Hausdorff Dimension of Some Continued-Fraction Sets

Patrick Billingsley* and Inge Henningsen

Section 1

Introduction. Each irrational ω in the unit interval Ω has a unique continuedfraction expansion

$$
\omega=\frac{1}{\sqrt{a_{1}(\omega)}}+\frac{1}{\mid a_{2}(\omega)}+\cdots
$$

with integral partial quotients $a_{j}(\omega)$. We shall compute the Hausdorff dimension of certain sets defined in terms of the frequencies with which the $a_{j}(\omega)$ assume various values.

Let $N_{n}(i, \omega)$ be the number of $j, 1 \leqq j \leqq n$, for which $a_{j}(\omega)=i$. For a probability vector $p=\left(p_{1}, p_{2}, \ldots\right)$, let $L(p)$ be the set of ω for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} N_{n}(i, \omega)=p_{i}, \quad i=1,2, \ldots \tag{1.1}
\end{equation*}
$$

and for a set A of probability vectors, let $L(A)=\bigcup_{p \in A} L(p)$. Thus $L(A)$ is the set of ω for which the frequency vector $\left(n^{-1} N_{n}(1, \omega), n^{-1} N_{n}(2, \omega), \ldots\right)$ approaches (in each component) some element of A.

We first give a lower bound for $\operatorname{dim} L(A)$ in terms of entropy. Call a probability measure v on the Borel subsets of Ω stationary if under v the stochastic process $\left[a_{1}(\omega), a_{2}(\omega), \ldots\right]$ is stationary; in this case, let $h(v)$ be the entropy of the process. Call v ergodic if under v the process is ergodic. Put

$$
\begin{equation*}
t(v)=-2 \int \log \omega v(d \omega) \tag{1.2}
\end{equation*}
$$

On the set of k-tuples of positive integers, define a probability measure v_{k} by

$$
\begin{equation*}
v_{k}\left(i_{1}, \ldots, i_{k}\right)=v\left[\omega: a_{j}(\omega)=i_{j}, j \leqq k\right] . \tag{1.3}
\end{equation*}
$$

If for each k, P_{k} is a probability measure on the k-tuples, and if $\left\{P_{k}\right\}$ is consistent, then there exists a v such that $v_{k}=P_{k}$ for all k.

The entropy $h(v)$ is finite if and only if $-\sum_{i} v_{1}(i) \log v_{1}(i)$ converges. The quantity $t(v)$ is always positive, and since $a_{1}(\omega) \leqq \omega^{-1} \leqq a_{1}(\omega)+1$, it is finite if and only if $\sum_{i} v_{1}(i) \log i$ converges. Let \mathscr{N} be the set of stationary and ergodic v for which $h(v)$ and $t(v)$ are both finite.

Theorem 1. For each set A of probability vectors,

$$
\begin{equation*}
\operatorname{dim} L(A) \geqq \sup \left[\frac{h(v)}{\not(f)}: v \in \mathscr{N}, v_{1} \in A\right] . \tag{1.4}
\end{equation*}
$$

[^0]This result, related to theorems of Kinney and Pitcher [6], is proved in Section 2. For inequalities going the other way, we must restrict attention to the set Ω_{r} of ω for which $a_{j}(\omega) \leqq r, j=1,2, \ldots$. If A is a set of r-dimensional probability vectors $p=\left(p_{1}, \ldots, p_{r}\right)$, let $U_{r}(A)$ be the set of ω in Ω_{r} such that for every positive ε and n_{0} there exist a p in A and an integer $n \geqq n_{0}$ that satisfy

$$
\begin{equation*}
\left|\frac{1}{n} N_{n}(i, \omega)-p_{i}\right|<\varepsilon, \quad i=1, \ldots, r . \tag{1.5}
\end{equation*}
$$

Thus $U_{r}(A)$ is the set of ω in Ω_{r} for which some limit point of the frequency vectors $\left(n^{-1} N_{n}(1, \omega), \ldots, n^{-1} N_{n}(r, \omega)\right)$ lies in the closure of the set A.

Let \mathscr{N}_{r} be the set of v in \mathscr{N} supported by Ω_{r}. A v in \mathscr{N} lies in \mathscr{N}_{r} if and only if $v_{1}(i)=0$ for $i>r$; in this case we may regard v_{1} as an r-dimensional probability vector. Finally, let \mathscr{M}_{r} consist of the v in \mathscr{N}_{r} under which $\left[a_{1}(\omega), a_{2}(\omega), \ldots\right]$ is a Markov chain of some order.

Theorem 2. For each set A of r-dimensional probability vectors,

$$
\begin{equation*}
\operatorname{dim} U_{r}(A) \leqq \sup \left[\frac{h(v)}{7(v)}: v \in \mathscr{M}_{r}, v_{1} \in A\right] . \tag{1.6}
\end{equation*}
$$

This theorem is proved in Section 4. If p is an r-dimensional probability vector, let $L_{r}(p)$ be the set of ω in Ω_{r} that satisfy (1.1) for $i \leqq r$, and put $L_{r}(A)=\bigcup_{p \in A} L_{r}(p)$. Since $L_{r}(A) \subset U_{r}(A)$ and $\mathscr{M}_{r} \subset \mathscr{N}_{r}$, it is a simple matter (see Section 3) to combine Theorems 1 and 2:

Theorem 3. For each set A of r-dimensional probability vectors,

$$
\begin{align*}
\operatorname{dim} L_{r}(A)=\operatorname{dim} U_{r}(A) & =\sup \left[\frac{h(v)}{t(v)}: v \in \mathscr{N}_{r}, v_{1} \in A\right] \tag{1.7}\\
& =\sup \left[\frac{h(v)}{t(v)}: v \in \mathscr{A}_{r}, v_{1} \in A\right] .
\end{align*}
$$

Let C_{k} be the set of r^{k}-dimensional vectors p with nonnegative components $p\left(i_{1}, \ldots, i_{k}\right)$ satisfying the constraint

$$
\begin{equation*}
\sum p\left(i_{1}, \ldots, i_{k}\right)=1 \tag{1.8}
\end{equation*}
$$

(in this sum, as in (1.11), the indices range from 1 to r) and, for each i_{1}, \ldots, i_{k-1}, the constraint

$$
\begin{equation*}
\sum_{i} p\left(i_{1}, \ldots, i_{k-1}, i\right)=\sum_{i} p\left(i, i_{1}, \ldots, i_{k-1}\right) . \tag{1.9}
\end{equation*}
$$

Define $\tau_{k}: C_{k} \rightarrow C_{1}$ by

$$
\begin{equation*}
\left(\tau_{k}(p)\right)_{i}=\sum_{i_{1}, \ldots, i_{k-1}} p\left(i, i_{1}, \ldots, i_{k-1}\right) \tag{1.10}
\end{equation*}
$$

Let $q_{k}\left(i_{1}, \ldots, i_{k}\right)$ be the denominator of the fraction

$$
\left.\frac{1}{\mid i_{1}}\right\rfloor_{+\cdots}+\frac{1}{\mid i_{k}}
$$

(in lowest terms). Finally, for $A \subset C_{1}$, define

$$
\begin{equation*}
\alpha_{k}(A)=\sup _{\substack{p \in C_{k} \\ t_{k}(p) \in A}} \frac{-\sum p\left(i_{1}, \ldots, i_{k}\right) \log p\left(i_{1}, \ldots, i_{k}\right)}{2 \sum p\left(i_{1}, \ldots, i_{k}\right) \log q_{k}\left(i_{1}, \ldots, i_{k}\right)} \tag{1.11}
\end{equation*}
$$

(with the convention $0 \log 0=0$). In all this, r is fixed and hence does not appear in the notation.

Theorem 4. For each $A \subset C_{1}$,

$$
\begin{equation*}
\operatorname{dim} L_{r}(A)=\operatorname{dim} U_{r}(A)=\lim _{k \rightarrow \infty} \alpha_{k}(A) \tag{1.12}
\end{equation*}
$$

This theorem is proved in Section 5. Since $U_{r}\left(C_{1}\right)=\Omega_{r},(1.7)$ and (1.12) determine $\operatorname{dim} \Omega_{r}$. Good [5] (see also [7, 8]) has given a different expression for $\operatorname{dim} \Omega_{r}$; Section 6 deals with the connection between the two results and with a conjecture the connection suggests.

The sets $L_{r}(A)$ and $U_{r}(A)$ have analogues defined in terms of the frequencies with which the v-tuples $\left(a_{j}(\omega), \ldots, a_{j+v-1}(\omega)\right)$ assume various values. It will be clear from the proofs that the corresponding analogues of the above theorems hold, with the appropriate restrictions on v_{v} in the suprema. It will also be clear that the set $[1, \ldots, r]$ to which the partial quotients have been restricted can be replaced by any finite set.

Section 2

Proof of Theorem 1. For each n, Ω splits into the fundamental intervals of order n, the various sets

$$
\left[\omega: a_{j}(\omega)=i_{j}, j \leqq n\right]
$$

let $u_{n}(\omega)$ be that fundamental interval of order n containing ω. If v is stationary and ergodic and the entropy $h(v)$ is finite, then according to [4],

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[-\frac{1}{n} \log v\left(u_{n}(\omega)\right)\right]=h(v) \tag{2.1}
\end{equation*}
$$

except on a set of v-measure 0 .
In all that follows, λ will represent Lebesgue measure. If $q_{n}(\omega)$ is the denominator of the nth convergent, then $\lambda^{-1}\left(u_{n}(\omega)\right)=q_{n}(\omega)\left(q_{n}(\omega)+q_{n-1}(\omega)\right)$ (see [3; (4.10)], for example), and hence

$$
\begin{equation*}
2 \log q_{n}(\omega) \leqq-\log \lambda\left(u_{n}(\omega)\right) \leqq 2 \log q_{n}(\omega)+\log 2 \tag{2.2}
\end{equation*}
$$

Moreover [3; (4.21)],

$$
\begin{equation*}
\left|\log q_{n}(\omega)+\sum_{j=1}^{n} \log \left(\frac{1}{\sqrt{a_{j}(\omega)}}+\frac{1}{\sqrt{a_{j+1}}(\omega)}+\cdots\right)\right| \leqq 4 \tag{2.3}
\end{equation*}
$$

If v is stationary and ergodic and $t(v)$ is finite, then

$$
-\frac{2}{n} \sum_{j=1}^{n} \log \left(\frac{1}{\sqrt[a_{j}(\omega)]{ }}+\frac{1}{\mid a_{j+1}(\omega)}+\cdots\right) \rightarrow \boldsymbol{t}(v)
$$

almost everywhere by the ergodic theorem, and hence, by (2.2) and (2.3),

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[-\frac{1}{n} \log \lambda\left(u_{n}(\omega)\right)\right]=\neq(v) \tag{2.4}
\end{equation*}
$$

If $v \in \mathcal{N}$, then (2.1) and (2.4) both hold except for ω in a set of v-measure 0 .
Let $\operatorname{dim}_{v} M$ denote dimension relative to v and to coverings by fundamental intervals. That is, let $v_{\alpha}(M, \rho)=\inf \sum_{i} v\left(v_{i}\right)^{\alpha}$, the infimum extending over countable coverings [v_{i}] of M by fundamental intervals with $v\left(v_{i}\right)<\rho$, let

$$
v_{\alpha}(M)=\lim _{\rho \rightarrow 0} v_{\alpha}(M, \rho)
$$

and take $\operatorname{dim}_{v} M$ as that α_{0} such that $v_{\alpha}(M)=\infty$ for $\alpha<\alpha_{0}$ and $v_{\alpha}(M)=0$ for $\alpha>\alpha_{0}$. See [1].

By Theorem 2.4 of [2] (or see [3; Section 14]), if $\log v\left(u_{n}(\omega)\right) / \log \lambda\left(u_{n}(\omega)\right) \rightarrow \delta$ on M, then $\operatorname{dim}_{\lambda} M=\delta \operatorname{dim}_{v} M$, so that $\operatorname{dim}_{\lambda} M=\delta$ if $v(M)>0$. By Lemma 3.1 of [6], if $-n^{-1} \log \lambda\left(u_{n}(\omega)\right)$ goes to a positive constant on M, then $\operatorname{dim}_{\lambda} M$ coincides with ordinary Hausdorff dimension $\operatorname{dim} M$. Thus we have the following result.

Lemma 1. If $\alpha \geqq 0$ and $\beta>0$, then the three relations

$$
\begin{align*}
& M \subset\left[\omega: \lim _{n \rightarrow \infty}\left[-\frac{1}{n} \log v\left(u_{n}(\omega)\right)\right]=\alpha\right] \tag{2.5}\\
& M \subset\left[\omega: \lim _{n \rightarrow \infty}\left[-\frac{1}{n} \log \lambda\left(u_{n}(\omega)\right)\right]=\beta\right], \tag{2.6}\\
& v(M)>0, \tag{2.7}
\end{align*}
$$

together imply

$$
\begin{equation*}
\operatorname{dim} M=\frac{\alpha}{\beta} \tag{2.8}
\end{equation*}
$$

Let M_{v} be the intersection of the two sets on the right in (2.5) and (2.6) with $\alpha=h(v)$ and $\beta=t(v)$. By (2.1) and (2.4), $v \in \mathscr{N}$ implies $v\left(M_{v}\right)=1$. Applying Lemma 1 to $M \cap M_{v}$, we see that $v(M)>0 \operatorname{implies} \operatorname{dim} M \geqq \operatorname{dim} M \cap M_{v}=h(v) / t(v)$, which gives this result:

Lemma 2. For arbitrary M,

$$
\begin{equation*}
\operatorname{dim} M \geqq \sup \left[\frac{h(v)}{t(v)}: v \in \mathcal{N}, v(M)>0\right] . \tag{2.9}
\end{equation*}
$$

If $v \in \mathcal{N}$, and $v_{1}=p=\left(p_{1}, p_{2}, \ldots\right)$, then by the ergodic theorem, $v(L(p))=1$. Therefore, by Lemma 2 ,

$$
\begin{equation*}
\operatorname{dim} L(p) \geqq \sup \left[\frac{h(v)}{f(v)}: v \in \mathscr{N}, v_{1}=p\right] \tag{2.10}
\end{equation*}
$$

and Theorem 1 follows from this and the definition of $L(A)$.

Section 3

Proof of Theorem 3. If $v \in \mathcal{N}_{r}$, then $v\left(\Omega_{r}\right)=1$, so that, in addition to (2.10), Lemma 2 gives

$$
\operatorname{dim} L_{r}(p) \geqq \sup \left[\frac{h(v)}{f(v)}: v \in \mathscr{N}_{r}, v_{1}=p\right]
$$

for r-dimensional probability vectors p, and hence

$$
\begin{equation*}
\operatorname{dim} L_{r}(A) \geqq \sup \left[\frac{h(v)}{t(v)}: v \in \mathscr{N}_{r}, v_{1} \in A\right] \tag{3.1}
\end{equation*}
$$

for sets A of such vectors. Since (1.7) is a consequence of (1.6), (3.1), and the relations $L_{r}(A) \subset U_{r}(A)$ and $\mathscr{M}_{r} \subset \mathscr{N}_{r}$, Theorem 3 will follow if we prove Theorem 2 .

Section 4

Proof of Theorem 2. Since $\operatorname{dim} M \leqq \operatorname{dim}_{\lambda} M$, the following result is a consequence of Theorem 2.1 of [2].

Lemma 3. For $\delta \geqq 0$,

$$
\begin{equation*}
\operatorname{dim}\left[\omega: \liminf _{n \rightarrow \infty} \frac{-n^{-1} \log v\left(u_{n}(\omega)\right)}{-n^{-1} \log \lambda\left(u_{n}(\omega)\right)} \leqq \delta\right] \leqq \delta \tag{4.1}
\end{equation*}
$$

The proof of (1.6).is based on this lemma. To find an upper bound for the limit inferior in (4.1), we require an upper bound for the numerator of the ratio and a lower bound for the denominator; these we shall find separately.

We first show that

$$
\begin{equation*}
t(v)>\frac{1}{6} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
-2 \int \log \left(\frac{1}{\sqrt{a_{1}(\omega)}}+\cdots+\frac{1}{\sqrt{a_{k}(\omega)}}\right) v(d \omega)>\frac{1}{6}, \quad k \geqq 3 \tag{4.3}
\end{equation*}
$$

for stationary v. If $v_{1}(1)=p$, then $v_{3}(1,1,1) \geqq 1-3(1-p)$. The quantities in question are at least

$$
-2\left(1-v_{1}(1)\right) \log \frac{1}{\mid 2}=2(1-p) \log 2
$$

which exceeds $\frac{1}{6}$ for $0 \leqq p \leqq \frac{3}{4}$; they are also at least

$$
-2 v_{3}(1,1,1) \log \left(\frac{1}{[1}+\frac{1}{\square 1}+\frac{1}{\square 1}\right) \geqq 2(3 p-2) \log \frac{3}{2}
$$

which exceeds $\frac{1}{6}$ for $\frac{3}{4} \leqq p \leqq 1$.
From now on, r is a fixed positive integer, each ω considered lies in Ω_{r}, and the indices i_{1}, i_{2}, \ldots range from 1 to r. We shall bound the numerator in (4.1) for probability measures v corresponding to higher-order Markov chains. As in Section 1, let C_{k} be the set of r^{k}-dimensional vectors p with nonnegative components satisfying (1.8) and (1.9). Let C_{k}^{0} be the set of p in C_{k} with strictly positive components.

For p in C_{k} put

$$
\begin{equation*}
s_{p}\left(i_{1}, \ldots, i_{k-1}\right)=\sum_{i} p\left(i_{1}, \ldots, i_{k-1}, i\right) \tag{4.4}
\end{equation*}
$$

and define

$$
t_{p}\left(i_{1}, \ldots, i_{k-1} ; i_{k}\right)= \begin{cases}\frac{p\left(i_{1}, \ldots, i_{k}\right)}{s_{p}\left(i_{1}, \ldots, i_{k-1}\right)} & \text { if } s_{p}\left(i_{1}, \ldots, i_{k-1}\right)>0 \tag{4.5}\\ \delta_{i_{k-1}, i_{k}} & \text { otherwise }\end{cases}
$$

Now (4.5) is a set of transition probabilites for a Markov chain of order $k-1$ with states $1, \ldots, r$. Because of (1.8) and (1.9), (4.4) are stationary probabilites for the chain. There is a probability measure on Ω_{r} under which $\left[a_{1}(\omega), a_{2}(\omega), \ldots\right]$ is a stationary chain with these stationary and transition probabilities; call this measure v_{p}.

For p in C_{k}, define (here and later \sum extends over all k-tuples from $[1, \ldots, r]$)

$$
\begin{equation*}
h_{k}(p)=-\sum p\left(i_{1}, \ldots, i_{k}\right) \log t_{p}\left(i_{1}, \ldots, i_{k-1} ; i_{k}\right) \tag{4.6}
\end{equation*}
$$

(with $0 \log 0=0$). The entropy $h\left(v_{p}\right)$ of v_{p} is just $h_{k}(p)$. Clearly $h_{k}(p)$ is continuous on C_{k}^{0}; that it is continuous on all of C_{k} follows from the fact that

$$
-p\left(i_{1}, \ldots, i_{k}\right) \log t_{p}\left(i_{1}, \ldots, i_{k-1} ; i_{k}\right)
$$

vanishes for $p\left(i_{1}, \ldots, i_{k}\right)=0$, and is at most $-p\left(i_{1}, \ldots, i_{k}\right) \log p\left(i_{1}, \ldots, i_{k}\right)$ for positive $p\left(i_{1}, \ldots, i_{k}\right)$ and hence tends to 0 with $p\left(i_{1}, \ldots, i_{k}\right)$. Also define

$$
\begin{equation*}
t_{k}(p)=-2 \sum p\left(i_{1}, \ldots, i_{k}\right) \log \left(\frac{1}{\sqrt{i_{1}}}+\cdots+\frac{1}{i_{k}}\right) . \tag{4.7}
\end{equation*}
$$

Clearly $t_{k}(p)$ is continuous on C_{k}.
Let $N_{n}\left(i_{1}, \ldots, i_{k} ; \omega\right)$ be the number of $j, 1 \leqq j \leqq n$, for which

$$
\begin{equation*}
\left(a_{j}(\omega), \ldots, a_{j+k-1}(\omega)\right)=\left(i_{1}, \ldots, i_{k}\right) \tag{4.8}
\end{equation*}
$$

If $p \in C_{k}^{0}$, then

$$
\begin{align*}
-\log v_{p}\left(u_{n}(\omega)\right)= & -\sum N_{n-k+1}\left(i_{1}, \ldots, i_{k} ; \omega\right) \log t_{p}\left(i_{1}, \ldots, i_{k-1} ; i_{k}\right) \tag{4.9}\\
& -\log s_{p}\left(a_{1}(\omega), \ldots, a_{k-1}(\omega)\right),
\end{align*}
$$

a formula useful for bounding the numerator in (4.1). Let $N_{n}^{\prime}\left(i_{1}, \ldots, i_{k} ; \omega\right)$ be the number of $j, 1 \leqq j \leqq n-k+1$, for which (4.8) holds, plus the number of $j, n-k+2 \leqq$ $j \leqq n$, for which

$$
\begin{equation*}
\left(a_{j}(\omega), \ldots, a_{n}(\omega), a_{1}(\omega), \ldots, a_{j-n-1+k}(\omega)\right)=\left(i_{1}, \ldots, i_{k}\right) \tag{4.10}
\end{equation*}
$$

holds. Let $\pi_{n}(k, \omega)$ have components $\pi_{n}\left(i_{1}, \ldots, i_{k} ; \omega\right)=n^{-1} N_{n}\left(i_{1}, \ldots, i_{k} ; \omega\right.$), and let $\pi_{n}^{\prime}(k, \omega)$ have components $\pi_{n}^{\prime}\left(i_{1}, \ldots, i_{k} ; \omega\right)=n^{-1} N_{n}^{\prime}\left(i_{1}, \ldots, i_{k} ; \omega\right)$. Then $\pi_{n}^{\prime}(k, \omega)$ satisfies (1.9) as well as (1.8) and hence lies in C_{k} (which is not generally true of $\pi_{n}(k, \omega)$). Clearly $N_{n-k+1} \leqq N_{n}^{\prime}$, so (4.9) implies

$$
\begin{align*}
-\log v_{p}\left(u_{n}(\omega)\right) \leqq & -\sum \pi_{n}^{\prime}\left(i_{1}, \ldots, i_{k} ; \omega\right) \log t_{p}\left(i_{1}, \ldots, i_{k-1} ; i_{k}\right) \\
& -\frac{1}{n} \log S_{p}\left(a_{1}(\omega), \ldots, a_{k-1}(\omega)\right) \tag{4.11}
\end{align*}
$$

For p in C_{k}^{0} and $\varepsilon>0$, let V_{p}^{ε} be the set of π in C_{k} for which

$$
\begin{equation*}
-\sum\left|\pi\left(i_{1}, \ldots, i_{k}\right)-p\left(i_{1}, \ldots, i_{k}\right)\right| \log t_{p}\left(i_{1}, \ldots, i_{k-1} ; i_{k}\right)<\varepsilon \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
-2 \sum\left|\pi\left(i_{1}, \ldots, i_{k}\right)-p\left(i_{1}, \ldots, i_{k}\right)\right| \log \left(\frac{1}{i_{1}}+\cdots+\frac{1}{\mid i_{k}}\right)<\varepsilon \tag{4.13}
\end{equation*}
$$

Note that V_{p}^{ε} is open relative to C_{k}. If $p \in C_{k}^{0}$, if $\pi_{n}^{\prime}(k, \omega) \in V_{p}^{\varepsilon}$, and if n exceeds some $n_{1}(\varepsilon, p, \omega)$, then by (4.11),

$$
\begin{equation*}
-\frac{1}{n} \log v_{p}\left(u_{n}(\omega)\right) \leqq h_{k}(p)+2 \varepsilon \tag{4.14}
\end{equation*}
$$

To estimate the corresponding denominator in (4.1), note first that

$$
-\log \lambda\left(u_{n}(\omega)\right) \geqq-2 \sum_{j=1}^{n} \log \left(\frac{1}{\mid a_{j}(\omega)}+\frac{1}{a_{j+1}(\omega)}+\cdots\right)-8
$$

by (2.2) and (2.3). Since

$$
\begin{equation*}
\left|\log \left(\frac{1}{b_{1}}+\frac{1}{\mid b_{2}}+\cdots\right)-\log \left(\frac{1}{\sqrt[b_{1}]{\mid}}+\cdots+\frac{1}{\mid b_{k}}\right)\right| \leqq \frac{4}{2^{k}} \tag{4.15}
\end{equation*}
$$

(see [3; (4.7)], for example), we have

$$
-\log \lambda\left(u_{n}(\omega)\right) \geqq-2 \sum N_{n}\left(i_{1}, \ldots, i_{k} ; \omega\right) \log \left(\frac{1}{\mid i_{1}}+\cdots+\frac{1}{\mid i_{k}}\right)-8-\frac{8 n}{2^{k}}
$$

Since $i_{1} \leqq r$, and since N_{n} and N_{n}^{\prime} differ by less than k, this gives

$$
\begin{aligned}
&-\frac{1}{n} \log \lambda\left(u_{n}(\omega)\right) \geqq-2 \sum \pi_{n}^{\prime}\left(i_{1}, \ldots, i_{k} ; \omega\right) \log \left(\begin{array}{cc}
1 \\
\sqrt{i_{1}} & 1 \\
i_{k}
\end{array}\right) \\
&-\frac{2 k}{n} r^{k} \log (r+1)-\frac{8}{n}-\frac{8}{2^{k}} .
\end{aligned}
$$

Therefore, if $p \in C_{k}^{0}$, if $\pi_{n}^{\prime}(k, \omega) \in V_{p}^{\varepsilon}$, and if n exceeds some $n_{2}(\varepsilon, p)$, then

$$
\begin{equation*}
-\frac{1}{n} \log \lambda\left(u_{n}(\omega)\right) \geqq t_{k}(p)-2 \varepsilon-8 \cdot 2^{-k} \tag{4.16}
\end{equation*}
$$

From now on consider only $k \geqq 7$ and $\varepsilon<1 / 24$; for such pairs $2 \varepsilon+8 \cdot 2^{-k}<\frac{1}{6}$, and so the right side of (4.16) is positive by (4.3). Suppose p lies in C_{k}^{0}. If $\pi_{n}(k, \omega)$ lies in V_{p}^{ε} i.o. (that is, for infinitely many values of n), then $\pi_{n}^{\prime}(k, \omega)$ lies in $V_{p}^{2 \varepsilon}$ i.o., so that (4.14) and (4.16) with 2ε in place of ε are simultaneously true i.o. It follows by Lemma 3 that

$$
\begin{equation*}
\operatorname{dim}\left[\omega \in \Omega_{r}: \pi_{n}(k, \omega) \in V_{p}^{\varepsilon} \text { i.o. }\right] \leqq \frac{h_{k}(p)+4 \varepsilon}{t_{k}(p)-4 \varepsilon-8 \cdot 2^{-k}} \tag{4.17}
\end{equation*}
$$

For a nonempty subset B of C_{k}, define

$$
\begin{equation*}
G(B)=\left[\omega \in \Omega_{r}: \liminf _{n \rightarrow \infty} d\left(\pi_{n}(k, \omega), B\right)=0\right] \tag{4.18}
\end{equation*}
$$

where d denotes ordinary distance in r^{k}-space. Let $B^{\varepsilon}=\left[\pi \in C_{k}: d(\pi, B)<\varepsilon\right]$. If $\pi \in C_{k}$ and $\varepsilon>0$, then there exists a p in C_{k}^{0} such that $d(\pi, p)<\varepsilon$ and $\pi \in V_{p}^{\varepsilon}$ (because the sums in (4.12) and (4.13) go to 0 as p approaches π and because C_{k} is convex and C_{k}^{0} is its interior relative to the hyperplane determined by (1.8) and (1.9)). Thus the V_{p}^{ε} with p in $B^{\varepsilon} \cap C_{k}^{0}$ cover the closure of B, and therefore B can be covered by finitely many $V_{p_{1}}^{\varepsilon}, \ldots, V_{p_{a}}^{\varepsilon}$ with $p_{a} \in B^{\varepsilon} \cap C_{k}^{0}$. Clearly

$$
G(B) \subset \bigcup_{\alpha=1}^{a}\left[\omega \in \Omega_{r}: \pi_{n}(k, \omega) \in V_{p_{x}}^{\varepsilon} \text { i.o. }\right]
$$

Therefore $\operatorname{dim} G(B)$ is at most the supremum of the right side of (4.17) with p ranging over $B^{\varepsilon} \cap C_{k}^{0}$. Since ε is arbitrary, and since (4.6) and (4.7) are continuous in p,

$$
\begin{equation*}
\operatorname{dim} G(B) \leqq \sup _{p \in \mathcal{B}} \frac{h_{k}(p)}{t_{k}(p)-8 \cdot 2^{-k}} \tag{4.19}
\end{equation*}
$$

Now suppose that A is a nonempty set of r-dimensional probability vectors a subset of C_{1}. With τ_{k} defined by (1.10), $G\left(\tau_{k}^{-1} A\right)$ coincides with $U_{r}(A)$ as defined in Section 1 (see (1.5)). Now (4.19) applied to $\tau_{k}^{-1} A$ gives

$$
\begin{equation*}
\operatorname{dim} U_{r}(A) \leqq \sup _{p \in \tau_{k}^{-1} A} \frac{h_{k}(p)}{{t_{k}}_{k}(p)-8 \cdot 2^{-k}} \tag{4.20}
\end{equation*}
$$

For p in C_{k}, it follows by (1.9) that

$$
\sum_{i} s_{p}\left(i, i_{1}, \ldots, i_{k-2}\right)=\sum_{i} s_{p}\left(i_{1}, \ldots, i_{k-2}, i\right)
$$

Call this common value $c_{p}\left(i_{1}, \ldots, i_{k-2}\right)$ and define

$$
\begin{equation*}
p^{*}\left(i_{1}, \ldots, i_{k}\right)=\frac{s_{p}\left(i_{1}, \ldots, i_{k-1}\right) s_{p}\left(i_{2}, \ldots, i_{k}\right)}{c_{p}\left(i_{2}, \ldots, i_{k-1}\right)} \tag{4.21}
\end{equation*}
$$

if the denominator is positive, and define $p^{*}\left(i_{1}, \ldots, i_{k}\right)=0$ otherwise. Then p^{*} lies in C_{k} and has the same stationary probabilities as $p ;$ moreover $t_{p^{*}}\left(i_{1}, \ldots, i_{k-1} ; i_{k}\right)>0$ if $s_{p}\left(i_{1}, \ldots, i_{k-1}\right)$ and $s_{p}\left(i_{2}, \ldots, i_{k}\right)$ are both positive. Any convex combination $x p+(1-x) p^{*}, 0 \leqq x<1$, has the same properties and the corresponding Markov chain is therefore ergodic. Thus any p in C_{k} can be approximated by elements π of C_{k} for which v_{π} is ergodic and for which the stationary probabilities are as for p. Since (4.6) and (4.7) are continuous in p, the supremum in (4.20) is unaltered if in addition to $p \in \tau_{k}^{-1} A$ we require that v_{p} be ergodic.

Now $t_{k}(p)$ differs from $t\left(v_{p}\right)$ by at most $8 \cdot 2^{-k}$ because of (4.15), and $h_{k}(p)$ coincides with $h\left(v_{p}\right)$. Therefore (if $k \geqq 7$, so that $16 \cdot 2^{-k}<\frac{1}{6}$)

$$
\operatorname{dim} U_{r}(A) \leqq \sup \frac{h(v)}{t(v)-16 \cdot 2^{-k}}
$$

the supremum extending over all ergodic Markov chains of order $k-1$ with $v_{1} \in A$. Since a chain of order $k-1$ is also a chain of order k, (1.6) follows.

Section 5

Proof of Theorem 4. Let $H_{v}\left(a_{1}, \ldots, a_{k}\right)$ be the entropy of the random variables $a_{1}(\omega), \ldots, a_{k}(\omega)$ under v. Note first that

$$
\begin{equation*}
\alpha_{k}(A)=\sup _{\substack{v \in \mathcal{L}_{r} \\ v_{1} \in A}} \frac{H_{v}\left(a_{1}, \ldots, a_{k}\right)}{\int \log q_{k}(\omega) v(d \omega)} . \tag{5.1}
\end{equation*}
$$

Indeed, if v lies in \mathscr{A}_{r} (or even \mathscr{N}_{r}) and $p=v_{k}$, then $p \in C_{k}$ and the ratios in (5.1) and (1.11) coincide. On the other hand, as the argument involving (4.21) shows, the supremum in (1.11) is unaltered if further restricted to p for which the corresponding Markov chain is ergodic; for such a p, if $v=v_{p}$, then $v \in \mathscr{M}_{r}$ and the ratios in (5.1) and (1.11) coincide.

By (1.2) and (2.3),

$$
\begin{equation*}
\left|\frac{2}{k} \int \log q_{k}(\omega) v(d \omega)-t(v)\right| \leqq \frac{8}{k} . \tag{5.2}
\end{equation*}
$$

And (see [3; p. 82], for example)

$$
\begin{equation*}
\frac{1}{k} H_{v}\left(a_{1}, \ldots, a_{k}\right) \geqq h(v) \tag{5.3}
\end{equation*}
$$

For positive ε, there is by (1.7) a v in \mathscr{A}_{r} with $h(v) / t(v)>\operatorname{dim} L_{r}(A)-\varepsilon$. Choose k_{0} so that $h(v) /\left(t(v)+8 / k_{0}\right)>\operatorname{dim} L_{r}(A)-\varepsilon$. By (5.2) and (5.3), $k \geqq k_{0}$ implies

$$
\alpha_{k}(A) \geqq \frac{H_{v}\left(a_{1}, \ldots, a_{k}\right)}{2 \int \log q_{k}(\omega) v(d \omega)} \geqq \frac{h(v)}{t(v)+8 / k}>\operatorname{dim} L_{r}(A)-\varepsilon .
$$

Thus $\lim \inf _{k} \alpha_{k}(A) \geqq \operatorname{dim} L_{r}(A)$.
If $j \leqq k$ and $v \in \mathscr{N}_{r}$, then by standard properties of conditional entropy,

$$
\begin{aligned}
H_{v}\left(a_{1}, \ldots, a_{k}\right) & =H_{v}\left(a_{1}, \ldots, a_{j}\right)+\sum_{v=j}^{k-1} H_{v}\left(a_{v+1} \mid a_{1}, \ldots, a_{v}\right) \\
& \leqq \log r^{j}+k H_{v}\left(a_{j} \mid a_{1}, \ldots, a_{j-1}\right)
\end{aligned}
$$

If v^{j} is the measure corresponding to that Markov chain of order $j-1$ whose j-dimensional distribution coincides with that of v (that is, if $v_{j}^{j}=v_{j}$), then

$$
\begin{equation*}
H_{v}\left(a_{1}, \ldots, a_{k}\right) \leqq j \log r+k h\left(v^{j}\right), \quad j \leqq k \tag{5.4}
\end{equation*}
$$

By $(4.15), t(v)$ is within $8 / 2^{j}$ of

$$
\begin{equation*}
-2 \int \log \left(\frac{1}{a_{1}(\omega)}+\cdots+\frac{1}{\mid a_{j}(\omega)}\right) v(d \omega) \tag{5.5}
\end{equation*}
$$

and similarly for $t\left(v^{j}\right)$; but (5.5) is the same for v^{j} as for v, and hence $\left|t(v)-t\left(v^{j}\right)\right| \leqq 16 / 2^{j}$.

By this, (5.4), (5.2), and (4.2),

$$
\begin{aligned}
\frac{H_{v}\left(a_{1}, \ldots, a_{k}\right)}{2 \int \log q_{k}(\omega) v(d \omega)} & \leqq \frac{\frac{j}{k} \log r+h\left(v^{j}\right)}{t\left(v^{j}\right)-\frac{8}{k}-\frac{16}{2^{j}}} \\
& \leqq \frac{\frac{j}{k} \log r}{\frac{1}{6}-\frac{8}{k}-\frac{16}{2^{j}}}+\frac{1}{1-6\left(\frac{8}{k}+\frac{16}{2^{j}}\right)} \cdot \frac{h\left(v^{j}\right)}{t\left(v^{j}\right)}
\end{aligned}
$$

for $j \leqq k$.
We next show that $v \in \mathscr{N}_{r}$ implies $v^{j} \in \mathscr{M}_{r}$. Consider cylinders

$$
M_{n}=\left[\omega: a_{n+v}(\omega)=i_{v}, 0 \leqq v \leqq j-2\right]
$$

and

$$
M_{n}^{\prime}=\left[\omega: a_{n+v}(\omega)=i_{v}^{\prime}, 0 \leqq v \leqq j-2\right]
$$

Since v is ergodic,

$$
n^{-1} \sum_{k=1}^{n} v\left(M_{1} \cap M_{k}^{\prime}\right) \rightarrow v\left(M_{1}\right) v\left(M_{1}^{\prime}\right)=v^{j}\left(M_{1}\right) v^{j}\left(M_{1}^{\prime}\right)
$$

Thus $v\left(M_{1} \cap M_{n}^{\prime}\right)$ is positive for some n if $v^{j}\left(M_{1}\right)$ and $v^{j}\left(M_{1}^{\prime}\right)$ are both positive; but then $v^{j}\left(M_{1} \cap M_{n}^{\prime}\right)$ is also positive for some n, because $v(M)>0$ implies $v^{j}(M)>0$ for cylinders M. Therefore, if two sequences (of length $j-1$) of states are possible under v^{j}, it is also possible to pass from one to the other; hence v^{j} is ergodic.

It therefore follows from (1.7) that we may replace $h\left(v^{j}\right) / t\left(v^{j}\right)$ by $\operatorname{dim} L_{r}(A)$ in the preceding inequality if $v \in \mathscr{N}_{r}$. Applying (5.1) to the left side of the inequality, letting $k \rightarrow \infty$, and then letting $j \rightarrow \infty$, we obtain $\lim \sup _{k} \alpha_{k}(A) \leqq \operatorname{dim} L_{r}(A)$, which proves Theorem 4.

Section 6

A Conjecture. Let $\beta_{k}(A)$ be the supremum of the ratio in (1.11) over those p with nonnegative components satisfying (1.8) and $\tau_{k}(p) \in A$. In other words, drop the constraints (1.9). Then $\alpha_{k}(A) \leqq \beta_{k}(A)$, and it may be conjectured that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\beta_{k}(A)-\alpha_{k}(A)\right)=0 \tag{6.1}
\end{equation*}
$$

so that $\alpha_{k}(A)$ can be replaced by $\beta_{k}(A)$ in (1.12).
The conjecture is true for $A=C_{1}$: If s satisfies

$$
\begin{equation*}
\sum q_{k}\left(i_{1}, \ldots, i_{k}\right)^{-2 s}=1 \tag{6.2}
\end{equation*}
$$

$\left(i_{1}, \ldots, i_{k}\right.$ ranging from i to r as usual), and if $p\left(i_{1}, \ldots, i_{k}\right)=q_{k}\left(i_{1}, \ldots, i_{k}\right)^{-2 s}$, then p satisfies (1.8) and a computation shows that the ratio in (1.11) has the value s. On the other hand, if s satisfies (6.2) and the $p\left(i_{1}, \ldots, i_{k}\right)$ are nonnegative and add
to 1 , then

$$
\begin{gathered}
\sum p\left(i_{1}, \ldots, i_{k}\right) \log p\left(i_{1}, \ldots, i_{k}\right)^{-1} q_{k}\left(i_{1}, \ldots, i_{k}\right)^{-2 s} \\
\leqq \log \sum q_{k}\left(i_{1}, \ldots, i_{k}\right)^{-2 s}=0
\end{gathered}
$$

by convexity, so the ratio in (1.11) is at most s. Thus $\beta_{k}\left(C_{1}\right)$ is the root of the Eq. (6.2). Good [5] has shown that this root converges to $\operatorname{dim} \Omega_{r}=\operatorname{dim} U_{r}\left(C_{1}\right)$, so (6.1) does hold for $A=C_{1}$. It would be interesting to have a simple, direct proof of (6.1), at least for this special case.

References

1. Billingsley, P.: Hausdorff dimension in probability theory. Illinois. J. Math. 4, 187-209 (1960)
2. Billingsley, P.: Hausdorff dimension in probability theory II. Illinois. J. Math. 5, 291-298 (1961)
3. Billingsley, P.: Ergodic theory and information. New York: Wiley 1965
4. Chung, K.L.: A note on the ergodic theorem of information theory. Ann. Math. Statist. 32, 612-614 (1961)
5. Good, I. J.: The fractional dimensional theory of continued fractions. Proc. Cambridge Philos. Soc. 37, 199-228 (1941)
6. Kinney, John R., Pitcher, Tom S.: The dimension of some sets defined in terms of f-expansions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 4, 293-315 (1966)
7. Schweiger, F., Stradner, W.: Die Billingsleydimension von Mengen mit vorgeschriebenen Ziffern I. Österreich. Akad. Wiss. Math.-Natur. K1. S.-B. II. 180, 95-109 (1972)
8. Schweiger, F.: Die Billingsleydimension von Mengen mit vorgeschriebenen Ziffern II. Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II. 181, 151-155 (1973)

Patrick Billingsley
Department of Statistics
University of Chicago
Chicago, Illinois 60637
U.S.A.

Inge Henningsen
Institute of Mathematical Statistics
University of Copenhagen
Copenhagen
Denmark

[^0]: * Supported by NSF GP 32037 X.

 12 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 31

