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Hausdorff Dimension of Some Continued-Fraction Sets 

Patrick Billingsley* and Inge Henningsen 

Section 1 

Introduction. Each irrational co in the unit interval f2 has a unique continued- 

1 1 
fraction expansion c o = ~ . . ,  + ~ , . . ,  + 

D �9 I 

lulttu) lu2tw) 

with integral partial quotients aj(co). We shall compute the Hausdorff dimension 
of certain sets defined in terms of the frequencies with which the a~(co) assume 
various values. 

Let N,(i, co) be the number of j, 1 < j < n ,  for which a~(co)=i. For a probability 
vector P=(Pl,  P2 . . . .  ), let L(p) be the set of co for which 

l i m l ~ N , ( i ,  co)=pi, i = 1 , 2  . . . . .  (1.1) 

and for a set A of probability vectors, let L(A)= ~)p~a L(p). Thus L(A) is the set 
of co for which the frequency vector (n-IN,(1, co), n-lN,(2,  co), ...) approaches 
(in each component) some element of A, 

We first give a lower bound for dim L(A) in terms of entropy. Call a probability 
measure v on the Borel subsets of f2 stationary if under v the stochastic process 
[al(co), a2(co) . . . .  ] is stationary; in this case, let h(v) be the entropy O f the process. 
Call v ergodic if under v the process is ergodic. Put 

by 

t(v) = - 2 ~ log co v(dco). (1.2) 

On the set of k-tuples of positive integers, define a probability measure Vk 

If for each k, Pk is a probability measure on 
then there exists a v such that v k = Pk for all 

The entropy h(v) is finite if and only 
quantity t(v) is always positive, and since 
and only if ~i  vl (i) log i converges. Let JV 
v for which h(v) and t(v) are both finite. 

Theorem 1. For each set A of  probability vectors, 

dim L(A)=> sup I_[ h(v) .t(v) " v ~ ~A/', v lEA] .  

* Suppor ted  by  N S F  G P  32037X. 
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Vk(i 1 . . . . .  ik) = V [~O: aj(co) = ij, j _< k]. (1.3) 

the k-tuples, and if {Pk} is consistent, 
k. 
if - ~,i vl (i) log vl (i) converges. The 
a 1 (co) < co- 1 < al (co) + 1, it is finite if 
be the set of stationary and ergodic 

(1.4) 
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This result, related to theorems of Kinney and Pitcher [6], is proved in Sec- 
t ion 2. For  inequalities going the other way, we must  restrict a t tent ion to the set 
f2, of co for which aj(co) < r, j = 1, 2 . . . . .  If A is a set of r-dimensional probabil i ty 
vectors p = (Pl . . . . .  p,), let U,(A) be the set of co in Or such that  for every positive 
and no there exist a p in A and an integer n > no that  satisfy 

1 N . ( i ,  co)-p~ i= l, . . . ,r.  (1.5) 

Thus U,(A) is the set of co in f2 r for which some limit point of the frequency vectors 
(n - I  N,(1, co) . . . . .  n- 1N,(r, co)) lies in the closure of the set A. 

Let  ~ be the set of v in Y supported by f2,. A v in X lies in ~ if and only 
if v l ( i )=0  for i>r; in this case we may regard Vl as an r-dimensional probabil i ty 
vector. Finally, let d//, consist of the v in ~ under which [al(co), a2(co) . . . .  ] is a 
Markov  chain of some order.  

Theorem 2. For each set A of r-dimensional probability vectors, 

u , ( a ) < s u p  [ h(v) . v~M/[,, vl~A].  (1.6) dim 
L #(v) " _.1 

This theorem is proved in Section 4. I fp  is an r-dimensional probabil i ty vector, 
let L,(p) be the set of co in f2, that  satisfy (1.1) for i < r, and put  L,(A) = Up~A L,(p). 
Since L,(A)c Up(A) and J/g, c 4 ,  it is a simple matter  (see Section 3) to combine 
Theorems 1 and 2: 

Theorem 3. For each set A of r-dimensional probability vectors, 

[h(v) . veJV~., vleA ] dim L~(A) = dim U.(A) = sup L t(v) " 
(1.7) 

[ h(v) . v~Jg,, vx~A]. 
= sup L t(v) " J 

Let  C k be the set of rk-dimensional vectors p with nonnegat ive components  
p(i 1 . . . . .  ik) satisfying the constraint  

p(i, . . . . .  ik) = 1 (1.8) 

(in this sum, as in (1.11), the indices range from 1 to r) and, for each il . . . . .  ik_l, 
the constraint  

Zp(i l  . . . . .  ik_l, i )=Zp(i ,  i, . . . . .  ik- i)- (1.9) 
i i 

Define Zk: Ck ~ C1 by 
(Zk(P))i= Z p(i,i, . . . . .  ik_ O. (1.10) 

il ,  ..., i k - I  

Let qk(il, ..., ik) be the denomina tor  of the fraction 

11+...+111 
l il i~ 
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(in lowest terms). Finally, for A c C1, define 

gk(A) = sup -- ~ P ( i l ' " "  ik) log p ( i l , . . . ,  ik) (1.11) 
p~Ck 2 ~ p ( i l  . . . . .  ik) lOgqk(il . . . . .  ik) 

~k (P) ~ A 

(with the convention 0 log 0 = 0). In all this, r is fixed and hence does not appear 
in the notation. 

Theorem 4. For each A ~ C 1 , 

dim Lr(A) = dim U~(A) = ~irn ak(A). (1.12) 

This theorem is proved in Section 5. Since Ur(C1)---~2~, (1.7) and (1.12) deter- 
mine dim Y2~. Good [5] (see also [7, 8]) has given a different expression for dim Y2~; 
Section 6 deals with the connection between the two results and with a conjecture 
the connection suggests. 

The sets L~(A) and Ur(A) have analogues defined in terms of the frequencies 
with which the v-tuples (as(co) . . . . .  aj+~_l(co)) assume various values. It will be 
clear from the proofs that the corresponding analogues of the above theorems 
hold, with the appropriate restrictions on v~ in the suprema. It will also be clear 
that the set [1 . . . . .  r] to which the partial quotients have been restricted can be 
replaced by any finite set. 

Section 2 

Proof of Theorem 1. For each n, f2 splits into the fundamental intervals of 
order n, the various sets 

[-co: as(co ) = ij, j =< n]; 

let u,(co) be that fundamental interval of order n containing co. Ifv is stationary and 
ergodic and the entropy h(v) is finite, then according to [-4], 

l i m [ _ l l o g v ( u n ( c o ) ) ] = h ( v )  (2.1) 
n ~ o o  

except on a set of v-measure 0. 

In all that follows, 2 will represent Lebesgue measure. Ifq,(co) is the denominator 
of the nth convergent, then 2-1(u,(co)) = q,(co)(q,(co) + q,_~ (co)) (see [-3; (4.10)], for 
example), and hence 

2 log qn(co) < - log 2 (un(co)) =< 2 log q, (co) + log 2. (2.2) 

Moreover [-3; (4.21)], 

(2.3) [ logq , (co )+ i log \ l a j ( co )  ]aj+l(co ) . . . ) 4 .  

If v is stationary and ergodic and t(v) is finite, then 

2 
~=1 l~ \laj(co) l aj+l(co) n ,= 

12. 
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almost everywhere by the ergodic theorem, and hence, by (2.2) and (2.3), 

n ~ o o  

(2.4) 

If v e ~ then (2.1) and (2.4) both hold except for co in a set of v-measure 0. 
Let dim~M denote dimension relative to v and to coverings by fundamental 

intervals. That is, let v, (M, p)= inf ~i v(vi) ~, the infimum extending over countable 
coverings [v~] of M by fundamental intervals with v(vi)<p, let 

v (M) = v (M, p),  

and take dim, M as that % such that v~(M)=oo for e<Cto and v,(M)=0 for 
e > % .  See [1]. 

By Theorem 2.4 of [2] (or see [3; Section 14]), if log v(u,(co))/log 2(u,(e)))~ 6 
on M, then dimaM=6dim~M, so that d imzM=6 if v(M)>0. By Lemma 3.1 
of [6-1, if - n -a log 2(u,(o))) goes to a positive constant on M, then dim~M coincides 
with ordinary Hausdorff dimension dim M. Thus we have the following result. 

Lemma 1. I f  c~>=O and fl >0, then the three relations 

together imply 

v(m)>o,  

dim M = - - .  

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Let M~ be the intersection of the two sets on the right in (2.5) and (2.6) with 
e=h(v) and fl=t(v). By (2.1) and (2.4), v e Y  implies v(m~)= 1. Applying Lemma 1 
to M n M ~ ,  we see that v(M)>0 implies dim M>dimMc~M~=h(v)/~(v), which 
gives this result: 

Lemma 2. For arbitrary M, 

[ h(v) . veX,, v(M)>0].  dim M > sup [ t(v) " (2.9) 

If veJff, and vl=p=(px,p2, ...), then by the ergodic theorem, v(L(p))=l. 
Therefore, by Lemma 2, 

dim L(p)>sup [ h(v) . ve~,,  va =Pl (2.10) 
- I_ t ( v )  " J 

and Theorem 1 follows from this and the definition of L(A). 
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Section 3 

If v6JV~, then v(f2,)=l, so that, in addition to (2.10), Proof of Theorem 3. 
Lemma 2 gives 

[ h(v). = p] 
dim Lr(p)>sup L t(v) " veJV~, v 1 

for r-dimensional probability vectors p, and hence 

[h(v) . cA]  (3.1) dim Lr(A)>sup /t(v) " re.lift, vl 

for sets A of such vectors. Since (1.7) is a consequence of (1.6), (3.1), and the relations 
L~(A) ~ U~(A) and J///~ c ~/~, Theorem 3 will follow if we prove Theorem 2. 

Section 4 

Proof of Theorem 2. Since dim M < dim~ M, the following result is a consequence 
of Theorem 2.1 of I-2]. 

Lemma 3. For 6 > O, 

[o9 - n - l  l~ <=6]<6. (4.1) 
dim : lira ~inf _ n-  1 log 2(u,(co)) 

The proof of (1.6),is based on this lemma. To find an upper bound for the limit 
inferior in (4.1), we require an upper bound for the numerator of the ratio and a 
lower bound for the denominator; these we shall find separately. 

We first show that 
/(v)>~ (4.2) 

and 

- 2 ~ l o g  + . . . +  v(dco)>~, k > 3 ,  (4.3) 

for stationary v. If vl (1)= p, then v3 (1, 1, 1)> 1 - 3  (1 - p ) .  The quantities in question 
are at least 

- 2(1 - v~ (1)) log ~ = 2 
i 

(1 P) log 2, 
I 

which exceeds ~ for 0 < p < 3 ;  they are also at least 

-2v3(1,  1, 1)log + + > 2 ( 3 p - 2 )  log 3, 

which exceeds 61- for 3 < p <  1. 

From now on, r is a fixed positive integer, each co considered lies in f2r, and the 
indices ia, i 2 . . . .  range from 1 to r. We shall bound the numerator in (4.1) for 
probability measures v corresponding to higher-order Markov chains. As in 
Section 1, let C k be the set of rk-dimensional vectors p with nonnegative components 
satisfying (1.8) and (1.9). Let C O be the set of p in Ck with strictly positive com- 
ponents. 
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For p in C k put 
s~(i 1 . . . . .  i k _ l ) = ~  p(i  1 . . . . .  ik_ l ,  i) (4.4) 

i 
and define 

p(il  . . . . .  ik) 
tp(i 1 . . . . .  i ~ _ l ; i k ) = j  sp(il,~...--~,ik_~ ) if s p ( i l , . . .  , ik_l)>O (4.5) 

| ~cSi~ 1 is otherwise. 

Now (4.5) is a set of transition probabilites for a Markov chain of order k - 1  
with states 1 . . . . .  r. Because of (1.8) and (1.9), (4.4) are stationary probabilites for 
the chain. There is a probability measure on t2r under which [al(co), a2(co) . . . .  ] is 
a stationary chain with these stationary and transition probabilities; call this 
measure vp. 

For p in Ck, define (here and later ~ extends over all k-tuples from l-1 . . . . .  r]) 

hk(p) = - ~" p(i~ , . . .  , ik) log tp(il . . . . .  ik_ 1 ; ik) (4.6) 

(with 0 log 0 = 0). The entropy h(vp) of v v is just hk(p). Clearly hk(P) is continuous 
on C~ that it is continuous on all of Ck follows from the fact that 

- p ( i  1 . . . .  , ik) l o g  tv(i  1 . . . . .  i k_ l  ; ik) 

vanishes for p(i  I . . . . .  ik) =0,  and is at most - p ( i  1 . . . . .  ik) log p(i  1 . . . . .  ik) for positive 
p ( i l , . . . ,  ik) and hence tends to 0 with p(i 1 . . . .  , ik). Also define 

t k ( p ) = - - 2 ~ , p ( i  1 . . . . .  /k)lOg ( /~1 + . . .  + / ) .  (4.7) 

Clearly tt(P) is continuous on Ck.  

Let N,( i  I . . . . .  ik; CO) be the number of j, l<=j<=n, for which 

(aj(co), . . .  , aj + t -1  (co)) = (i 1 . . . .  , it). (4.8) 

If pc C ~ then 

- l o g  Vp(U,(co))= - 2  N , - k + a ( i ,  . . . . .  ik; co ) log  t p ( i l , . . . ,  ik_ , ; ik) (4.9) 
- log sp(al (co) , . . . ,  ak_ ,  (co)), 

a formula useful for bounding the numerator in (4.1). Let N~(i 1 . . . .  , ik; co) be the 
number of j, 1 -<_j__< n -  k + 1, for which (4.8) holds, plus the number of j, n - k + 2 < 
j < n, for which 

(aj(co) . . . .  , an(co), a l  (co) . . . . .  a j - n - 1  +k(co)) ~--" (ix, "'" ' ik) (4 .10)  

holds. Let ~z,(k, co) have components rc,(i I . . . . .  ik; c o ) = n - l N , ( i l  . . . . .  it; co), and 
let ~;(k, co) have components 7t',(il . . . . .  ik; co)-----n - 1 N ~ ( i l ,  . . . ,  ik; co). Then rc',(k, co) 
satisfies (1.9) as well as (1.8) and hence lies in Ck (which is not generally true of 
rc,(k, co)). Clearly N , _ k + l  < N~, so (4.9) implies 

--log vp(u,(co))<= - - 2  ~z',(il, " " ,  ik; co) log  tp(il ,  . . . ,  ik_ 1 ; ik) 

_ 1 log sp(a 1 (co) . . . . .  ak -1  (co))' (4.1 1) 
t/ 
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and 

For p in C o and e > 0, let 1/~ be the set of n in Ck for which 

- ~  [To(i, . . . . .  ik)--p(i~ . . . . .  ik)l log tp(iX, . . . ,  ik_ ~ ; iu)< e (4.12) 

. . . .  2~1=(il  . . . . .  ik)--P(il . . . . .  i 0 l l o g ( / ~ l  + + / ~ k ) < e '  (4.13) 

Note that V~ is open relative to Ck. If pC C ~ if rc;(k, ~o)e V~, and if n exceeds some 
nl(e, p, to), then by (4.11), 

1 
- - -  log vp(u,(co)) < hk(p) + 2 e. (4.14) 

To estimate the corresponding denominator  in (4.1), note first that 

- l o g 2 ( u , ( o o ) ) >  - 2  • log + + . . . .  8 
j = l  

by (2.2) and (2.3). Since 

l o g ( ~ + ~ + ' " ) - l O g ( b ~ , + ' " + b ~ k )  < 4 \] ba ]b2  2 k 

(see [3; (4.7)], for example), we have 

- l o g  2(u,(~o))> - 2~, N,(i  I . . . . .  ik; co) log (/~01 + . . .  + / ~  ) - 8 - -  

Since i a =< r, and since N, and N~ differ by less than k, this gives 

1 l~ 2(u"(~ => - 2 ~  n"(il . . . . .  ik; O~)log (/~J~ + /~k )  
H 

2k 8 8 
- - - - r k l ~  n 2 k " 

a t /  

2 k .  

Therefore, if pe  C ~ if ~',(k, co)e V;, and if n exceeds s o m e  n2(~ , p), then 

1 
n log 2(u,(co)) > tk(P) - 2 e - 8 . 2  - k. 

(4.15) 

(4.16) 

From now on consider only k > 7  and e <  1/24; for such pairs 2 e + 8 . 2 - k < ~ ,  
and so the right side of (4.16) is positive by (4.3). Suppose p lies in C ~ If ft,(k, co) 
lies in Vv ~ i.o. (that is, for infinitely many values of n), then rt',(k, co) lies in Vv 2~ i.o., 
so that (4.14) and (4.16) with 2e in place of e are simultaneously true i.o. It follows 
by Lemma 3 that 

hk(p) + 4 e 
dim [co Es~?~: ~,(k, co)~ Vp i.o.] < t k ( p ) - - 4 e - - 8 "  2 -  k . (4.17) 

For a nonempty subset B of Ck, define 

G(B)= [coe f2r: l iminf  d(rc,(k, co), B)--0],  (4.18) 
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where d denotes ordinary distance in rk-space. Let B e = [ T Z ~ C k :  d(Tz, B)<e-]. If 
rcs Ck and e>0,  then there exists a p in C o such that d(rc, p)<~ and n~ V; (because 
the sums in (4.12) and (4.13) go to 0 as p approaches rc and because Ck is convex 
and C o is its interior relative to the hyperplane determined by (1.8) and (1.9)). 
Thus the l/p with p in B"~ C ~ cover the closure of B, and therefore B can be 
covered by finitely many V ~ V? with p, eB~n C ~ Clearly 

G(B)c U [coeQ,: n,(k, co)eVp i.o.]. 
ct=l 

Therefore dim G(B) is at most the supremum of the right side of (4.17) with p 
ranging over B"c~ C ~ Since e is arbitrary, and since (4.6) and (4.7) are continuous in 

P' h~(p) 
dim G (B) <_- sup 2 - k" (4.19) 

p~l~ tk(P ) -  8" 

Now suppose that A is a nonempty set of r-dimensional probability vectors - 
a subset of C1. With ~k defined by (1.10), G(rk 1 A) coincides with Ur(A) as defined 
in Section 1 (see (1.5)). Now (4.19) applied to Zk I A gives 

hk(p) 
dim Up(A)< sup ~ , ,  ~ 2_ k . (4.20) 

p ~ s  ~ A t k t p )  - -  t5 �9 

For p in Ck, it follows by (1.9) that 

E Sv ( i '  i l  . . . . .  i t _ 2 ) = E  Sp( i  I . . . . .  i k _ 2 ,  i ) .  
i i 

Call this common value cv(i 1 . . . . .  ik-2) and define 

p*(il . . . . .  ik)= SP (i1'' ' ' '  ik_O sv(i2 . . . . .  ik) 
cp(i2 . . . . .  ik_l)  

(4.21) 

if the denominator is positive, and define p* (il . . . .  , ik) = 0 otherwise. Then p* lies 
in Ck and has the same stationary probabilities as p; moreover tp, (i 1 . . . . .  ig_ 1 ; ik) > 0 
if sp( i l ,  . . . ,  i k_ l )  and sp(i  2 . . . . .  ik) are both positive. Any convex combination 
x p + ( 1 -  x)p*, 0 < x < 1, has the same properties and the corresponding Markov 
chain is therefore ergodic. Thus any p in Ck can be approximated by elements 
7t of Ck for which v~ is ergodic and for which the stationary probabilities are as 
for p. Since (4.6) and (4.7) are continuous in p, the supremum in (4.20) is unaltered 
if in addition to p E z/- 1 A we require that Vp be ergodic. 

Now tk(p) differs from t(vp) by at most 8 . 2  -k because of (4.15), and hk(p) 
coincides with h(vp). Therefore (if k > 7, so that 1 6 . 2 - k <  61_) 

h(v) 
dim U~(A)< sup t (v)-16 - 2 -k '  

the supremum extending over all ergodic Markov chains of order k - 1  with 
v I cA. Since a chain of order k - 1  is also a chain of order k, (1.6) follows. 
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Section 5 

Proof  o f  Theorem 4. Let H~(a 1 . . . . .  ak) be the entropy of the random variables 
a I (co) . . . .  , a k(c,) under v. Note first that 

H~(ax . . . . .  ak) 
C~k(A ) = sup-  . 

~u .  2 j  log qk(~O)v(do)) 
"r 

(5.1) 

Indeed, if v lies in Jr (or even ~ )  and p = vk, then pe  Ck and the ratios in (5.1) 
and (1.11) coincide. On the other hand, as the argument involving (4.21) shows, the 
supremum in (1.11) is unaltered if further restricted to p for which the corresponding 
Markov chain is ergodic; for such a p, if v=vp, then v s ~  and the ratios in (5.1) 
and (1.11) coincide. 

By (1.2) and (2.3), 

2 ~  log qk(cO)v(doo)--l(v) (5.2) = ] ~ "  

And (see [3; p. 82], for example) 

1 
H~(a 1 . . . .  , ak) > h(v). (5.3) 

For positive e, there is by (1.7) a v in Mr, with h(v)/t(v)>dim L~(A)-e .  Choose k o 
so that h(v)/(t(v)+8/ko)>dim L~(A)-e .  By (5.2) and (5.3), k > k  o implies 

H~(al . . . . .  ak) >- h(v) 
C~k(a) >-----2 ~ log qk(e)) v(de)) = t(v) + 8/k > dim L r ( A ) -  e. 

Thus lim inf k e~ (A) > dim Lr(A). 

I f j < k  and ve~/~, then by standard properties of conditional entropy, 

k-1 

H~(al . . . . .  ak) =H~(al . . . . .  aj)+ ~ H,(av+ 1 [a 1 . . . . .  av) 
v=j 

__<log rJ+kH~(ajfal . . . . .  a~_ 0.  

If v j is the measure corresponding to that Markov chain of order j -  1 whose 
j-dimensional distribution coincides with that of v (that is, if vJ = v j), then 

H~(a 1 . . . . .  ak)<=j log r+kh(vJ),  j<=k. (5.4) 

By (4.15), t(v) is within 8/2 ) of 

- 2~ log ( al ( ~ )  + .-. + a j ~ )  ) v(dog), (5.5) 

and similarly for t(v)); but (5.5) is the same for v j as for v, and hence It(v)- t(v))[ <= 16/2~ 
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By this, (5.4), (5.2), and (4.2), 

k log r + h(v s) 
H~(al . . . . .  as) < 

2 ~log qk(CO) v(do9) t(vJ ) 8 16 
k 2 j 

for j < k .  

J~" log r 
k 1 h(v j) < + 

= 1 8 16 / 8  1 6 \  t(v j) 
6 k 2 J 1 - 6  " " ~ - + - ~ - ]  

We next show that veX,. implies vJeJ~.  Consider cylinders 

M , =  [o): a,+v(~o)= iv, 0__< v__<j- 2] 
and 

M',= [-r a,+v(co)= i;, 0__< v__<j- 2]. 

Since v is ergodic, 

n -1 ~ v(M1 riMs)-* v(MI) ' j ' v (M 1) = v (M 1) v (M 1' ). 
k = l  

Thus v(M1 n M',) is positive for some n if vJ(Mx) and vJ(M[) are both positive; but 
then vJ(Mt n M',) is also positive for some n, because v (M)>0  implies d ( M ) > 0  
for cylinders M. Therefore, if two sequences (of length j - 1) of states are possible 
under v ~, it is also possible to pass from one to the other; hence v j is ergodic. 

It therefore follows from (1.7) that we may replace h(vJ)/t(v j) by dim Lr(A) in the 
preceding inequality if ve~/~. Applying (5.1) to the left side of the inequality, 
letting k ~ oe, and then letting j---, oe, we obtain lira SUps c~s(A) < dim Lr(A), which 
proves Theorem 4. 

S e c t i o n  6 

A Conjecture. Let is(A) be the supremum of the ratio in (1.11) over those p with 
nonnegative components satisfying (1.8) and rk(P)eA, In other words, drop the 
constraints (1.9). Then ek(A)<= Elk(A), and it may be conjectured that 

lim (Big(A)- C~k(A) ) = O, 
k~oo  

(6.1) 

SO that ek(A) can be replaced by lk(A) in (1.12). 

The conjecture is true for A = C1" If s satisfies 

qk(il . . . . .  ik) - 2~ = 1 (6.2) 

.... i ~ -  2 s t h e n  p (il . . . . .  i k ranging from i to r as usual), and if p(i 1, ik)-~ q k ( i l  . . . . .  k) ' 

satisfies (1.8) and a computation shows that the ratio in (1.11) has the value s. 
On the other hand, if s satisfies (6.2) and the p(i I . . . . .  ik) are nonnegative and add 
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to 1, then 
P(i l  . . . . .  ik) 1ogp(ia . . . . .  ik) -1  qk(i l  . . . . .  ik) - 2S 

< log ~ qk(i l  . . . . .  ik ) -  2 s  = 0 

by convexity, so the ratio in (1.11) is at most s. Thus f ig(C1)  is the root of the 
Eq. (6.2). Good [-5] has shown that this root converges to dim f2r= dim Ur(C1),  so 
(6.1) does hold for A = C1. It would be interesting to have a simple, direct proof 
of (6.1), at least for this special case. 
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