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1. w Introduction 

Let f (x )  ( - oo < x  < oo) be a measurable function such that 

1 

f ( x  + 1)=f(x) ,  ~ f (x)  dx =0. (1.1) 
0 

In the first part of this paper (see [1]) we proved some almost sure invariance 
principles for the sequence f (n  k x) provided that {nk} satisfies 

nk+l/nk>--_q>l ( k = l ,  2 . . . .  ). (1.2) 

N 
These theorems show that the asymptotic behaviour of ~ f(nkX), N ~ o o  is the 

k=l  
same as that of ((zN), N ~ o e  where ( is a Wiener-process and zN is a sequence of 
random variables which is closely related to the quantities 

V i 'k 2 k ( i + l ) 2 - k  [ M + N  \2 
M,~ = ~ { E f (n ix )}  dx. (1.3) 

i2 -k \ j = M + I  / 

By investigating the behaviour of v i'k in typical cases, in this paper we give M,N 
some applications of the above mentioned theorems. We shall consider three 
different applications (which we already mentioned in the Introduction of the 
first part of our paper): 1. We shall show that if {nk} satisfies a condition slightly 
stronger than the Hadamard gap condition then the quantities v i'k become M,N 
asymptotically independent of i, k and thus z s become asymptotically constant. 

N 
Hence in this case the behaviour of y~ f (n k x) reduces to that of sums of independent 

k=l 
random variables with finite variances. The results obtained in this way simplify, 
unify and extend several results obtained previously in the literature. 2. We shall 
show that if {nk} satisfies (1.2) with a large q then {f(nkX)} "almost"  satisfies 
the central limit theorem, the law of the iterated logarithm and the functional 
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versions of these theorems. 3. We shall derive an a.s. invariance principle for the 
sequence f ( n  k x) in the classical case f (x)= cos 27zx, assuming only (1.2). 

As in [1], we shall assume for f the standard condition 

If(x)l<M, Il f-s, ,H < An-~(e >0, n=  1, 2, ...) (1.4) 

where s, denotes the n-th partial sum of the Fourier-series of f and [III is the 
L2(0, 1) norm. The second relation of (1.4) is equivalent to 

1 z_,v (a 2 z 2 -2c~ - +bk)<_A n (1.5) 2 
k = n + l  

where 

f ~ a o +  ~ (a k cos 2rckx +b  k sin 2rckx) 
k = l  

is the Fourier-expansion o f f  Condition (1.4) is satisfied, e.g., i f f  is a Lip ~ function 
(see [,19] p. 241, relation (3.3)) or it is of bounded variation. (In the latter case we 
have a k = O(1/k), b k = O(1/k) and thus (1.5) holds with ~ = 1/2.) 

As in the first part of our paper, we shall not assume that n k are integers. 
From paper [1] we shall use only the theorems and remarks of w 2 and Lemmas 
(3.3) and (3.6) of w 3. We shall use, without explanation, the notion of quasi- 
equivalence of sequences of r.v.-s (introduced in [,1] w 2) and the symbols ~ and x 
(see footnote 2 of [-1]). 

All the results of our paper are probabilistic statements concerning the sequence 
f (nkX  ). The underlying probability space for this sequence is (f2o, ~0, Po) where 
f20 = [-0, 1), ~0 is the class of Lebesgue-measurable subsets of [0, 1) and P0 is the 
Lebesgue measure. 

2. w Two Preparatory Lemmas 

Preparing the applications in w167 3-5, in this section we prove two simple 
lemmas of standard character. Let (f2, ~ ,  P) be a probability space and let {X,} 
and {z,} be sequences of random variables on (f2, ~ ,  P) satisfying the following 
two conditions: 

1. {X,} remains bounded with probability one (its bound may depend on co). 
2. The sequence {zn} is positive, strictly increasing and z , -%_1=O(1)  

a.s. as n-~oo. 
We inquire what conclusions can be drawn from the relation 

Xl+...+Xn=~(Zn)+O(n I/2) a . s .  a s  n ~ o e  (2.1) 

where r is a Wiener-process on (f2, ~ ,  P) and r, satisfies 

( 1 - a ) b , < z , < ( l + O b ,  a.s. for n>no(e) ) (2.2) 

with 0 < e < 1/4 and a positive, strictly increasing numerical sequence b, x n. It is 
fairly obvious that (2.1) and (2.2) imply certain forms of Donsker's invariance 
principle and Strassen's law of the iterated logarithm for the sequence {X,}. Our 



On the Asymptotic Behaviour of ~ f  (n k x) 349 

purpose is to clarify what these "certain forms" are, The answer is given by 
Lemmas (2.1) and (2.2) below. Before, however, formulating these lemmas, we 
write (2.1) in a more convenient form. We state 

Proposition. Assume that {X,} and {z,} satisfy 1., 2. and (2.2). Then relation (2.1) 
is equivalent to 

S(t)=~(t)+o(?/2)  a.s. as t ~oo (2.3) 

where S(t) denotes the (random)funct ion in [0, +oo)  which takes the value 

S ,= ~ X i at the point t=%  (n=0,1  . . . .  ) and linear in each interval [z , ,v ,+l]  
i = 1  

(n=0,  1, ...). (We put to=0 .  ) 

Proof Evidently (2.3) implies (2.1) (take t = z, in (2.3) and use r , x  n). Conversely, 
(2.1) implies (2.3) for the values t = z ,  (n=0,  1 . . . .  ) and it remains to show 

sup IS( t ) -g(T,) l=o(n 1/2) a.s. as n ~ o e ,  (2.4) 
r,,<t<~n+l 

sup Ir162 I/2) a.s. as n--,oo. (2.5) 
~n <t<=r~+l 

The first of these relations is trivial from 1. (actually, the left hand side of (2.4) 
is equal to IS,+ 1-S.1 =[X,+I] = O(1) a,s.). Relation (2.5) follows from Lemma 
(3.6) of [1] since z,+ 1 - z , = O ( 1 )  and ~,=O(n). 

We can now formulate our basic lemmas. 

Lemma (2.1). Let us assume that {X} and {r,} satisfy 1., 2. and also (2.1), (2.2). 
n 

Put Sn= ~ X i (S0=0) and define the random function (p,(t) (O<=t<= 1) as Jollows." 
i = 1  

fSk/]/~, for t =bk/b . (k=O, 1,..., n) 1 
(t) cpn [linear for te [bk/bn, bk+l/b J (k=0  ... . .  n -  1). (2.6) 

Then we have 

lim p((o,  ~)< C 1 e 1/4 

where ~_ (t) (0<= t<= 1) is Wiener-process and P((Pn, ~) is the Prohorov distance of the 
processes (p,(t) and ~ (t) 2. The constant C 1 is absolute. 

To formulate Lemma (2.2) let K denote Strassen's set of functions: 

K =  4x(t): x(t) is absolutely continuous in [0, 1], 
k 1 } 

x(0)=0 and ~ 2(t)2dt< 1 . (2.7) 
0 

We put b o = 0. 
2 For two processes ql(t) and t/2(t ) (0< t__< 1) with continuous paths the Prohorov distance p(t/a, t/2 ) 
is defined as the infimum of those positive e for which P(tll cA)<= P(r/2 GAg) + e and P(q2 cA)<= P(ql eA~) + e 
for any Borel-set A c C [0, i]. A, denotes the neighbourhood of A of radius e (in C [0, 1] metric). 
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Lemma (2.2). Let us suppose that {X,} and {Zn} satisfy 1., 2. and also (2.1), (2.2). 
n 

Put S, = ~ X i (S o = O) and define the random function ~,  (t) (0 < t < 1) as follows: 
i=1 

~ , ,  [Sff(2b, loglogb,)  1/2 for t=bf fb ,  (k=0,  1, . . . ,n) 
"(t)=~linear for t~[bk/b,, bk+ffb.] (k=0, ..., n -  1). (2.8) 

Then we have 

a) limd(0,,K)__<281/~ a.s. 3 

b) For every x ( t )~K we have 

lira d(0,;  x) < 28]/~ a.s. 

The proofs of these lemmas are simple routine. To obtain Lemma (2.1) we 
first establish the following statement: 

Lemma (2.3). Under the conditions of I_emma (2.1) we can find Wiener-processes 
v,(t) (n= 1, 2, ...) such that we have 

P( sup Irp,(t)-v,(t)l>sl/4)<_<_Cze (n>nl).  (2.9) 
O<=t<l 

C 2 is an absolute constant. 

Proof By the Proposition we have 

S(t)=~(t)+o(?/2)  a.s. as t ~ o o  (2.10) 

where S(t) is the random function in [0, + oo) which takes the value S, at the 
point t = z ,  (n=0, 1, ...) and linear in the intervals [z,, z,+l] (n=0, 1 . . . .  ). Let us 
introduce the random functions 

~n(t):fSk/]~n_ for t=zk/Z n ( k = 0 ,  1 . . . . .  n) 
0inear  for te[Zk/~., Zk+I/Z,] (k=0, ..., n -  1) 

O,(t)=~ (t %)/]/~, (2.11) 

v, (t) = ~ (t b,)/l/~, 

(defined in O< t_< 1, 0=< t < 0% 0 < t < 0% respectively). Since we have ~, T oo a.s., 
relations (2.10) and (2.2) imply 

sup ]S(t)-~(t)]=o('c~/2)=o(bl,/2) a.s. 
O < t < ~  

or, equivalently, 

sup I~,( t)-O,(t) l=o(1) a.s. as n ~ o o .  
O=<t=<l 

The latter relation also implies 

sup [~,(2(t))-O.(2(t))l=o(1) a.s. as n ~ o o  (2.12) 
O=<t__<l 

3 d denotes the C [0, 1] metric. 



On the Asymptotic Behaviour of ~f(n k x) 351 

for any function 2(t) (0 < t < 1) such that 0 < 2 (t) < 1. Let us choose 2 (t) = 2, (t) 
where 2,(0 is the function which carries bJb,  into 7k/z . for every 0_<k<n and 
linear in the subintervals [bk/b,, bk+l/b,] (0<k_<n-1) .  Then (2.12) becomes 

sup ]r a.s. as n ~  (2.13) 
0_<t_<l 

and since v,(t) (defined in (2.11)) is a Wiener-process for any n, (2.6) will follow 
if we show that 

P(  sup [O,(2n(t))-V,(t)[ >=�89 el/4)<_ C31?, (2.14) 
o < t q  

for sufficiently large n with an absolute constant C a . Now, (2.2) easily implies 
[ Vk/Zn -- bk/b,, [ _-< 4 e for n > n 2 (09) and 0_< k < n which shows that 12. ( t ) -  t[ < 4 e for 
0_< t< l  and n~n2(09 ). Hence we have by (2.2) and 2 . ( t ) < t + 4 e < 2  

12 , ( t ) z , /b~- tJ<2, ( t ) ]z , /b~- l [+J2, ( t ) - t i<6e  (n~n3 (09)) (2.15) 

for 0_< t <  1. Here n a (09) depends on 09 but we can find a set B with P(B)> 1 -  e 
such that for 09~B relation (2.15) is satisfied for any n>n  4 where n 4 does not 
depend on 09. Hence, using Lemma 1 of [9] with T=6e,  L = 3 ,  6=e,  c = ) e  1/4 
we get (note that 2 , ( t ) z , / b , < t + 6 e < l + 6 / 4 < 3  for n>n  4 if 09~B) 

P(  sup ]O,(2,(t))-v,(t)] >~el 1/4) 
0_<t_<l 

I>~e ) = P (  sup ]vn(2.(t)zJbn)-v.(t) 1 1/4 
0_<t_<l 

~---e~-P( sup [Vn(t2)--Vn(tl) I --~-el i/4) 
0=<tl<t2~3 
[t2--tl]<=6e 

~ + C~ e - 3/~ exp ( -  1/64 ~1/2) ~ C5 ~, 

for n_--> n 4 with absolute constants C4, C 5 . (The last inequality follows from the 
fact that ~-q/4 exp ( -1 /64~ 1/2) tends to 0 if e~ 0 . )  Hence (2.14) is valid and the 
proof of Lemma (2.3) is completed. 

Using Lemma (2.3) we get P(q~ ,~A)<P(v~A~/~)+C2e  and P(v,~A) 
<P(~o,~A~/~)+ C2~ for n>n  1 and any Borel-set A c  C[-0, 1]. Hence, for n>_>_nl, 
the Prohorov distance of ~o, and v, is at most max(e 1/4, C2~)<= C6 e~/4. Since v, 
is Wiener process for every n, Lemma (2.1) is proved. 

To prove Lemma (2.2) we need the following 

Lemma (2.4). Let ((t) be a (separable) Wiener-process and let b, be a positive 
numerical sequence such that b , ~ n .  Put 

( ,( t)=(2b,  loglogb,,)-~/Z((b,t) ( 0 < t < l ) .  (2.16) 

Then, almost surely, the sequence (,(t) is relatively compact in C[,O, 1] and its 
derived set coincides with K. (Actually, d((, ,  K ) ~  0 a.s. as n ~ . )  

For b, = n, this is Strassen's celebrated theorem for the Wiener-process (see 
[,,13]). The proof in the general case is essentially the same. 

Fix a 6 >0. From Lemma (2.4) it follows that the relation 

sup I ( ( t2) - ( ( t l ) l -<  ( ] / 6 ~ +  2c~)]//6b. log log 3b. (2.17) 
O <=tl <t2 <=3bn 
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holds almost surely for sufficiently large n. Indeed, let us consider the function 
~,(t) in (2.16) but replace b, by 3b,. By Lemma (2.4) we have d(~,, K)<6 almost 
surely for sufficiently large n. Since for any x (t) e K we have [ x (s2)- x (sl)[ < l / s ~ -  s5 
(0<s 1 < s 2 <  1) we see that the relation 

sup [~,(Sz)-~.(Sx)l<=]//~+26 
O-<_sl < s 2 ~ 1  
Is2-sal __<~/3 

holds almost surely for sufficiently large n and this is identical with (2.17). 
Turning to the proof of Lemma (2.2), let us put 

0* (t) = (2 log log b.) -1/20.(t), v* (t) = (2 log log b.)-1/2 v(t) 

(v* is only a different notation for the function ~,(t) in (2.16).) Relation (2.13) 
evidently implies (using 0.  (t) -- (2 log log b,)- 1/2 ~0, (t)) 

sup IO,(t)-O*(2,(t))]=o(1) a.s. as n ~ o e .  (2.18) 
0 < t < l  

As we remarked above, 12.(t)z.-tb, l<6eb, and 2 , ( t )z ,<3b,  are valid for 
0_<t< 1 and n>n3(co ) (see (2.15)), hence we have, using (2.17), 

sup 10" (,~.(0)- v* (t) l 
o__<t=<l 

=(2b, log log b~) -1/2 sup ]((2,(t)z,)-((tb~)] 
0__<t<l 

<(2b,  log log b,) -!/2 sup [ ((s2)-  ((sl)I < 2 ( 1 / ~ +  12 e) < 28]/~ 
O<=sl <sz <=3bn 
[s2--sl[<=6ebn (2.19) 

for n__>ns(~O ). By (2.18) and (2.19) we have 

lira sup 10.(t)-v*(t)l__<281/% a.s. 
n-,c~ 0 s t _ < 1  

which evidently implies Lemma (2.2) since, by Lemma (2.4), v, (t) has K as its 
derived set and d(v*, K ) ~ 0  a.s. 

3. w The Asymptotically Independent Case 

Let us say that a sequence n 1 <n2<- . .  of positive numbers belongs to class A* 
if nk~oe and, for every r e> l ,  the set-theoretic union of the sequences {nk}, 
{2nk} . . . . .  {rank} (considered as a new sequence) satisfies the Hadamard gap 
condition. The purpose of the present section is to investigate the properties of the 
sequence f(nkx ) provided that {nk}eA*. It will turn out that in this case the 
random variables vN occuring in Theorem 2 of [ 1] become asymptotically constant 

N 

and thus the asymptotic behaviour of ~ f(nkX) as N ~oe  is the same as that 
k=l 

of ~(bN) with a certain numerical sequence bN~N. Some typical corollaries of 
this fact are Donsker's invariance principle, Strassen's law of the iterated log- 
arithm, Kolmogorov-Erd6s-Petrovski type upper and lower class tests etc. for 
the sequence f(nkX). These results unify and extend several limit theorems 
obtained earlier in the literature by different methods. For instance, Corollary 2 
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to Theorem (3.1), if specialized to the ordinary law of the iterated logarithm and 
integral rig, implies the theorem of [17], it yields some laws of the iterated log- 
arithm similar to those stated in [6], Chapter 2, w 4 without proof etc. For  non- 
integral n k even the central limit theorems implied by our results seem to be new. 
We get, e.g., the interesting result that the sequence f (qkx)  obeys the central limit 
theorem (with respect to the probability space (f2o, Yo, Po)) for any real q > 1. 
(For a related result see [15].) 

The class A* was introduced (for integral rig) by Gapogkin. The following 
lemma is due also to him: 

Lemma (3.1). The sequence {nk} of positive numbers belongs to class A* if and 
only if there exist no subsequences nk~, ns, and rational number r+O such that 

n k lim "i=r,  nk~ =t= r ( i= 1,2 . . . .  ). (3.1) 
i , o~ nsi  nsi  

Proof Let us suppose that {nk}(~A*. Then there exists an integer m> 1, sub- 
sequences nj~, nzl and integers l<pi<=m, l<=q~<m ( i= 1, 2 . . . .  ) such that 

lim p~ n j, = 1, Pi nji> 1 (i = 1, 2, ...). (3.2) 
i ~  ~ qi  nl~ qi  nl~ 

Let us choose a sequence i a < i  2 < . . . < i  k<. . .  such that p ~ = p ~ =  . . . .  p, 
qi~ = qi~ . . . . .  q. Then by (3.2) we have 

lim nj i~-q,  nJik> q- (k= 1, 2, ...) 
k- ,  co nl ik  p nl ik  p 

i.e. (3.1) holds with r=q/p.  Conversely, if (3.1) holds with r=q/p  then we have 

lim Pnk~= 1, Pnk' ~ 1 (i= 1, 2, ...) 
i~ o~ q ns~ q ns~ 

which shows that the set-theoretic union of the sequences {Pnk} and {qnk} does 
not satisfy the Hadamard gap condition. Hence we have {nk}r 

Lemma (3.1) shows that the sequence {rig} belongs to class A* in each of the 
following cases: 

1. n k = qk (q > 1 is arbitrary real number). 
2. nk+l/n k is integer for any k__> 1. 
3. lira nk+i/n k= oo. 

k-~  oo 

4. lira nk+~/nk=e where e~ is irrational for r = l ,  2 . . . .  
k - ,  co 

We formulate now the main result of this section: 

Theorem (3.1). Let us assume that 
a) f ( x )  satisfies (1.1) and (1.4). 
b) The sequence {rig} of positive numbers belongs to class A*. 
c) There exists a positive constant C 1 such that 

2 

for 
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Then there exists a probability space (f2, ~,  P) and a sequence X 1 , X 2 . . . .  o f  

random variables (defined on (f2, ~ ,  P)) such that the sequences { f (nkX)} and { Xk} 
are quasi-equivalent and 

Xl +'"q-Xn=(('cn)-Jr'O(n 1/2-q) a . s .  as n ~ o e  (3.3) 

where r 1 > 0  is an absolute constant, ~ is a Wiener-process on (I2, o~ P) and z, is a 
strictly increasing sequence of random variables (also on (f2, o~,p)) such that 
z , - z , _ l = O ( 1  ) a.s. as n ~ o e  and 

l im z,/b, = 1 a.s. 

with a strictly increasing positive numerical sequence b . ~ n .  

Corollary 1. Let us assume that the conditions of Theorem (3.1) are satisfied and 
hr 

put SN= ~ f(nkX ). Then there exists a strictly increasing positive numerical 
k = t  

sequence b . x n  such that 

(p, ~ ( (3.4) 

where ( is the Wiener-process and q9 n is the random function defined by (2.6). 4 

Corollary 2. Let us assume that the conditions of Theorem (3.1) are satisfied and 
N 

put SN= ~ f(nkX ). Then there exists a strictly increasing positive numerical 
k = l  

sequence bn~n such that if ~,(t) denotes the random function defined by (2.8) then 
~t (t) is relatively compact in C [0, 1] and its derived set coincides with K (defined 
by (2.7)) with probability one. 

In particular, 

lira (2b N log log bN) -1/2 S N = 1 a.e. 
N-, cx~ 

Corollaries 1 and 2 establish Donsker's invariance principle and Strassen's 
functional version of the law of the iterated logarithm for the sequence f (n k x). 

Remark 1. Condition b) of Theorem (3.1) requires that, for any m> 1, the set- 
theoretic union of the sequences {nk}, {2nk} . . . .  , {rank} satisfies the Hadamard 
gap condition. If f (x) happens to be a trigonometric polynomial of order L: 

L 

f ( x ) =  ~ (a k cos 2nkx  + b k sin 2~zkx) 
k = l  

then it suffices to require this condition only for m = L. 

Remark 2. For the sequences z. and b. in Theorem (3.1) we stated lim r./b. = 1 
n~co 

a.s. and b.~n.  For certain special sequences {nk}eA* we can say more about z. 
and b.. We mention two such cases. 

4 The  symbol  ~ means  weak  convergence  of  con t inuous  processes, for definition and  proper t ies  

see [4]. 
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a) If nk+l/nk---~ O0 then we have b , ~  II f II 2 n. 

b) If n k = a k (a > 2 is integer) and 0 -2 :~ 0 where 

0-2=117112+2 ~ f ( x ) f ( a k x ) d x  5 (3.5) 
k = l O  

then we have b.~0-an  and moreover, we can choose z ,=b , .  From this fact it 
follows (see [14], pp. 33%338) that in this case the sequence f ( n k X  ) obeys the 
Kolmogorov-Erd6s-Petrovski integral test in the following form: Let (p(t)>0 
be an increasing function. Then the" set of those x~[0, 1) for which the relation 

N 

f (n k x) > b~/2 cp(bN) for infinitely many N 
k=l 

holds, has Lebesgue-measure 0 or 1 according as the integral 

1 r t -1 q)(t) exp { - 7  (t)} dt 
l 

converges or diverges. 
To deduce Theorem (3.1) from Theorem 2 of [1] we prove the following 

Lemma (3.2). Let  us suppose that the conditions of  Theorem (3.1) are satisfied 
and put 

aM, N= f ( n j x )  dx  ( M > O ,  N > I ) .  (3.6) 
0 j = M + I  

Then for  any 0 < e < 1 there exists an o) o = a~ o (�9 such that for  any M > O, k > I, 
0 <- i < 2 k - 1 we have 

( 1 - 0  aM,N<2 k ~ f ( n j x )  d x < ( l + e )  aM, N (3.7) 
i2 -k j = M + I  

provided that N >= No,  nM/N,  2 k > co o . 

Remark, If f is a trigonometric polynomial of order L then the assumption 
{nk}eA* can be weakened, namely, in this case for the validity of Lemma (3.2) 
it is sufficient to assume that the set-theoretic union of the sequences {nk} , {2rig} . . . . .  
{Lnk} satisfies the Hadamard gap condition. 

Proof  of  Lemma (3.2). By assumption c) of Theorem (3,1) we have aM, N~ C1N 
for N > No, hence it suffices to show that for any 0 < e < 1 there exists an o9~ = % (e) 
such that the difference 

is at most e N  provided that N > N o ,  nM/N.  2k~col. Let 

f ~ ~ (a k cos 27zkx + b k sin2~kx) 
k=l 

s The series is absolutely convergent by Lemma (5.1) of [1]. 
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be the Fourier expansion o f f  and write f = fl +f2 where 

fl = i (ak COS 2nkx +b k sin 2nkx) (3.9) 
k = l  

L =f-f1 
m> 1 is an integer to be specified later. Let us also assume that I[fzll < 1. We shall 
prove the following two statements: 

1. Assume nM/2k> 1. Then, replacing f by f l ,  the expression (3.8) changes 
at most C a II fa ]11/2 N where C 2 is a positive constant depending on f(x) and {nk}. 

2. We have 

where C a is a positive constant depending on f(x), {rig} and m. 
Choosing m in such a way that [] f2 [[ < 1 and C 2 [[ f2 [[ 1/2 < e/2 hold, the above 

two statements imply that the expression (3.8) is at most ~N/2+C42*N2/nM 
(where C 4 depends on f(x), {nk} and e) whence the statement of the lemma follows. 

To prove statement 1, let Q and (2' denote, respectively, the first term of the 
difference (3.8) and the expression obtained from Q by replacing f by f l .  The 
substitution t=2kx shows that 

Q= ~ f(mjt) dt, ~ fx(mjt) dt 
i \ j =  +1 i j = M + I  

where mj=nj2 k ( M + I  <=j<=M+N). By assumption b) of Theorem (3.1) we have 
nk + 1/nk >---- q (k = 1, 2,...) with a certain q > 1 and thus, using Minkowski's inequality 
and Corollary 1 after Lemma (3.3) of [1] we get for nM/2k>--_ 1 

(i+I ( M+N , 2 , 1 / 2  

IQ1/2_Q,1/EI<.fl  ,j=~+lf2(mjt)) dt ) <Cs]lf2lll/2N */2 (3.11) 

where C s is a positive constant depending on f(x) and {nk}. (Observe that the 
Fourier-series off2 is 

f2 ~ ~ (ak COS 2 rc k x + b k sin 2 rc k x) 
k = l  

where ak ~ bk ~ 0 for 1 --< k-< m and ~l k ~ ak, bk = bk for k > m. This shows that f2 
also satisfies the second relation of (1.4) with the same A, ~.) A further application 
of Corollary 1 after Lemma (3.3) of [1] yields for nM/2 k >i  (note that II f~ II < II f II 
and f~ also satisfies the second relation of (1A) with the same A, ~) 

Q1/2 -t- Q' 1/2 ~ C6N1/2 (3.12) 

where C 6 depends on f(x) and {nk}. Multiplying relations (3.11) and (3.12) to- 
gether, we get 

IQ-Q'I< CsC6 Il f2ll~/2 N. 
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A similar argument shows that the second term of the difference (3.8) changes 
also at most C 7 [I f2 II ~/2N when we replace f by f l .  Hence statement 1. is proved. 

To prove statement 2. let ,,~-(")_-I,~2~(") < " '  < n(k ") < ..- be the set-theoretic union 
of the sequences {nk} , {2nk} . . . . .  {rank}. By assumption b) of Theorem (3.1) the 
sequence {n~ ")} satisfies the Hadamard gap condition i.e. there exists a 1 < q * <  2 
(depending on m) such that 

n ( m )  /, ,(,,)>,,, ( k = l ,  2, ...). (3.13) k + l / ' ~ k  ~ 

By (3.9) we have 

f l (n jx )=  ~ (a k cos 2~kn jx  +b k sin 2~knjx)  
k = l  

and thus 

M + N  H 

f l (n jx )=  ~ (c~cos2~2~x+d~sin27rA~x) 
j = M + I  r = l  

(3.14) 

where H < m N ,  every 2~ belongs to the sequence {n~ m)} and, choosing the indices 
in such a way that 21 <22 < . . -<2n  holds, we have 21 =nM+ 1 . By (3.13) we have 

) c~- -2r>=(q*- - l ) )~ (q*- - l )2 t>(q*- l )n  M ( l ~ r < s ~ H ) .  (3.15) 

It is also easy to see that 

M =m a x  {[q 1, ]d I [,..., [cH[ , IdHI } < c a (3.16) 

where C s is a constant depending on f (x) ,  {nk} and m. Indeed, the trigonometric 
sums fl (nv x) and fl  ( n  x) (v </~) in the left hand side of (3.14) can overlap 6 only if 
n u <mnv, i.e. overlapping is impossible if # -  v > l where 1 is the smallest integer 
such that (q*)Z>m. (Note that (3.13) implies nk+l/nk>q * for k = l , 2  . . . . .  ) This 
remark shows that M < l M *  where M*---max {[al[, [bll . . . . .  tam], [bml } and thus 
(3.16) is valid. 

Squaring (3.14) and using well-known trigonometric identities we get 

' n X  1 2 2 Jl( j =~ ~ (c r +dr )+I  (3.17) 
j = M + I  r = l  

where 

I =  ~ (e i cos 2zc pix + f sin 2rc PiX ) (3.18) 
i 

is a trigonometric polynomial such that l eiJ< M 2, I~ ]~  M2 and the pl-s are of the 
form pi=2,.+2~ (l<_r<_sNH) and pi=2~-2, .  ( l ~ r < s < H ) .  By (3.15) we have 

p, > ( q * -  1) n M (i= 1, 2,...). (3.19) 

6 We say that two trigonometric sums overlap if they contain a sine or cosine term with the same 
frequency. 
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It is also evident that the sum in (3.18) contains at most 8H2<=8mZN 2 terms. 
Let (c~, fl) be any interval. Using (3.16), (3.19), the facts 

~ dx ! c o s y x d x  <2/17[, ~Ssinyx <2/[Yl 

and the remarks above, we get 

! ~ '27"CPi 2~'~Pil I'~ i2M2 2M2' M2 t~ ' < . , - - + - - , <  1_< ~ S m 2 N 2 ~ C 9 ~ 
= =(q*_l)  nM. - - (q*- - l )n  u 

N 2 

Y/M 
(3.20) 

where C 9 depends on f(x), {nk} and m. Integrating (3.17) on (i2 -k, (i+ 1)2 -k) 
and (0, 1) and using (3.20) we obtain 

0 j = M + I  r = l  

N 2 
IJ I<c9N22 *, I J ' l < C 9 - -  

nM /~M 
The latter relations evidently imply (3.10). 

If f (x)  is a trigonometric polynomial of order L then choosing m=L in the 
proof above we shall have fl =f ,  f2 =0" Hence the Remark after Lemma (3.2) 
follows immediately from statement 2. above. (Observe that in the proof of 
statement 2. we did not make use of the full strength of {nk} ~ A* but only the fact 
that the set-theoretic union of {nk}, {2nk} .... , {rank} (m is the number for which 
statement 2. is formulated) satisfies the Hadamard gap condition.) 

For the numbers aM, N in (3.6) we have 

CaN<=aM,N< C2N ( M ~ 0 ,  N>No) (3.21) 

by condition c) of Theorem (3.1) and Lemma (3.3) of [-1] (C a, C 2 are positive 
constants independent of M, N). Hence Theorem (3.1) follows immediately 
from Theorem 2 of [1-] via Lemma (3.2) above (see Remark 2 after Theorem 3 
in [1]). Observe also that the sequences {X,}, {%} occuring in Theorem (3.1) 
satisfy conditions 1. and 2. in w 2 (Condition 1. follows from the quasi-equivalence 
of {Xk} and {f(nkx)} and the first relation of (1.4)). Thus Corollaries 1 and 2 
follow from Theorem (3.1) by means of Lemmas (2.1) and (2.2). (Note that the 
weak convergence of continuous processes is equivalent to convergence in the 
Prohorov metric.) 

It remains to prove Remarks 1 and 2 after Theorem (3.1). Remark 1 is evident 
by the Remark after Lemma (3.2). To get part a) of Remark 2 let us note that in the 
case nk+l/nk--,,oe the numbers aM, N in (3.6) satisfy not only (3.21) but also the 
stronger relation aM, N~l l f l l2N as N ~ o o ,  uniformly in M (this follows from 
Corollary 2 to Lemma (3.3) in [1]). Hence relation b , ~  Jl f [I 2n follows from Re- 
mark 4 after Theorem 3 in [1]. To get part b) let us observe that for any k >  1, 
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O<i<2k- l ,M>-k ,  N>-I we have 

2k ~ \J=M~+l(i~12)-~ k (M+N f(2jx))2dx~_ iil (M+Ni  \j=M~+I f(nJ-kD)2dt 

if t M+N \2 N 2 
--i OJ tj:~M+lf(2J-kt))d,: Oi (\r=E1 f(2r')), d, 

by the periodicity o f f  and the stationarity of the sequence f(2"x). Hence, putting 

and noting that au~cr2N where o -a is the number defined by (3.5) with a = 2  
(see e.g. [7], Lemma (4.1)), part b) of Remark 2 (in the case a=2)  follows from 
Remark 5 after Theorem 3 in [1]. For a > 2  the proof is similar (see Remark 6 
after Theorem 3 in [1]). 

4. w Some ~-Limit Theorems 

It is well known that the lacunarity condition 

nk+l/nk>=q>l (k= l ,  2 . . . .  ) 

does not imply the central limit theorem and the law of the iterated logarithm 
for the sequence f(nkX ) even if q is large and f satisfies strong smoothness con- 
ditions. This is shown, e.g., by the example of Erd/Ss and Fortet (see [8]): 

f ( x ) =  cos 2nx +cos 2nmx, nk=m k -  1 (4.1) 

in which case we have 

( ~, ) lt/V21cos(m-1)~sl 
lim P N -1/2 f (nkx)<t  =(27C) -1/2 ~ ds ~ e-u21Zdu 7 
N~oo k=l 0 --o~ 

and 
N 

l imsup(2Nlog logN)  -1/z ~ f (nkx)=]~cos(m--1)nx  a.e. 
N ~  k=l 

Let us note, however, that for the function f in (4.1) the sequence f (nkx ) satisfies 
both the central limit theorem and the law of the iterated logarithm provided 
that {rig} satisfies 

nk+Jnk>2m (k=1,2  . . . .  ). 

(For integral n k this follows, e.g., from the results of [2, 10], the extension for non- 
integral n k is also easy.) This gives us some hope that even i f f (n  k x) does not imitate 
the behaviour of independent random variables for a given f and q, the situation 
becomes better if we increase q (by keeping f fixed). In this section we shall see 
that this is really valid. As a matter of fact, it is not true that for any f (satisfying 

7 t/O denotes +~ ,  0 and -oo according as t>0, t=O and t<0. 
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certain smoothness conditions) there exists a qo such that  the sequence f(nkX ) 
obeys the central limit theorem and the law of the i terated logari thm if q > qo. 
We shall show, however, that  the "devia t ion"  from central limit and i terated 
logari thm behaviour  of the sequence f (nkX ) tends to 0 if q ~  oo (and f is being 
kept  fixed). The same holds for Donsker ' s  invariance principle and Strassen's 
version of the law of the i terated logarithm. 

Theorem (4.1). Let f (x) satisfy (1.1) and (1.4). Then for any given e > 0 there exists 
a qo=qo(~,f)  such that if {nk} satisfies (1.2) with q>qo then the following two 

statements hold (we put SN= ~ f (nkx) ) :  
k = l  

a) li-m sup ]P(SN/aV~< t) - (b(t)[ < ~, 
N - ,  oo t 

b) l - e <  lira ( 2 a 2 N l o g l o g N ) - ~ / 2 S N < l + e  a.e. 
N ~ o o  

where a =  I]fll +0 (~(t) denotes the distribution function of  the standard normal 
distribution). 

The functional version of Theorem (4.1) can also be formulated. It is not  
evident, however, what  to call the "funct ional  version" of  Theorem (4.1) i.e. 
how to define the notions " the  sequence f(nkX ) satisfies Donsker 's  invariance 
principle with accuracy e" and " the  sequence f (nkx)  satisfies Strassen's law of 
the i terated logari thm with accuracy e". The following definitions are quite 
natural  but  not  the only possible ones. 

tl 

Definition 1. Let Y1, Y2 . . . .  be a sequence of r andom variables, S, = ~ Y/ (S O =0)  
and define the r andom function qg,(t) (0 < t < 1) as follows: i= 1 

~ . (Sk/]/~n for t = k/n (k = O, 1 . . . . .  n) 
(p,(t) = ~linear for te [k/n, (k + 1)/n] (k =0 ,  1 . . . . .  n -  1). 

Let e > 0 be fixed. We say that  the sequence Yk obeys Donsker ' s  invariance principle 
with accuracy e if 

lim p(cp,, 0 < 8  
n - ,  oo 

where ~(t) (0 =< t < 1) is the Wiener-process and p is the Prohorov-dis tance  s. 

Definition 2. Let Y1, Y2 . . . .  be a sequence of r andom variables, S, = ~ Yi (So = 0) 
and define the r andom function 0,(t)  (0 < t < 1) as follows: i= 1 

Sk/(2n log log n) 1/2 for t = k/n (k = O, 1 . . . . .  n) 
0,(t)  = ( l inear  for t ~ [k/n, (k + 1)/n] (k = 0, 1 . . . . .  n - 1). 

8 See footnote 2. 
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Let e > 0 be fixed and let K denote the set of functions defined by (2.7). We say that 
the sequence Yk obeys Strassen's law of the iterated logarithm with accuracy e if 

a) lira d@,, K)<~ a.s. 9 
n~oo 

b) For any x ( t ) eK  we have 

li_m d(0,, x)<e  a.s. 
?1-~ oo 

Theorem (4.2). Let f ( x )  satisfy (1.1) and (1.4) and assume, Jot simplicity, that 
J[ f [1 = 1. Then for any given e > 0 there exists a qo = qo( e, f )  such that if {nk} satisJles 
(1.2) with q > qo then the sequence f (n k x) obeys both Donsker's invariance principle 
and Strassen's law of the iterated logarithm with accuracy e. 

Remark. The example of ErdSs and Fortet mentioned above shows that qo in 
Theorems (4.1) and (4.2) depends on f strongly. 

It is easy to see that Theorem (4.2) implies Theorem (4.1). On the other hand, 
Theorem (4.2) follows immediately (via Lemmas (2.1) and (2.2)) from the fol- 
lowing general theorem which is the main result of this section: 

Theorem (4.3). Let f ( x )  satisfy (1.1) and (1.4) and assume, for simplicity, that 
1] f ]l = l. Then for any given e > 0 there exists a qo = qo(~,f ) such that if {nk} satisfies 
(1.2) with q>=qo then for the sequence f(nkX) we have the following result: 

There exists a new probability space (f2, .Y, P) and a sequence Xa, X2, . . .  of 
random variables (defined on (f2, ~ ,  P)) such that the sequences {f(nkx)} and 
{ Xk} are quasi-equivalent and 

X 1 -~-... q-Xn=~('Cn)nUo(n 1/2-~) a.s. as n ~ o o  

where t />0 is an absolute constant, ~ is a Wiener-process on (f2, ~ ,  P) and ~, is a 
positive, strictly increasing sequence of random variables (also on (f2, Y ,  P)) such 
that % - r , - a  =O(1) a.s. as n--* oo and 

1 - e < lim inf ~,/n < lira sup ~,/n < 1 + e a.s. 

Theorems (4.1) and (4.2) show that if f (x)  and {nk} satisfy (1.1), (1.4) and 
nk+l/nk--~oO then the sequence f (nkx  ) satisfies the central limit theorem, the law 
of the iterated logarithm and the functional versions of these theorems exactly 
(i.e. with e=0). Similarly, in this case the conclusion of Theorem (4.3) holds with 
e = 0. These remarks can be obtained also fi'om the results of the preceding section 
(see Remark 2 after Theorem (3.1)). 

Proof of Theorem (4.3). The substitution t=2kx  shows that 
(i+l)2-k ( M ~ N ) ) 2  i+1 ( M ~ N ) ) 2  

2 k ~ f ( n j x  d x=  ~ f ( m j t  dt (4.2) 
i2 -k j=M+I i j=M+I 

where mj=2-~nj .  By Lemma (3.3) of [1] there exists a qo=qo(e , f )  such that if 
raM+ 1 > 1 and mj+l/mj>qo for M +  1 < j < M + N -  1 (i.e., equivalently, riM+ 1 >2  k 
and nj+~/nj>qo for M + I  < j < = M + N - 1 )  then for the right hand side of (4.2) 

9 See footnote 3. 
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we have (using Ilfll : 1) 
i+1  ( M + N  2 

Hence Theorem (4.3) follows from Theorem 1 of [1]. 
We mention one more consequence of Theorem (4.1) which extends some 

results of [11, 16]: 

Corollary. Let f(x) satisfy (1.1) and (1.4) and let {nk} be a sequence of positive 
numbers satisfying (1.2). Then we have 

N 

li--m (2N log log N) -1/2 ~ f(nkX)< C a.e. 
N~oo  k=l 

where C is a constant depending on f (x) and q. 

Indeed, any sequence {nk} satisfying (1.2) can be decomposed into finitely 
many sequences each of which satisfies (1.2) with an (arbitrarily prescribed) large 
q = ql. Applying statement b) of Theorem (4.1) (e.g. with ~ = 1/2 which is possible 
if ql in the decomposition is chosen large enough) and using the fact that 
lim (a. + b.) < lima. + limb. we immediately get the Corollary. 
t l - ~  n~oo n-~oo 

Remark. There is an other way to get Theorems (4.1) and (4.2) of this section. 
Let us write f = f l  +f2 where fl  is a trigonometric polynomial and Hf211 is small. 
It is easy to see that if nk+l/nk>=q where q is large enough then f l  (nkX) is a multi- 
plicative system. (For a definition see [2].) Since for multiplicative systems the 
law of the iterated logarithm is valid (see e.g. [2]), this holds in particular for 
fl(nkX). On the other hand, analyzing the proof of the theorem in [16] we see 
that if IIf211 is small enough then 

N 

lim (2N log log N) -1/2 ~ f2 (nkX)  
N~oo k--1 

is also small. From these facts and f = f l  +f2 it follows that f(nkX ) obeys the 
law of the iterated logarithm with accuracy e (i.e. statement b) of Theorem (4.1) 
holds) if q is large enough. Since Donsker's invariance principle and Strassen's 
law of the iterated logarithm are also valid for multiplicative systems (see [2, 10]), 
the remaining parts of Theorems (4.1) and (4.2) can also be obtained in this way. 
This derivation, however, presupposes the validity of some functional limit 
theorems for multiplicative systems the proofs of which are rather involved, Our 
method used in this section is simpler, unified and assumes Donsker's and 
Strassen's theorems only for the Wiener-process. 

5. w The Trigonometric Case 

In this section we shall investigate what form of the a.s. invariance principle 
can be stated in the classical case f (x )=cos  2rex. We know that under quite 

N 

general conditions the asymptotic behaviour of ~ f(nkx), N ~ o e  is the same 
k = l  
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as that of ((rN), N ~ o o  where ( is a Wiener process and z u is a certain sequence 
of random variables. In w 3 we showed that if {nk} e A* (which is a stronger assump- 
tion than the Hadamard gap condition) then z N are asymptotically constant: 
"c~v,,~b N with a certain numerical sequence bN~N. The example of Erd6s and 
Fortet (see w 4) shows that this is not necessarily valid if we assume only the 
Hadamard gap condition for {nk}. (In fact, in this case even the central limit 
theorem can fail to hold.) In the sequel we shall show that the case f ( x )= cos 2nx 
is exceptional, namely, in this case the Hadamard gap condition is sufficient to 
imply the a.s. invariance principle for the sequence f(nkX ) with asymptotically 
constant r N (even with constant zN). A result of this type follows at once from 
Remark 1 after Theorem (3.1). Indeed, f ( x ) = c o s  2nx  is a trigonometric poly- 
nomial of order 1 and thus for this function f the statement of Theorem (3.1) 
holds assuming only the Hadamard gap condition for {nk} (instead of {nk}eA*). 
The following theorem shows a little more, namely that in the case f ( x )=  cos 2nx 
the random variables "c u can actually be chosen constant: 

Theorem (5.1). Let {nk} be a sequence of positive numbers satisfying (1.2). Then 
there exists a probability space (~2, 2,  P) and a sequence X 1 , X2, ... of random 
variables (defined on (f2, ~, P)) such that the sequences {cos 2nnkX } and {Xk} are 
quasi-equivalent and 

Xl +. . .+  X,=((n/2)+o(n 1/z-~) a.s. as n--+m 

where ( is a Wiener-process on (f2, o ~, P) and r 1 > 0 is an absolute constant. 

Proof By the identity 2 cos c~ cos f l=cos (e+f l )+cos  (e- f l )  we have 

27( + cos2 < 2 2k i \j= M~+ 1 dx=I1 +12 

where 
M+N ( i+1)2  - k  N k M+N ( i+1)2  k 

II-----2k E ~ c ~  -+2 2 ~ �89176 
j = M + I  i2 -k  j = M + I  12 k 

( i+1)2  - k  

12 =2k E y . (cos2n(n, 
M+I~#<v<=M+N i2 -k  

Using (1.2) and the fact that 

f cos 7x dx <2/171 

we get 

11 N M+N 2 --<2 k 2 
-- =<2kj=M+I~ 8nnj--  8rcnM+ 1 

1121= <2k 
M + I  < # < v < M + N  

<2  k 
M + I  < # < v < M + N  

+ n ) x  + cos 2n(n~- n#)x) dx. 

2 k 
L ,  (l +q- l  +q-  e + ' " )<  C1 nM 

2 -~ 2 
(2n(n~ +nu) 2n(n:-nu)) 
( ) M+N .2 k 

1+ 1 <2kN ~ C2< _ C 3 N  
n ~ ( 1  - 1 / q )  - ~ = ~ , + 1  n~ - n ~  
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where C1, C a, C 3 depend only on q. Hence the left hand side of (5.1) is 

N ( N . 2  k ] 
T - t - O \  n M / 

and thus Theorem (5.1) follows from Theorem 3 of [1]. 
Theorem (5.1) is not the best result in the field. We can state a better result 

under the same conditions and, on the other hand, we can weaken the assumption 
that {rig} satisfies the Hadamard gap condition. As to the first line of generaliza- 
tion, we mention the following result of Philipp and Stout giving an a.s. invariance 
principle for lacunary trigonometric sums with weights: 

Theorem (see [12])�9 Let {rig} be a sequence of positive numbers satisfying (1.2)�9 
N 

2 1  2 Let further {ak} be a sequence of real numbers such that, putting AN-- ~ ~ a k, 
k=l  

we have AN-+oo and aN=O(A~ -a) with a constant 0<6__< 1. Then there exists a 
probability space ((2, ~,  P) and a sequence X t ,  X2, ... of random variables on 
(Q, o ~, P) such that the sequences {Xk} and {a k cos 2rcnkx } are equivalent and 

�9 ~ ( A . ) + o ( A .  ) a.s. a s  n - - ~ o o  X l +  ..+X= 2 i-~ 

where ~ is a Wiener-process on (f2, ~, P) and c > 0 is an absolute constant. 

The other line of generalization is motivated by a remarkable theorem of 
Erd6s (see [5]). Erd6s' theorem states that the sequence cos 2nnkX satisfies the 
central limit theorem provided that {nk} is a sequence of integers satisfying 

nk+l/nk >= 1 +Ck/lfk, c k -+oo. (5.2) 

Erd6s also remarks that this theorem is best possible i.e. for any fixed c > 0 there 
is a sequence {nk} of integers which satisfies rig+in k > 1 + c/l fk and the sequence 
cos 2rCnaX does not obey the central limit theorem. (For some other results related 
to Erd6s' theorem see [18] and the bibliography given there.) In view of Erd6s' 
theorem one can expect that if {rig} satisfies (5.2) then the sequence cos 2~ZnkX 
obeys an almost sure invariance principle with constant z N. In this direction we 
have proved the following theorem: 

Theorem (see [3]). Let {nk} be a sequence oj integers satisJying 

nk+i/n k > 1 + l/U, ~ < 1/2. (5.3) 

Then we have the conclusion of Theorem (5.1) (with the minor modification that now 
the constant tl > 0 can depend on a). 

By the remarks above the last theorem is not valid for e = 1/2. It is very likely 
that the theorem remains valid if (5.3) is replaced by (5.2). 
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