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Summary. A non-commutat ive analogue of the central limit theorem and the 
weak law of large numbers has been derived, the analogues of integrable 
functions being non-commutat ive polynomials. Without the assumption of 
positivity higher central limit theorems hold which have no analogy in the 
classical probabilistic case. The treatment includes this classical case and the 
convergence to so-called "quasi-free states" in the quantum mechanics of 
bosons [3, 4]. 

The second author wants to thank the Canadian National  Research Council for 
his stay at the Universit6 de Montr6al where most of this paper was written. 

This paper took its origin from the work of Hepp and Lieb [ lJ  on the laser. 
There a central limit theorem for stochastic quantities in quantum physics has 
been derived. The subject of this paper is to generalize Hepp's  and Lieb's 
approach and to bring it into a more abstract frame. The paper covers the 
algebraic but not the by far more difficult analytical content of Cushen and 
Hudson's  work [2] on the quantum mechanical central limit theorem. 

In order to perform the transition to non-commutativity one considers 
measures not as functionals on continuous functions or as set functions but as 
functionals on polynomials. Assume a probability measure # on IR~ such that all 
moments  exist. Then # defines linear a functional ~ on the algebra ~ of all 
polynomials in d indeterminates by 

fi(P) = ~ #(dx) P(x). 

It is well known that in general # is not completely determined by/2. But this 
does not matter  to us here. We want now to formulate the central limit theorem 
in an algebraic way for functionals on polynomials. 

In the central limit theorem one considers usually a product space, e.g. (]Re) N 
for large N, the product measure #| 1 . . . . .  dxN)=#(dx  1) ... #(dx N) on (1R~) N. 
One assumes that # is a probabili ty measure on IR d such that the first moments  
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x~l~(dx) =0  for i=  1,... ,  d, x =(x~ . . . . .  xa). One is interested in the behaviour of 
functions of 

x(N) = x I Jr- . . .  -}- X N 

where xJ=(xJl,...,x~a) is the coordinate in the j-th factor in (IRa) u. The central 
limit theorem asserts that for any suitable f :  IR d ~ IR, 

dl~| --* ~ gQ(dx)f(x) (N ---* co) 

where go(dx) is the Gaussian measure on IR d with the covariance matrix Q, 

Oik=5 #(dx) xixk. 

Let us formulate this theorem in an algebraic way. We consider the tensor 
product ~3 | and the functional/ i  | on it 

fi| |  | = fi(P~) .. �9 fi(PN). 

Set 

x } N ) = x i |  1 | " " @ l  ~ - " "  Jr- 1 @  ...| | 

Then the central limit theorem induces 

| N W . . . ,  (P)  

for any polynomial Pe~3. There P(x~N).N-~,...,x(dN).N ~) denotes the poly- 
nomial in ~3 ON which arises by replacing x~ by x} N). N -~, i=  1, ...,d. From this 
formulation one gets by easy transition to more general cases. 

We consider an associative algebra 9/wi th  unity over a field K and a family 
(a~)~i of elements of ~1 and a K-linear functional o :  ~ [ ~ K  with (a(1)=1. We 
consider 9.1 | with the usual multiplication and the functional (~| 9.ION~K 
defined by co| |174 = co(f1) ... co(fN) and define 

al N) =a i| l |174  l + ... + l |174  l Q a ~  | 

The easiest way to formulate non-commutative polynomials is to introduce free 
algebras. Let ~ be the free algebra generated by x/, i~I and let P ~  and b~, i~I 
be a family of some elements of an algebra. Then by P(bi) we understand the 
polynomial in the b i which arises by replacing the x~ in P by the b v 

Let Q be a function P ~  K. Then a Gaussian functional Yo on ~ order s with 
covariance matrix Q is defined by yQ(1)= 1, 

?Q(xi(1) ... Xi(k))=O, if k cannot be divided by s, 

7Q(Xi(1) ""  Xi(s)) = ~/ (1)  ..... i(s), 

'~Q(Xi(1)" '" Xi(ps))~-" E ~i($1) "-- Qi(sp) 
{s~ ... . .  Sp}e@s(1 . . . . .  ps) 
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where ~ is the set of all partitions {$1, ...,Sp} of {1, ..., ps} with 4~ S~=s for k 
= 1 .. . .  , p. If S k = {Jl . . . .  ,j~} and j l  <J2 < ' "  <J,, then Qi(s~)= Qi(j~) ..... ion). From the 
monomials 70 is defined on ~ by linear extension. 

If P, Qe~,  we denote the commutator  by [P, Q J = P Q - Q P .  The free Lie 
algebra ~!~ generated by xl can be considered as a K-linear subspace of 5. It is 
spanned by x i, [Xi, Xk], [[Xi, XkJ, Xj], [X~,[X>Xj]],.... We are now able to 
formulate our results. 

Theorem 1. Let co(a~(1)), o)(a~(1)ai(2)), co(%1).., ai(,_ ~))=O for all i(1), ..., i ( s - 1 ) e I  
and 1 < s < co fixed. Then for N--+ o9 

co| m. N -  1/~)) _~ ?o(p ) 

where 7o is the Gaussian functional on q~ of order s with the covariance matrix Q,, 
Q(i(1), ..., i(s)) = co(xi(1).., xi(~) ). 

Theorem 2. The functional 7o vanishes on the two-sided ideal generated by the 
elements of  the form 

P - y o ( P ) I  

where P runs through all homogeneous polynomials of degree s in ~9~. 

Before proving the theorems we want to discuss them, especially the charac- 
ter of 7o. 

1) s = l .  This is the generalization of the weak law of large numbers. The 
matrix Q is one-dimensional and defined by Q.i=o~(x~) and yo(Xi(1)...Xi(h)) 
= Q i ( 1 ) "  ' ' Q-~i(h) ~- ( D ( X i ( 1 ) )  " ' "  (D(Xi(h))" S O  70.(P) -- P(co(xl) ). 

2) s=2 ,  K=1R, 92i is commutative and {2 is symmetric and positive. This is 
the classical case. By Theorem 2 one gets that {} might be divided without harm 
by the ideal generated by the commutators xix  k - x k x  i and this is the polynomial 
algebra ~ in the commuting indeterminates, say again xl  . . . .  , x  d. One has by the 
definition above 7o = go, where go is the centered Gaussian measure on 1R d with 
covariance matrix Q. 

3) s=2 ,  K=q2, I =  {1, ..., 2d}, Q is hermitian, Qjk=Gjk+iHjk. There G is a 
real symmetric and H a real skew-symmetric matrix. If H is non-degenerate then 
by a linear transformation of generators H gets the form 

0 1 00 ) - 1  0 
1 

0 0 
- 1  

By Theorem 2 one obtains that 7o vanishes on the ideal ,3 generated by 

XjXk -- Xk Xj -- Qjk + Qkj = Ix j, xk] - 2iHjk. 

Therefore ~ /~  may be interpreted as the algebra !~ generated by P l, q 1,..-, Pd, qd 
where all generators commute except that EPk, qk] =i  for k =  1 . . . . .  d. These are 
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the well-known canonical commutation relations of quantum mechanics. If the 
matrix Q is positive definite, then 7Q can be identified with a so-called "quasi-free 
state" in quantum mechanics [2, 3]. 

4) s>3 ,  K = C  and 9X is a *-algebra, a*=ai and co is _>_0, i.e. co(f*f)>O for 
f ~  9.1. Then co(a/z) = 0 and Schwarz's inequality implies that co(fax)= 0 for all f~9,1. 
Hence Q = 0  and 7e(1)=0 and ?Q(M)=0 for any non-constant monomial. So 
assuming positivity one does not get non-trivial results unless s < 2. 

We now want to prove the theorems. 

Lemma 1. Let f l ,  ... ,fk eg.1, deno te  

f /1  =f~@l@-- . |  1 . . . . .  f / N =  1 @...@l|174 

and 

f(N) = f )  +.. .  + f t .  

Then 

k 

co| (N) ...f~("))-- Y~ u~ F, co(f~j ... co(A).  
p =  1 ($1 . . . . .  Sv}e~ (1  . . . . .  k) 

There 

N p = N ( N - 1 )  ... ( N - p  + 1) 

and ~(1 . . . .  , k) is the set of  all partitions of { 1 . . . . .  k}. I f  ~ = {S 1 . . . . .  Sp} is a special 
partition and Sj~Tc, Sj = {ii, . . . ,  i,,} with il <""  < ira, then fsj =fi~...fim (remark the 
conservation of order). 

Proof of Lemma 1. One has 

N 

co| . . . i f ' ))  -- Y~ ~|  
j (1)  . . . . .  j (k)= 1 

Consider one fixed function j:  {1 . . . . .  k}~{1  . . . . .  N},  l~-+j(l) as occurring in the 
right sum and denote by 1r j =  {$1, ..., Sp} the associated partition of {1 . . . . .  k}, i.e. 
the S~ are the sets where j is constant. Then 

co| . . . f~% = co(f~J ... co(A). 

One has still to calculate the number o f j  with the same u j=rc=  {S 1 . . . . .  Sv}. 
Define Jo: {1,... ,  k}~{1,  . . . ,p} by jo(1)=r for 16S r. Any j with 7cj=~z allows 
a unique decomposition j = a j o j 0  with an injective application a j: {1 . . . . .  p} 
{1 . . . . .  N} and inversely to any such c~: {1 . . . . .  p}~{1,  . . . ,N} injective there 
belongs exactly one J=a~ with 7cj=7c. So the number of possible j is equal to 
the number of injections from {1 . . . .  , p} ~{1  . . . . .  N}, i.e. is equal to Np. 

Proof of Theorem 1. Let M=xi(1)... Xi(k) be a monomial. Then by Lemma 1 

c~174 (M (a~N)" N-1/s)) = ~ N-k/~Np Z co(a,(s,)) "" c~ 
p {$1 . . . . .  Sv}  
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with ai (s )=a~<) . . .%z , .  ) if S = { I , , . . . , 1 , , } ,  ll < " ' < I m .  AS co(a~(s))=0 for # S < s  
only partitions into sets with > s elements may be considered in the right sum, 

k 
then p s < k ,  p <  and N-~/*Np-- ,O for N--,oo unless k = p s .  So for N--+oo the 

s 
expression vanishes unless k is a multiple of s and it reduces to 

co(ai(s~)).., co(ai(s,)). 
{Sl  . . . . .  Sp}, ~ : S I = s  

Corollary of Theorem 1. I f  9 . I = ~  the f r ee  algebra and Q" P ~  K an application 
then 

y~r~(P(xlm. N -  ,/s))._, ya(p)  

f o r  all P e ~ .  

Lemma 2. 14fth the notat ions o f  L e m m a  I, i f  Peq~,!~, then 

P(x}N))= P (m. 

P r o o f  o f  L e m m a  2. It is sufficient to prove the lemma for homogeneous 
polynomials. For  degree 0 and 1 it is trivial. A homogeneous polynomial in ~ 
of degree k is a linear combination of polynomials of the form 

P = [e ,  Xj] 

where R is a homogeneous polynomial of ~ of degree k -  1. One proceeds by 
induction and assumes the lemma to be proven for degrees < k. 

Then by induction and with the notations of Lemma 1 

e ( x l  N)) = [R (xlN)), = J R %  x}N)] 
= Z [ Rp, X~] = Z [ Rp, xP3 = Z [R, x j3 e = [R, xj3 (N) 

P,q  P P 

as R p and x q commute for p + q. 

P r o o f  o f  Theorem 2. Let P be a homogeneous polynomial of degree s in ~s  We 
have to show that 

"/a(xi~ ... x i f l P -  ye(P)  1)xij + ... xi~) 

vanishes. 
This expression vanishes anyhow unless k is a multiple of s. By the corollary 

and lemma 2 there is for k = p s  

7(2(Xi~ ... x iyPxi ,+ , ... xi k) 

=l im N -  (k+s)/, ~,| .~(S) gy(N)~ X(m X(N)~ {Q v %  . . . . .  ij P~r , i j + ,  " ' "  ik ~" 
= l i m N  (p+ 1) .~| (N) (N) (N) . (N)] i~Q ~ il ... Xij P X i j  + l " " " ~ik ] 

= l i m N  -(p+I) ~ NqTo(Xi(s~)).-.7o.(Xi(s,)). 
{S, . . . . .  Sq} 
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Here {S 1 . . . . .  Sq} runs over all partitions of {1, ...,j,A,j+ 1, ...,k}. We set xi~ =P .  
Then 7e(Xi(s))=O unless A~S or A(~S and #eS>s. So q<k/s+l=p+l  and only 
those terms survive with q=p+ 1. Hence the limit is equal to 

{S~ . . . . .  S p +  l} 

and the Si have to be either {A} or an s-subset of {1, . . . , j , j+ 1, . . . ,k}.  Assuming 
$1 = A o n e  gets 

7Q(P) ~. 7(2(Xi(s~))... ~)(2(Xi(sp+ 1) ) 
($2 . . . . .  S v + ~) 

= re(P)~e(x~. . ,  x~jx~j+~.., xi~) 

and hence the theorem. 
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