}\right)=\omega\left(f_{S_{1}}\right) \ldots \omega\left(f_{S_{p}}\right)
$$

One has still to calculate the number of j with the same $\pi_{j}=\pi=\left\{S_{1}, \ldots, S_{p}\right\}$. Define $j_{0}:\{1, \ldots, k\} \rightarrow\{1, \ldots, p\}$ by $j_{0}(l)=r$ for $l \in S_{r}$. Any j with $\pi_{j}=\pi$ allows a unique decomposition $j=\alpha_{j} \circ j_{0}$ with an injective application $\alpha_{j}:\{1, \ldots, p\} \rightarrow$ $\{1, \ldots, N\}$ and inversely to any such $\alpha:\{1, \ldots, p\} \rightarrow\{1, \ldots, N\}$ injective there belongs exactly one $j=\alpha \circ j_{0}$ with $\pi_{j}=\pi$. So the number of possible j is equal to the number of injections from $\{1, \ldots, p\} \rightarrow\{1, \ldots, N\}$, i.e. is equal to N_{p}.

Proof of Theorem 1. Let $M=x_{i(1)} \ldots x_{i(k)}$ be a monomial. Then by Lemma 1.

$$
\omega^{\otimes N}\left(M\left(a_{i}^{(N)} \cdot N^{-1 / s}\right)\right)=\sum_{p} N^{-k / s} N_{p} \sum_{\left\{S_{1}, \ldots, S_{p}\right\}} \omega\left(a_{i\left(S_{1}\right)}\right) \ldots \omega\left(a_{i\left(S_{p}\right)}\right)
$$

with $a_{i(S)}=a_{i\left(l_{1}\right)} \ldots a_{i\left(l_{m}\right)}$ if $S=\left\{l_{1}, \ldots, l_{m}\right\}, l_{1}<\cdots<l_{m}$. As $\omega\left(a_{i(S)}\right)=0$ for $\# S<s$ only partitions into sets with $\geqq s$ elements may be considered in the right sum, then $p s \leqq k, p \leqq \frac{k}{s}$ and $N^{-k / s} N_{p} \rightarrow 0$ for $N \rightarrow \infty$ unless $k=p s$. So for $N \rightarrow \infty$ the expression vanishes unless k is a multiple of s and it reduces to

$$
\sum_{\left\{S_{1}, \ldots, S_{p}\right\}, \# S_{i}=s} \omega\left(a_{i\left(S_{1}\right)}\right) \ldots \omega\left(a_{i\left(S_{p}\right)}\right) .
$$

Corollary of Theorem 1. If $\mathfrak{U}=\mathfrak{F}$ the free algebra and $Q: I^{s} \rightarrow K$ an application then

$$
\gamma_{Q}^{\otimes N}\left(P\left(x_{i}^{(N)} \cdot N^{-1 / s}\right)\right) \rightarrow \gamma_{Q}(P)
$$

for all $P \in \mathscr{F}$.
Lemma 2. With the notations of Lemma 1, if $P \in \mathfrak{F} \mathfrak{Q}$, then

$$
P\left(x_{i}^{(N)}\right)=P^{(N)} .
$$

Proof of Lemma 2. It is sufficient to prove the lemma for homogeneous polynomials. For degree 0 and 1 it is trivial. A homogeneous polynomial in $\mathfrak{F} \mathbb{L}$ of degree k is a linear combination of polynomials of the form

$$
P=\left[R, x_{j}\right]
$$

where R is a homogeneous polynomial of $\mathfrak{F} \mathfrak{E}$ of degree $k-1$. One proceeds by induction and assumes the lemma to be proven for degrees $<k$.

Then by induction and with the notations of Lemma 1

$$
\begin{aligned}
P\left(x_{i}^{(N)}\right) & =\left[R\left(x_{i}^{(N)}\right), x_{j}^{(N)}\right]=\left[R^{(N)}, x_{j}^{(N)}\right] \\
& =\sum_{p, 4}\left[R^{p}, x_{j}^{q}\right]=\sum_{p}\left[R^{p}, x_{j}^{p}\right]=\sum_{p}\left[R, x_{j}\right]^{p}=\left[R, x_{j}\right]^{(N)}
\end{aligned}
$$

as R^{p} and x_{j}^{q} commute for $p \neq q$.
Proof of Theorem 2. Let P be a homogeneous polynomial of degree s in $\mathfrak{F} \mathfrak{Q}$. We have to show that

$$
\gamma_{Q}\left(x_{i_{1}} \ldots x_{i_{j}}\left(P-\gamma_{Q}(P) 1\right) x_{i_{j+1}} \ldots x_{i_{k}}\right)
$$

vanishes.
This expression vanishes anyhow unless k is a multiple of s. By the corollary and lemma 2 there is for $k=p s$

$$
\begin{aligned}
& \gamma_{Q}\left(x_{i_{1}} \ldots x_{i_{j}} P x_{i_{j+1}} \ldots x_{i_{k}}\right) \\
& \quad=\lim N^{-(k+s) / s} \gamma_{Q}^{\otimes N}\left(x_{i_{1}}^{(N)} \ldots x_{i_{j}}^{(N)} P\left(x^{(N)}\right) x_{i_{j+1}}^{(N)} \ldots x_{i_{k}}^{(N)}\right) \\
& \quad=\lim N^{-(p+1)} \gamma_{Q}^{\otimes N}\left(x_{i_{1}}^{(N)} \ldots x_{i_{j}}^{(N)} P^{(N)} x_{i_{j+1}}^{(N)} \ldots x_{i_{k}}^{(N)}\right) \\
& \quad=\lim N^{-(p+1)} \sum_{\left\{S_{1}, \ldots, S_{q\}}\right\}} N_{q} \gamma_{Q}\left(x_{i\left(S_{1}\right)}\right) \ldots \gamma_{Q}\left(x_{i\left(S_{q}\right)}\right) .
\end{aligned}
$$

Here $\left\{S_{1}, \ldots, S_{q}\right\}$ runs over all partitions of $\{1, \ldots, j, \Delta, j+1, \ldots, k\}$. We set $x_{i_{\Delta}}=P$. Then $\gamma_{Q}\left(x_{i(S)}\right)=0$ unless $\Delta \in S$ or $\Delta \notin S$ and $\# S \geqq s$. So $q \leqq k / s+1=p+1$ and only those terms survive with $q=p+1$. Hence the limit is equal to

$$
\sum_{\left\{S_{1}, \ldots, S_{p+1}\right\}} \gamma_{Q}\left(x_{i\left\{S_{1}\right)}\right) \ldots \gamma_{Q}\left(x_{i\left(S_{p+1}\right)}\right)
$$

and the S_{i} have to be either $\{\Delta\}$ or an s-subset of $\{1, \ldots, j, j+1, \ldots, k\}$. Assuming $S_{1}=4$ one gets

$$
\begin{gathered}
\gamma_{Q}(P) \sum_{\left\{S_{2}, \ldots, S_{p+1}\right\}} \gamma_{Q}\left(x_{i\left(S_{2}\right)}\right) \ldots \gamma_{Q}\left(x_{i\left(S_{p+1}\right)}\right) \\
=\gamma_{Q}(P) \gamma_{Q}\left(x_{i_{1}} \ldots x_{i_{j}} x_{i_{j+1}} \ldots x_{i_{k}}\right)
\end{gathered}
$$

and hence the theorem.

References

1. Hepp, K., Lieb, E.H.: Phase Transitions in Reservoirdriven Open Systems with Applications to Lasers and Superconductors. Helv. Phys. Acta. 46, 573-603 (1973)
2. Cushen, C.D., Hudson, R.L.: A Quantum Mechanical Central Limit Theorem. J. Appl. Probability 8, 454-469 (1971)
3. Manuceau, J., Sirugue, M., Rocca, F., Verbeure, A.: Etats quasi-libres. Cargèse Lectures in Physics, vol. 4, Ed. D. Kastler. New York: Gordon and Breach 1970
4. Robinson, D.W.: The Ground State of the Boson Gas. Comm. Math. Phys. 1, 159-174 (1964)
