Z.Wabhrscheinlichkeitstheorie verw. Geb. 27, 233 —256 (1973)
© by Springer-Verlag 1973

Fine Boundary Minimum Principle and Dual Processes

Nguyen-Xuan-Loc*

Introduction

The boundary minimum principle (BMP) plays an important role in axiomatic
potential theory. For instance it is 2 key argument in the method of solving the
Dirichlet problem in harmonic spaces ([1a, 8]) and consequently it becomes an
essential hypothesis for the local theory of cones of potentials [11].

Given an open set % of a strong harmonic space (#, E), one can state the BMP
as follows:

Suppose that f is hyperharmonic in % and that
ligl inf f(x)=0 for every point y of the boundary of %,
XEU, x>y

and moreover that there exists a potential p on E such that f = —pin %. Then f is
non negative in %.

If % is relatively compact the above result reduces to the classical form of the
BMP which was first obtained by Brelot [3]. However the most general setting of
the BMP is the abstract minimum principle of Bauer ([1a], p. 7), whose proof is
essentially based on the compactness property of the state space.

Starting from the case of a strong Brelot harmonic space with the domination
principle, Fuglede has recently succeeded in building up a “fine harmonic space”
where the underlying topology on E is the fine one. Thus he was lead to a new type
of potential theory with results analogous to the usual ones.

Arguments based on the local compactness fail in this fine harmonicity theory;
for instance Fuglede’s proof of the following fine BMP ([6], IV, 9.1) is mainly based
on capacity-theoretic arguments: Suppose that f is finely hyperharmonic in a
finely open set U of E (see Def. 2, § 4) and that fine-lim inf f{x) =0 for quasi-every

xel, x—y
(g.e.) y on the fine boundary of U. Suppose moreover there exists a semi-bounded

potential p on E such that f >—p in U. Then f'is non-negative in U. Using a Hunt
process X =(Q, #, %, X,,0,,(, P*) associated with the given harmonic space, a
probabilistic proof of the above result was given in ([9b], Th. 6). The proof is
reduced to the study of the following inequality:

For g.e. xin E:
f)zliminf, E,(f(X,,); n,<{) 0
> E, (lim inf,,f(X,,n); lim, n,<{)

* This work was done while the author was staying at Erlangen-Niirnberg University during 1972-1973,
and was supported by the Alexander von Humboldt Foundation.
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where f is the function equal to f in U and 0 in EX U, and (3,),. is an increasing
sequence of {%}-stopping times such that
Forg.e. xin E:
lim,n,=Tg ya.s. P*in Q
and )
FOZE(f(X,); n,<() for n=12,....

The proof of (1) and (2) is based on two main arguments:

a) If U is open for the initial topology of E, such a sequence (i7,),.xy Was con-
structed by Sur in [12], and if the capacity A — R{ (x) (=inf{u(x): uX-excessive
and =1 on A}) has the Choquet property then one can pass from the initial
topology to the fine one. Recall that in a strong Brelot harmonic space the Choquet
property of A — R{(x) is equivalent to the domination principle.

b) For each point x in E such that the supermartingale (p(X,), {Z:}, P¥) is of
class (D) the Fatou-type lemma in (1) holds for the sequence of random variables
( f(x Nw)wen at such a point x. Recall that in a strong Brelot harmonic space a
potential p is semi-bounded iff the supermartingale (p(X,), {#}, P¥) is of class (D)
for g.e. x in E.

It is natural to ask whether in a) the Choquet property of 4 — R¢*(x) and in
b) the semi-boundedness of p could be removed.

Lemma 1 and its Corollary 2 of Section §2 affirm that such an increasing
sequence of stopping-times (7,),.n could be constructed for any transient standard
process with a reference measure. Lemma 4 shows that under the duality hypo-
thesis the Fatou-type lemma in (1) holds for a rather large class of diffusion
standard processes and cofinely lower semi-continuous (1 s.c.) functions f.

Section §3 is concerned with the fine BMP under the duality hypothesis of a
class of numerical and finely Ls.c. functions in E (Th. 6 and Cor. 7). As far as we
know, even in the brownian motion case, the above problems seem to be new in
probabilistic potential theory since one used to consider only the cone of excessive
functions of a standard process. Note that in the case of a strong harmonic space,
the cone of excessive functions of the associated Hunt process is identical to the
cone of non negative hyperharmonic functions.

In Section §4 we apply the results of Section §3 to prove the following form
of fine BMP in a harmonic space: Given a strong harmonic space (#, E) (Bauer or
Brelot) where:

The state space E has a countable base and the function 1 is hyperharmonic.
A Green function for (J#, E) exists.
Semi-polar sets are polar.

Let f be a finely hyperharmonic function in a finely open subset U of E.
Suppose that

fine-lim inf f(x)=0 for every x in the fine boundary of U,

elU, x-y

and moreover f= —pin U, where p is a potential in E. Then f is non negative in U.

Let us note that in the given harmonic space (# E) every finite potential is
semi-bounded [9c¢].
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In the appendix we show that the classical BMP of Brelot [3] could be deduced
easily from our method of proving the fine BMP.

Contents

§ 1. Some Preparations on Dual Processes . . . 235
§2. Three Lemmas . . . . . . . . . . . .. 238
§ 3. The Fine Boundary Minimum Principle . . 246
§ 4. Applications to Axiomatic Potential Theory 250
Appendix . . . . . . . .. 254
References . . . . . . . . .. . . . . ... 255

The author wishes to thank Professors H. Bauer, H. Féllmer, and B. Fuglede for their interest
in this work.

1. Some Preparations on Dual Processes

The framework of the duality theory of two standard processes is presented in
([2a], Chap. VI). We assume that the reader is familiar with this chapter, so proofs
which are readily available in this literature are not repeated. Because we will
make use of them later, we introduce here a survey of some new results of Blu-
menthal and Getoor [2b] on the relation between the fine and cofine topologies
and those of Weil [14] on the behaviour of coexcessive functions on paths. The
results (1.d) and (1.e) are consequences of the above mentioned ones and seem to
have some independent interest.

Duality Hypothesis

Let (B);»o and (P),>0 be two submarkovian, standard semi-groups on the
same state space E, (U,),»o and ( gz be respectively their resolvents and
X=(Q %%,X,,0,,(, P"), X= (£, &, J,,X,,H,,C, P*) be respect1vely their real-
izations. We say that (B),», and (B),», (or equivalently (U,) and (U,)) satisfy the
hypothesis of duality if:

1) There is a positive radon measure m(dx) on E such that all the measures
e, U, U g, (xeE) are absolutely continuous w.r.t. m(dx) and:

§fUgdm={fU,gdm (3)
for every p=0 and for every couple f, g of non-negative, measurable functions.

2) The function Uf (=U, f) (resp. f U(=f (70)) is bounded for every f non-
negative, bounded, Borel and with compact support, i.e. both X and X are
transient standard processes.

Recall that by convention B(dy, x) (t=0) and also its resolvent U, (dy, x) are
cokernels, i.e. a kernel on #; x E which acts on the left on functions and on the
right on measures.

If X and X satisfy the hypothesis 1) then every couple of a-processes (o> 0)
constructed from X and X is in duality. Under the hypothesis of duality there is a
measurable function u(x, y) on ExE (E is equipped with the o-algebra of uni-
versally measurable (u.m.) sets) such that: u(-,y) is X-excessive for every ycE
17 Z.Wahrscheinlichkeitstheorie verw. Geb., Bd. 27
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and u(x, -) is X-excessive for every x in E and
Uk, dy)=u(x, y)mdy);  U(dx,y)=m(dx)u(x, y). (4)

Terminology and notation associated with the process X will be distinguished
from those of X by the prefix co-. For instance u(x, *) is coexcessive for every x
in E and we have also corresponding notations such as cofine topology, cothin,
copolar etc. ...

We say that the fine and cofine topologies differ by semi-polar (or polar) sets
provided that the fine and cofine interiors of an arbitrary subset of E differ by a
semi-polar (polar) set.

(1.a) Under the duality hypothesis semi-polar sets (polar) are cosemipolar
(copolar) and vice-versa, and the fine and cofine topologies differ by semi-polar
sets (see [2b], (4.1)).

(1.b) Let f: E—[— o0, + o] be finely lower semi continuous (l.s.c.), i.e. Ls.c.
for the fine topology. Then there exists a f,,: E— [ — co, 4 co0] cofinely Ls.c. such
that f= f, and {f>f,} is semi-polar ([2b], (4.2)).

(1.c) Let f be a-coexcessive (x=0). Then:

a) fis nearly Borel.

b) For every probability law u on E, the map t— f(X,.. (w)) is left continuous
and has right limits on JO, {(w)[ P* a.s. (see [14], Th. 6).

(1.d) The U-potential of an u. m., cofinely open non-empty set is non identically
null, consequently the complement of a m(d x) null set is cofinely dense.

Proof. Since m(dx) is a reference measure for both processes X and X, every
cofinely open and u.m. (finely open and u.m.) is nearly Borel (n.b.) (see [10], XV,
Th. 66). X is transient, for every u.m. and finely open set B:

U(x, B)=E,(| xp(X,) . dt)>0 for xeB,

where y; is the indicator function of the set B. Now let 4 be u.m. and cofinely
open and B be its fine interior. By (1.a) A~ B is semi-polar, therefore B is not

empty, hence:
Ulx,A)zU(x,B)>0 for xeB.

Consequently m(A4)>0, and the complement of a m(dx) null set is cofinely dense
in E. This fact could be seen also directly from the U-potential of a w. m., cofinely
open set.

(1.e) Let u be a probability law on E.
a) If A<E is u.m. and cofinely closed, then
{t: X,_(w)ed; 0<t<{(w)}

is closed for the left topology in 0, { (w)[, a.s. B*.

b) Let f: E—»]—o0, + 0] be um. and cofinely ls.c. Then the function
t—f(X,_ (w)) is well defined and 1.s.c. for the left topology in 0, { (w)[, B* a.s.

Proof. a) Let & (> 0) be the a-coequilibrium potential of A:

& (x)=E, {exp(—aTy}.
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Then by ([10a], XV, T 31) and by [4],
{t: X,_ (w)eA,; te]0, {(w)[}

is discrete P* a.s., where

1
An={ég§1—7}m4 (neN).

On the other hand since &3 is a-coexcessive, by (1.c) the map
t— & (X,_ (o)) is left continuous on 10, {(w)[ 5)
for a.s. P*. We have finally a set € of P*-measure 1 such that for every we

t— &4 (X, _ (w)) is left continuous in 10, { (w)[

{te]0, {(w)[; X,_ ()€ A,} is discrete ©

a) follows then from (6) by an argument analogous to that of ([10a], XV, T 38),

b) the proof of this part follows from part a) and an argument analogous to
that of ([10a], XV, T 39). Note that f'is not allowed to take the value — 0.

Given a triple (Upyz o0, (Up)az 0, m(dx)) with the duality hypothesis, we intro-
duce a regularity condition on the co-resolvent (U ), ;. namely:

(K-W) The function f ffa (x20) is bounded and continuous on E for every
bounded Borel function f with compact support.

Under this condition, the triple (U, a;o,(@)@o,m(dx)) satisfies the so-called
Kunita—WatanabeAhypothesis (see [10b], Chap. II, 2). We still have to check the
condition that o fU, converges pointwise to f as a— oo for every continuous f
with compact support. But this is automatically satisfied since we suppose that
(U o is a standard co-resolvent.

(1.f) The triple (Uyso,(Uazo,m(dx)) satisfies the hypothesis of duality
and (K-W).

Let (), n be a sequence of non-negative measures. Suppose that the sequence
of excessive functions :

,(X)=[ux, ) pudy) (1=1,2,...)

has terms bounded by a fixed potential and converges a.s. m(dx) to an excessive
function u. Then the sequence of measures (u,) converges vaguely to a measure
uand
u(x)=Ju(x, y) p(dy)
(see [10b], Chap. I1I, T 8).
In order to shorten the exposition, let us denote by (B,) respectively (B,) the
following hypotheses:

(B;) Duality hypothesis between the standard resolvent (), , and the standard
co-resolvent (U,), - )
Hypothesis (K-W)
The standard process X =(2, # %, X,, 0, {, P*) associated with (U,),,
has continuous paths. -
17+
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(Bz) All the hypotheses of the case (B,).
Semi-polar sets are polar.

The above hypotheses are natural in potential theory since we will see in §4 that
the Hunt process associated with an harmonic space which has a Green function
satisfies always (B, ).

2. Three Lemmas

The first lemma and its corollary are concerned with the approximation of the
first exit-time of the union of a countable family of u.m., finely open sets by those
of each element of the family. Note that the only hypothesis used in these lemmas
is the existence of a reference measure for the transient standard process X =
(@ Z #, X,, 0,,(, P¥). The remaining lemmas use (B,) (see §1).

Lemma 3 extends to a abitrary potential a property on balayage known for
uniformly integrable potentials. Lemma 4 describes the behaviour of the balayage
operator of X on a class of cofinely L s.c. functions in E. We introduce first some
conventions which generalize to arbitrary u.m. functions some integral notations
usually defined for bounded u.m. functions.

Let T be a {#;}-stopping time and f be a numerical u.m. function. We will
write

E(f(X7); T<{)=[tr <y [(Xr (). P* (dw) ()

provided that
f(T<g}f_(XT(CU)) Pdw)< + 0,

where f~=sup(—f,0). Hence E,(f(Xy); T<{) is finite if and only if f(X;) is
P*-integrable on {T<(}, otherwise it is equal to + co.

A numerical function defined on E is always assumed to have value null at the
point 4. In the rest of the paper we denote by T, the hitting-time of the process X
foran.b. set A of E (= E u {4}), and by 7, the first exit-time of X from 4, i.e., the
hitting-time of the complement of A.

Lemma 1. Let X=(Q, # %, X,, 0., {, P*) be a transient standard process with
a reference measure. Let A, and A, be two n.b. subsets of E,. Then there exist an
increasing sequence (£,) of {,}-stopping times and a semi-polar set e of E such that
a) For every x in E e, one has

E.=lm, ¢, a.s. P~ (8)
b) If the function f is L.s.c. and bounded from below on E , with f(4)=0 and if
f(x)gEx(f(XTAl)a TA,-<C)er (l=17 2)‘
Then
SRZE(f(XE,); &,<()

ZE (f(Xg, . ,.) Tyns,<{)  for every x in Exe and neN.

©

Proof. If x is a regular point of A; N A,, it suffices to define &,=T, . ,,
(n=1,2,...)and (9) is trivial.
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In the general case we construct an increasing sequence (£5) of {Z;}-stopping
times, setting

éi = TAia 12= éi + TAZ (9511)5 Ty 512k+1 = 612k+ TA1 (Bfék)
£ =lim¢,
If x is irregular for 4; N A, and if P*{¢ <T,, .4,}=0, then the sequence (&)
satisfies (8) at this point. Otherwise, we construct again an increasing sequence
(€2) of {Z,}-stopping times, setting
52@):{5; @)+ Ty, 02)  if £o(@)< Ty a, (@)
! TA1 nA2 (w) lf C}:o ((U) = TA1 NAs (CU) (1 1)
3=8+T,0g), - k1 =8+ Ty (0g), ...

By a transfinite induction argument, namely the Tukey Lemma, there exists
a filter (£),.; of stopping times such that

inf;_; Px{éic<TA1nAz}=0' (12)

(10)

I claim that every stopping time & (ic]) satisfies the condition
t+& (0)=¢E , P* a.s. for every t>0.

In fact, since &{ = T, by definition, &} satisfies the above properties. By induction
it suffices to verify those properties for £} and £, . We have

t+E3(0)=t+E1(0)+ T4, (0:10)
=t+&(0)+ Ty, (0; 4+ 210

Now, since for each fixed weQ the function s — s+ T, (6, (w)) (=inf{t>s: X (w)e 4, })
is an increasing function of s and since t+ &H(6,)= ¢} a.s. P, we have t+£5(0,)= &3
a.s. (xeE).

Since every term of the increasing sequence of stopping times (£1), satisfies
the required properties, it is clear that &, =sup ¢! satisfied the required property.

Since the potential kernel of X is transient, for each i the function
U 0)=P*{E, < Ty na)
is an (X — M) supermedian function w. r.t. the exact multiplicative functional
Mi=11,14, 4, ()

(see the proof in [9a], Lemma 2.2). We denote also by @’ the (X — M) excessive
regularization of u'.

The Cartan-Meyer convergence applied to the M-subprocess ([2a], (V, 1.6))
implies from (12) the existence of a decreasing sequence (i), y of the filter (it%),;
such that

infi"(x)=0 for xeEy_,,,
J

where E,, is the set of permanent points of (M,) which is nothing else than the set
of irregular points of 4; N A4,, and where e, = E,, is semi-polar. Thus the designed
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semi-polar set e is e, U ( U {ﬁ,,j<u,,1}) and the designed sequence of stopping
times (&,) is: j=1

P, L E, B, L E B 13)

(b) Consider first the sequence (¢1). By hypothesis b):

JOZE, f(Xa); & <)
By the definition of (£}), in (10) and by the strong Markov property of X, we have

F)ZE(f(Xa); & <E)  (ieN).
The process X is quasi-left-continuous, hence
f)ZE,(lim inf, f(Xy1); &, <{)+E(lim inf, f(Xy); & <(; &L =()

by the Fatou lemma and the lower-semi-continuity of f. Since f is Ls.c. in E,
and f(4)=0, we have
JEZE(f(Xa); £ <) (14)

By recurrence, the inequality (14) is true for every term of the sequence (13),
hence part (a) implies ’
J{(x)gE’Jc(.f()(TA1 r\Az); TA1 nA2 < C)
for x in E—e.

Remarks. 1) Lemma 1 generalizes a result of Sur ([12], Lemma 2). Sur treated
the case of two closed sets for the given topology and showed that for every x in E,
&L =Ty, ~ 4, a.5. P~. However this fact is true if and only if x belongs to the comple-
ment of A7 N A5~ (4, nA4,)" as we pointed out in the “note added in the proof”
of [9b]. It is an interesting question to ask whether the semi-polar set e in Lemma 1
is exactly the set 4] N A5 (4, N A,).

2) Part b) of the Lemma 1 is presented here to illustrate the approximation
procedure of part a). The next Lemma 4 is a much deeper result of this kind and is
a key argument of the next section.

. Corollary 2. Assume the same assumption as in Lemma 1. Let (4;);.y be a sequence
of n.b. subsets of E. Then there are a sequence (n,) of {Z,}-stopping times and a
semi-polar set e such that for every xe E e,

lim,#n,= Tﬁ W ¢ s. P~
i=1

Proof. 1) For the case of k finely closed, n.b. sets 4;, 4,, ..., 4y, it is enough

to define first the increasing sequence of {&#,}-stopping times (n;), defined by:
nm=T, ni=ni+T0,), ..., 0 =n""+ T(Op-)

ns=n5+ T (0, n3=ns+ 0., ..., 15 =15+ T(0x-1) 15

1’[}=1’]";_1 +Ti(0n;‘_l)’ ’712=7111 + B(en;)7 ceey r];=’1_l)—1+’1;(9n;’1)9
where T;=T,, (1=i<k).
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Then for each fixed 1 =j, <k we can apply the arguments of part a) of Lemma 1
to the sequence (#)°),.y and get finally a semi-polar set e; and a sequence (&) of
{#,}-stopping times such that lim, &/ =T, , a.s. P* for x¢e, .

2) Setting I =lim, Tﬁ Lo ve have IT= Tﬁ o Consider the increasing sequence

i i

of stopping times =1 i<
M =I+T,0p); I5=M}+T,0n); ...; =T} _+T,0n_). (16)

Now (1) can be constructed in the same way as (£,) in the proof of Lemma 1.

Let X=(Q, # %, X,,0,,(, P¥) be a standard process on the state space E.
Let (K,),.y be an increasing sequence of compact sets of E such that

K,cK,.;, (@®=12..) and (JK,=E (17)
n=1
and write Ty g =1,.
Definition 1. Assume that a reference measure m (dx) for X exists.

a) A X-excessive function p is a pseudo-potential if there exists a sequence (K,,)
with the property (17) such that

lim, p(X, )=0, a.s. P*as. m(dx). (18)
b) p is a potential provided that p is finite a.s. m(dx) and lim, Ex(p(XTn))=0

a.s. m(d x).
¢) p is an uniformely integrable potential if

lim, E,(p(X,,))=0
for all x outside of a semi-polar set of E and for every increasing sequence {#,} of
{#,}-stopping times such that lim,n,=( a.s.

Remarks.1) Since for every x in (p< + c0) E(p(X, )),.y is a non-negative super-
martingale adapted to (@2, % _, P¥) a potential is a pseudo-potential. The converse
is no more true. For instance, let X be the brownian motion on E=R3*\ {0} and
let p(x)=|x|~!. Then p is a pseudo-potential but not a potential.

2) If X is the brownian motion on R® then p(x)=|x|~! is a potential but not a
uniformly integrable one.

3) If p is a pseudo-potential then
lim,p(Xg)=0 a.s. Pon {R={} (see[2a], IV, 5),

whenever (R,)}is an increasing sequence of stopping times with limit R.
4) Our Definition 1 differs from the usual ones ([2a], IV, 5) by the fact that p
is allowed to have infinite values.

Lemma 3. Assume (B,). Let A, and A, be two n.b. subsets of E. Let p{(x)=
fu(x,y)r(dy) be a potential which is finite on the cofine closure of E~A;nA,.
Let (£,),.y be the increasing sequence of {&,}-stopping times:

€1=TAl§ £2=61+T;12(9§1); cees 52K+1252K+7:11(652K); (19

Then there exists a polar set e — E such that:
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For every xe(p< +c0)e, the supermartingale (p(X ;) X (s, . o e is uniformly
integrable and :

llmn Ex(p(Xén)a £n<C)=Ex(p(X§w)7 ‘foo<C) (20)
where ¢  =lim, &,.

Furthermore of A; and A, are finely closed, then (20) holds for every x in
ExAinA,.

Proof. We are familiar with the sequence (£,) in the proof of Lemma 1. We con-
struct now an increasing sequence of {#,}-stopping times, setting

Elz'tlz; Ez=g1+TA1( [ H Ezk+1=EZk+TAz(gEZk)

Eoo = limn E’l *

Then it follows immediately from Py, u(x, y)=u B, (x, ) (see [2a], (VI, 1.16)) that

and

(PAZ ' PAl) u(x, y)=u(pA1 : pA1) (xa y)
Hence it follows from an induction argument that
P, u(x,y)=uPg, (x,y) (n22).

Consider now two arbitrary u.m.non-negative functions f and g. Since Uf(X, ) >
Uf(X; )as andgU(Xg, )—g U(X¢, )a.s.as n— + o0, we have
[J8(x). B u(x, ). f(y). m(dx) m(dy)=E,(Uf(X, ))=lim, E,(Uf(X,,,))
where v(dx)=g(x) . m(dx), and
[f8().uB (x.). f0). m(dx).(dy)=E,(gU(R¢,)=lim, E,(g U(Xs,,)
where u(dy)=f(y).m(dy). Hence
uﬁgm(x, y)=P_u(x,y) a.s. m(dx)xm(dy) on ExE.

But on the one hand for a fixed x in E the coexcessive function y — P, u(x,y)is the
X-excessive regularization of the co-supermedian function y - uP;_(x, y) and on
the other hand u P;_ (x, y)=u(x, y) for y belongs to the co-fine interior of 4, N A,,
we have:

For every x fixed in E:
{ylul, (x,y)>P_u(x,y)}
is a polar subset of the cofine closure of ExA; " A,.

Suppose first that (dy) is a bounded Radon measure on E. The decreasing of
excessive functions:

u,(X)=E (p(X,); &,<{) (n=12,...)
converges a.s. m(d x) to the excessive regularization fi of inf, u, and furthermore:

B p(x)=[r(dz). P u(x, z)
=fu(x,y).Brdy) (@®=12..).
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We claim that the sequence of Radon measure r,= Pgn.r (n=1,2,...) converges
vaguely to the measure P;_.r. In fact, for a continuous function f with compact
support we have

§10).n@=[E.(f&:); &<{).r(d2).

Since the process X is quasi-left continuous, the sequence of bounded functions
(z— E, (f(Xs,))uen converges pointwise to the bounded function (z — E,(f(X; ).

Thus we have:
lim, {f(y). 1u(dy)=[ E,(f(Xz,) .7 (d2)
=[f). P, rdy).
By assumption p(x) is finite on the cofine closure of E~~A,n A4,, hence r(dy)
doesn’t change polar subsets of this set ([9c]), by (1.g) § 1 it turns out that
a(x)={u(x,y).P;_r(dy)

={rdy)fuP:_(x,y)

={rdy)| B u(xy)

=F_p(x).

Now let e be the polar set {inf, u,>#}. For a point x of (p< +o0)~e,
(p(X¢) X ¢, <c)nen is @ non-negative supermartingale adapted to (Q2,(% )yen> P,
and furthermore since lim, p (X, )=p(X,_)a.s. P* on {¢, <(}, hence (20) is proved
for every x in (p< 4 o0)~e. For every x in (p< + c0) and every ¢=0, we have by
strong Markov property:

q U, i(x)=q U, inf, u,(x)=inf, g U, u,(x)

—inf, E, (jqe—qt. w(X). dt
0

zinf, [ ge ™ E (p(X:) - Xeonn) - dt.
0

If x belongs to (E~A; N A,) then p(x)< + oo and £,>0 a.s. P* for n>2. Hence, if
we let q increase to + co, the last right hand side term will converge to inf, u,(x)
while the left hand term increases to ié(x). This implies #(x)=inf, u,(x). Since
every non-negative Radon measure on E is the sum of a sequence of non-negative,
bounded Radon measures, the case of an abitrary measure r(dy) could be deduce
easily from the above case.

Lemma 4. Assume (B;). Let f be a numerical function defined on E and A,, A,
two u.m. subsets of E such that:

1) A, and A, are finely closed.

2) fis > — o0 and cofinely l.s.c. on E.

3) For i=1,2:

f(x)gEx(f(XTAi); T,,<() quasi-everywhere (q.e.) in E.

4) f(x}= —p(x) q.¢. in E, where p is a potential finite on the cofine closure of
E~A4,n4,.
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Then there exists a polar set e = E such that:

SOZE (X1, ) Tayna,<{) 21)
for every xe(E~(A;nA)ue)n(f < + o).

Proof. By “q.e.” we always mean “for x outside of a polar set”. Since
S~ (x)=sup(—f(x),0)<p(x) g.e. by 4), we have

Ex(f_(XTA,.)Q T, <{)=p(x)<+ow for xe{p<+oc}.

Due to assumptions 1), 3) and the convention (7), there are two polar sets e; and e,
such that
E.(f(Xr,); Ty<{) (i=1,2) is well-defined for x in
(E~e;ney)u{p<+oo} (22)
fX)ZE(f(Xr,); Ty,<{) foreveryxin Exe; (i=1,2).

By Lemma 1 there is a polar set e, =E~(4; " 4,) and an increasing sequence of
{#,}-stopping times (1) such that for every x in E~ ¢,

lim,#,=T,, .4, as P on {T, .,,<(}.

Note that for f(x)= + oo. (21) is trivially true provided that the integral in the
second member of this inequality is well defined, i.e., at least if the point x belongs
also to (E~e;ney)u{p<+ 0}

1) As the first step, we will now show

For every xe(E~A;nA;)n(p<+0)n((f<+0)N(e;Uey)) (f(X f)en is
a supermartingale adapted to

(2 (F D> P (23)

Consider first the increasing sequence of stopping times (&4 )y defined by (13)

JOZE(f(X7,); Ty, <) for xeExe
=E (f(Xy); &i<?) for xeE~e,.
g(@)=fXe) Xy <g (@) k=12..). (24)
Then, again by 3), we have a.s. P* on {¢l <(}:

If Xg(wed; then Ex, e (fX1,) X7, <) =Xy (@))
If Xgy(w)ed, then Ey, (f(Xr,,) Xiray <) S S Xy (@)

Set

(25)

For every xe(Exe;Ue;)n{p<+owo}n{f<+oo}, f(Xr, ) is P*integrable and
furthermore, since ¢ is a strong terminal time, we have by the strong Markov
property of X

E(2: ()| Fy)=Ef(Xey) 11 <0 %1)
=Ex(f(XTAZ) X{TAZ < (0‘:{)|‘g’v‘:i)
=Exyy o f(X1.0) X7 0y <0)-
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Therefore (25) implies
Ex(gZ (w)l«?/-’g{)égl(a)) a.s. P~

(gx(®))en is @ supermartingale adapted to (Q, {#;}, P*). But

supy E. (g )=sup E.(f~ (Xg); & <)
<sup E (p(Xgy); G<{)=Sp(x)<+oo.
Hence there exists a P*-integrable randon variable Z(w) such that

lim, g, (w)=Z(w) a.s. P*
and
f)ZE (ge(@) (k=1,2..)
2lim, E, (gk ().

Since fis finely L s.c. and since X has continuous paths, we have by (1.€), § 1
Z (w)=limy g, (w)
= Hmkf(Xé}((w)) X< = (ﬁmk X (w)) =f(ng,o(60))

a.s. P*in {&& <{}.

Now, since by assumption 4, and A4, are finely closed and p is finite on the co-
fine closure of EX. A; N A, , it follows from Lemma 3 that for every xe(E~ 4, N 4,)
the supermartingale (p(X 1)),y is uniformely integrable and converges to p(X.1).

Let A be a fixed element of %:. Then, by 4) and by Fatou’s lemma

fXa)+p(Xg2Z0  as (n=1,2,..)
and
liminf, E,(f(Xa); A)+lim inf, E (p(X2); A)

. (26)
2E (Z(w); A)+E (lim, p(Xz); A).
Therefore
E.(f(Xg); A)zlim inf, E,(f(Xg); A)
>E.(Z(w); 4) @7
ZE.(f(Xa); 4)
which shows that (f(X 11{)),‘e No ey 18 @ supermartingale adapted to (€, (Fedkenu o>
P*). Now consider the mcreasing sequence of {#}-stopping times (62)y n defined
by (11). Then, since for y fixed B_u(x, y)=uP;_(x, y)for q.e. xe E similar arguments
as those of the proof of Lemma 3 show that the sequence of random variables
(p(Xz,). (p(Xg)hen) is @ uniformly integrable supermartingale for every xe
(E~A;n A,). Therefore it turns out that (f(X,, ), (f(Xz )kenoiwy 18 @ super-
martingale. And so we can apply the above arguments step by step to every
increasing sequence of stopping times (¢i).y (i€]). Since (7,),.y is defined by
(13), (23) is proved.
2) From the proof of the 1st step, we have

B, u(x, y)=ub, u(x, )
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where (7],),y is an increasing sequence of {%,}-stopping times, constructed step by
step from (#,,),x as in the proof of Lemma 3. The proof of Lemma 3 applies without
change to the sequence (,) and so the supermartingale (p(X,, ),y is uniformly
integrable for every xe(E~ 4; n 4,). Using (23) and the arguments of the proof of

(27), we have
JROZE(f(X,,); 1e<()  no=lim, 7, (28)

for every xe(E~A;nA4;)n((f<+o0)~e Ue,). This implies (21) with e=
ejueve.

Remarks. 1) To show that (g, ).y is a supermartingale adapted to (&2, (%, ),..y, P)
for each x in (E~e; Uey) N {h< + 0}, we don’t have to use the continuity of the
paths of the process X. Hence, if &, =T}, . 4, a.s. P* on {T,, . ,,<(} and if a.s.
P*, 3 k(w)eN such that i (w)=T,, ~ 4,(w), then

f(x)gEx(f(XTAlnAz); TA1 nAz<C), (29)

whenever fis u.m., non-negative and satisfies 3) of Lemma 4. In [12], Sur showed
that if 4, and A, are closed for the initial topology, a sequence of stopping times
with the above mentioned properties can be constructed and (29) is true for every x
in E. But in general (29) does not seem to be true for x belonging to the semi-polar
set A;nA,~(4;nA,), which is nothing else than the semi-polar set e of our
Lemma 4.

2) The difficulty of the proof comes from the fact that, although g, (w) converges
to an integrable random variable Z (w), we don’t have in general the inequality

lim, E, (g, (0)) 2 E(Z (o),

since the supermartingale (g, (). y has signed values. If, however, the potential p
is uniformely integrable (in particular if p=0), then the above inequality is true for
every point x such that (p(X,), P*) is a supermartingale of class (D). This special
case is treated in our previous work [9b].

3. The Fine Boundary Minimum Principle
In this section, we describe the fine BMP for some class of finely 1s.c. functions
in E under hypothesis (B,) .The main results are Theorem 6 and its Corollary 7.
The following proposition is proved without the duality hypothesis and seems
to have some independent interest.

Proposition S. Let X=(Q, # #,,X,,0,,(, P¥) be a transient standard process,
A, an.b. finely closed subset of E and f a numerical u.m. function in E. Then

a) the set
U=(E~A) {x| E(f~(X7,); Ty<{)<+oo} (30)

is finely open, and

b) the function x—-)F(x):Ex(f(XTA); TA<C) (31

is well defined and finely u.s.c. in U.

Proof. By our convention (7) the function F(x) is well defined in U ; it may have
the value +oo.
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1) Suppose first that f is non-negative and let BcU(=E~ A) be finely open
with the fine closure contained in U. It suffices to prove that fis finely u.s.c.in B.
I claim that for every n.b. set CcBand for xeC"n B

F(x)=inf {F(y): yeC}. (32)

In fact, let K =B be compact and denote by I, the infinimum on the right side of

(32). Then
Ex(F(XTK); Tx<T)zI.. P (Tx<T,)

since Xr, (w)eK = Ca.s. P*in {Tg<(}. On the other hand

F(XTK)zEXTK(f(XTA); TA<C)
=Ex(f(XTA) XiTa<p® 9TK|«7'TK)-

Hence
Ex(F(XTK)§ Ty < TA)ZEx(f(XTK+TA(9TK)) T+ Ta@r b T < TA<C)
=Ex(f(XTA); Tg< TA<C)
<F(x)
so that
F(x)=1,. P*(Tx< T)). (33)

Now, if xe C"c fine closure of B< C, then P*(T;< T,)=1. By a theorem of Hunt
([2a], (1.10.19)), there is an increasing sequence {K,} of compact subsets of C such
that Ty | To=0 a.s. P*. Hence lim, P*(Tx,.r,)11, and (32) follows from (33).
Now let J, be the interval (— o, c)<R and define W=F~*(J)nB.If xe W then
by (32) x is irregular for B~ W, and so Wis finely open.

2) It follows from the 1st step that for an arbitrary fthe set U defined by (30) is
finely open. Furthermore the proposition is true for every function f bounded
from below on E. Let f be arbitrary and define f,=f v (—n). Then

EX)=E(fv(=n(Xr); Ta<{)
is finely u.s.c. on E A4, and it is not difficult to see that F,(x) | F(x)for xin U.
Remark. The integral E,(f(Xy,); T,<() makes also sense if we suppose
E.(f*(Xr,); Ty<{)<+oo and adopt the convention that E (f(Xr,); T,<()
is —oo if E(f~(Xr,); Ty<{)=—oo. In this case F is finely Ls.c. on the finely
open set (ENA)n {x|E.(f*(Xs,); Ty<{)<+oo} and consequently F is finite
and finely continuous in (E~A4)n {x|F(x) finite}.
Theorem 6. Assume (B,). Let (A;);.y be a sequence of u.m. finely closed subsets
of E. Let f be a numerical function on E such that
1) f> — oo, cofinely Ls.c. in E.
2) f= —p q.e. in E where p is a potential, finite on the cofine closure of E~ A,
where A= () 4;.
i=1
3) Fori=1,2,...:
JO)ZE(f(X7,); Ty<l) qe (34)
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Then:

a) There is a semi-polar set e = E such that
FO)ZE(f(Xr); Ty<()  for xe(EN(AU)N(f<+0). (35)

b) Furthermore
SO)ZE(f(X7,); Ta<() for xe(ENA)N x| E[(f(Xr,); Ty<{)<+o}. (36)

Proof. Consider first k sets A, A,, ..., A;. By 3) there are then k polar sets
ey, ..., e such that

fOOZE(f(Xr,); Ty<() for xeExe (i=1,...,k).

By Corollary 2 there are a polar set g, and a sequence of stopping times (1), y such
that lim, n*=T, a.s. P* for xe Ex¢,, where T, = Tﬁ P Lemma 4, applied to this

i=1
finite case, shows that: (f(X,x)),cy is a supermartingale adapted to (2, (F),en > P7)

and that
SOZE(f(Xr,); Ti<{)

k k

for every x in (E\ (ﬂ Ai) UEU (U ei) N {f< +00). It is not difficult to see that
i=1 i=1

(f(X1,) . X(r<phen is a supermartingale adapted to (%,(%,), PY) and that

S(Xn) . X < is P*-integrable, where IT=lim, T;, for every x in

(E\ O(ekuék))n{p< +oo}n{f<+w}.

k=1
On the other hand, since
P u(x,y)=uPy (x,y), where T.= T{: B k=1,2,..)

it can be shown as in the proof of Lemma 3 that:
For every x fixed in E:

el
Bi(x,y)=uPy(x,y) forV ye cofine interior of () 4;
i=1
Byu(x, y)=uPgy(x,y) (q.e.), where ﬁ:limk T,.

Hence the proof of Lemma 3 applies without change to the sequence of stopping
times (7;), and it turns out that the supermartingale ((p (X, )ien, P*) is uniformly
integrable for every x in (E~A). Therefore the sequence of random variables
(f(X1Dken» f(Xy)) forms a supermartingale adapted to (@, (%, )en» Za, P¥) for
any such x. Now we repeat the same arguments with the increasing sequence of
{Z,}-stopping times (I11), . y defined by (16), and so on. Finally, we get: For every x in

(E\ ﬂAi), (p(X,)nen is an uniformely integrable supermartingale, where (1)
i=1

is the sequence of stopping times defined in Corollary 2, and for every x in

(E\(lei) u(gleku ék)> N(f<+ o)

1

(f(X, )nen is a supermartingale adapted to (2, (#)sen > P). (37
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But by Corollary 2 there is a polar set & < E such that

lim,q,=T, a.s. P* on {T,<(}.

Setting e=¢ U ( Ueu Ek), the proof for (35) is exactly the same as for (27),
k=1
and we have finally for every x in (E~NAvue@)n(f< + )

Se)zliminf, E,(f(X,,); 1,<()

FZE(f(X1.); Ta<{).

and

To prove (36), consider first the function

F(x)=E(f(Xr,); T4<{)

which by Proposition 5 is well defined and finely u.s.c. on the finely open set
(E~A)n {x|E(f~ (Xr,); Ty<{)<+}. By (1b), §1, there is a finely Ls.c.
function f* such that f = f* and {f > f*} is polar. Hence on the finely open set:

U=(E~A)n{p<+oo}n{x|F{x)< + o0}

the function u(x) = f* (x) — F{x) is well defined and finely 1.s.c. But for xe U n(E\.8),
u(x) is non negative by (35). Since e is polar, u(x) is non negative for any x in U.

Remark. For every x in (E ~Aul) ei) n{p< +oo}, the supermartingale
i=1

F(X1,) X <g converges a.s. P¥ to a P*integrable randon variable Y(w). We

know from the proof of the theorem that E,(Y(w))2 E,(f (X7 ); Ty<{) for x in

(Ex®n{p<+ow}, and therefore f(X;,)xr,<y is P*integrable for such x.

Consequently the set (E~ AU @) is contained in {x|F (x)< + co}.

Corollary 7 (the fine BMP). Assume (B,). Let U be a.u.m. finely open subset
of E. Let f be a numerical function defined on U such that:

1) f> —oo0, finely Ls.c.

2) f= —pin U, where p is a potential, finite on the cofine closure of U.

3) There is a base (V,),.; of the fine topology in U, consisting of finely open sets
V, (ael) such that for every a€l, the fine closure of V, is contained in U and:

FO)ZE(f(X,);1,<) forin xinV,
where t,=T;_y,.

4) ﬁne-Ulim inf f(x)=0 for every point y of the fine boundary of U.
xeU, x>y
Then for every finely open subset V of U we have:
FZE(f(X.,); ty<ty) forg.e. xinVn(f<+o0) (38)

Furthermore f is non-negative in U.



250 » Nguyen-Xuan-Loc

Proof. Define the function f=E —]— o0, + o] as follows:

7= finU
“]0in ENU.

Then f is finely L.s.c. and > — co by 4).

_ Due to (Lb), §1, there is a co-finely Ls.c. function f* defined on E such that
f=f* and (f>f*) is semi-polar, hence polar. Consequently f*> —oco since
E~{f>f*}iscofinely dense in E. Clearly f*= —p q.e.in E by 2).

Let V be a finely open subset of U. By 3) there exists an open covering of V by
elements of the base (V,),.; Since the fine topology is quasi-Lindeltf ([ 5], Theo. 8.1),
there is a sequence (V));.y of elements of (V,),.; such that:

e8]

XU1V11=XV q.e.

p has finite values on the cofine closure of | | ¥, since this set is contained in the
cofine closure of U. n=1

Setting A;=E~V; (ieN), the function f* and the sequence of finely closed
sets (4;);.y satisfy all the assumptions of Theorem 6. Hence (35) implies:

FER)ZE(f*(Xr); Ty<{) forqe. xin VA(f*<+0)

where A= ) 4;.
i=1 .
Since f* is equal to f g.e. in U and equal to 0 g.e. in E~. U, (38) follows
immediately from the above inequality. Furthermore if we put V= U in the above
equality, then:

For g.e. x in Un(f< + o0):

Jx)=1*x)
=Ex(f*(XrU)9 TU<C)
=Ex(.f(XrU)’ TU<C)-

Since X, (w)e EXU a.s. P%, it follows that f(x)=0 for q.e. x in U, hence f is non-
negative everywhere in U.

4. Applications to Axiomatic Potential Theory

As we mentioned in the introduction, one can construct ffom a Brelot har-
monic space satisfying the domination principle a sheaf of finely harmonic func-
tions on the class of finely open sets. The most crucial and basic steps in developing
Fuglede’s theory of fine harmonicity (c.f. [6]) consist in establishing a fine BMP
for finely hyperharmonic functions and in asserting the continuity for the fine
topology of these functions. These properties have been proved by probabilistic
methods in [9b]. Applying the results of the last section, we will give in this
section a more general form of the fine BMP, which holds both for elliptic and
parabolic harmonic spaces provided a Green function exists.
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(4.a) With a strong harmonic space (#, E) (Brelot or Bauer), where E has
countable base and the constant 1 is hyperharmonic, one can associate a Hunt
process X =(Q, #, %, X,, 0,, {, P*) with continuous paths such that:

The cone of X-excessive functions is identical to the cone of non-negative
hyperharmonic functions.

The potential kernel V(x,dy) of the process X maps the function 1 into a
strict potential of (s, E) and is called an admissible kernel.

All the potential-theoretic notions of (# E) can be interpreted by those of X
(see [7] and [1Db]).

(4.b) Suppose we have a strong Brelot or Bauer harmonic space (5, E) where
the state space E has countable base and the function 1 is hyperharmonic. A func-
tion u(x, y) defined in E x E is called a Green function if:

1) u(x, y)isl.s.c.in E x E and continuous off the diagonal.
2) For each fixed y in E, x » u(x, y) is a potential in E with carrier {y}.
3) Each potential p in E can be represented in a unique way as

p(x)={ u(x,y)m,(dy) (39)

where m,,(dy) is a non-negative Radon measure on E.

4) The map y — u(-, y) from E into the cone £ of potentials on E is continuous
for the T-topology of this cone. One can define the relative T-topology on the set
%, of potentials on E with one point carrier as follows: Take the weakest topology
on this set such that the map p -» carrier (p) from #, onto E is continuous, and the
map p — p(x) of elements of %, with carrier + {x} into R* is also continuous for
every fixed x in E.

For a Brelot harmonic space such that for every point y in E all the potentials
in E with the same singleton carrier {y} are proportional (the so-called case of
unicity), a classical result of Hervé showed that a Green function for the given
harmonic space always exists ([8], Chap. III).

(4.c) Recently Taylor ([13], Th.(5.4)) proved the following result: Given a
strong harmonic space (# E) (Brelot or Bauer) where the state space E has
countable base, 1 is hyperharmonic and a Green function exists, there is a Green
function G(x, y) of (4, E) and a positive Radon measure m(dy) on E such that:

1) V(x,dy)=G(x,y). m(dy) is an admissible kernel of (, E).

We denote by (B),»o and by X=(Q, # £, X,,0,,(, P*) the corresponding
semi-group and the Hunt process associated with (4, E).

2) V:“ (v, dx)=G(x, y) . m(dx) is the potential kernel of a transient Feller semi-
group (B),zo.

3) (B);»0and (1?;),; o satisfy the duality hypothesis.

It is proved furthermore in [13] that (B),, and (B),», are in duality in the
sense of Kunita-Watanabe i. ¢., the hypothesis (K-W) (§ 1, (1.f)) is satisfied.

Definition 2 ([6]). Let U be a finely open subset of a strong harmonic space
(+£;, E) (Brelot or Bauer). Suppose that E has countable base, the function 1 is
hyperharmonic and finely open sets are nearly Borel A numerical function f
defined in U is called finely hyperharmonic if:

18 Z.Wabhrscheinlichkeitstheorie verw. Geb., Bd. 27
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1) f> — oo and finely Ls.c. in U.

2) There is a base (V,),; of the fine topology in U such that for every ael the
fine closure of V, is contained in U and

f)ZRE=(x) for xin V. (40)
Using the Hunt process X associated with (#; E) (see (4.a)), (40) can be expressed
as follows: .
f(x)gEx(f(XTE\Vl); 7}2\1’1<C) for xin I/az'

We can now state the fine BMP for finely hyperharmonic functions:

Theorem 8. Suppose we have an harmonic space (¥, E) (Brelot or Bauer) where
the state space E has countable base, 1 is hyperharmonic and a Green function
exists. Assume furthermore that semi-polar sets are polar. Let f be a finely hyper-
harmonic function in the finely open set U such that:

a) ﬁne-gim inf f(x)=0 for every v in the fine boundary of U,
xel, x—y

b) f= —p in U where p is a potential in E.

Then f is non-negative in U.

Proof. By (4.c) we are actually in the case (B,) where the process X is the Hunt
process associated with the given harmonic space (#, E) and X is a strong Feller
process with semi-group (B),., ,. Furthermore p is a potential of (%, E) in E hence
it is a X-potential in the sense of Definition 1.b). Define f to be the function equal
to fin U and 0 outside of U and let f~ be sup (—f,0). It can be proved from
assumptions a) and b) that p—f~ is a non-negative finely hyperharmonic function
on E, hence by ([9b], Theo. 7) this function is actually an hyperharmonic function
on E. Since 0S p—f~ <p,p—/f~ is even a potential in E which we call g. Then:

f~=pr—-q (41)
Let e={p=+ o0}, then e is a closed, polar set. Since f (x)> — oo for every x in U,
it follows from (41) that f is locally bounded from below for the initial topology
at each point of e.

1) Suppose first that U is relatively compact, i.e., there is an open subset @
of E such that UcwcwcE. Since e,=w e is a compact set, there exists an
open set w, containing e, such that f is bounded from below on w,. Now let:

w,=w;n(p>n) (r=12,..). (42)
We will show that for every finely open set W< U ~.e we have:
FOZE(f(X,,);tw=0) Tforg.e xeWn(f<+oo)

For n=1,2, ..., setting W=(W ~w,)u(Wnw,). For each neN, p(x) is finite on
the cofine closure of W—, since this set if contained in the closed set @ —w,,
hence by Corollary 7:

FOZE(f(X., o) e, <0) ge xin(Wso)n(f<+o0). (43)
On the other hand for each x in W p(x) is finite hence it follows from (42) that:

lim, T, = 4+ a.s. P~
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Hence: ~ B
1ilnn Ex(f(XtW\w"); TW"\ mn=TW < C) = Ex(f(XrW)a Tw < C)
and
liminf, E(f (X2p )3 Ton<Tw)=0

since f is bounded from below on w; .
It follows from (43) that:

f(x)glim,, Ex(.f(XtW\w"); TW\m"=TW<C)
+lim inf, E,(f(X7); T,<ty)
=E(f(X,,); tw<() forg.e.xin Wn(f<+o0).
If we put W=U ~\e since X, ,,(w)e EXU a.s. P*, we get finally:

fx)=f(x)
gEx(f(XtU)a TU<€)
=0 for g.e. xin Un(f< +o0).
f(x) is non-negative q.e. in U, hence everywhere.

2} Suppose now that U is an arbitrary u.m. finely open subset of E. By definition
of a potential (Def. 1.b)), there exists an increasing sequence of compact sets

(K, )yen Of E such that K, <K, ., | ) K,=E and
n=1

lim, E,(p(X.z ); t%,<{)=0  a.s. m(dx).
For fixed m define U,=Un Km. Then we have
(ty,, <0 =(tp, <1}, (1y,21%,)
=(tv="1y,; T0,, <%,V (0,2 %,)
Hence it follows from 1) that
f* (X) g Ex(f* (erm); ‘CU,,., < C)
= Ex(fﬂ< (Xtvm); ‘CU,,, = TU; TUm < TIQ(") + Ex(f* (XTU,,,); 7"Um g TID(m)

for xeU,n(p< + oo)m(xlEx(f*(X,Um)< + o0)).

But on the other hand, since X, € ENU a.s. on {ty<(}, by the definition of f
and f* the first integral on the right hand side is equal to zero. Furthermore, by 2)
the second integral can be estimated as follows:

Ex(f* (erm); TUmgTID(m)g _Ex(p(XrI%m)a TUmgTIU(m)'

Letting m — + oo, we set that f*(x) and hence f(x) is non-negative. xe U n (p < + o0),
a.s. m(dx). Therefore fis non-negative in U n (p < + o0) since the above mentioned
set is finely dense in U n(p < + o0).

Furthermore the set {x|p(x)=+oco} is polar, thus Un(p< +o0) is finely
dense in U and by the fine 1.s. continuity of f* we obtain

SX)=2f*(x)=0 forxin U.

18%
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Remarks. 1) Suppose that (5, E) is a Brelot harmonic space and that we have
the case of unicity. Since semi-polar sets are polar it turns out that the convergence
axiom is satisfied, and hence by ([8], Th. 25.3) we have the domination principle.

In this case there is no difference in supposing that (3%, E) is elliptic or parabolic
(see Revue Roum. Math. Pures et Appl. 12, 1489-1502 (1967)). On the other hand
T.emma 1 could be proved in a much easier way by using the fact that the capacity

{ — R{!(x) has the Choquet property (see [9b]). Under the duality hypothesis and
the assumption that X-excessive functions are ls.c.,, Blumenthal and Getoor
proved in [2b] that the hypothesis “semi-polar sets are polar” is equivalent to
the maximum principle, i.e.:

Let u be a non negative Radon measure with compact support K in E, then the
potential of p, G u(x)={ u(x, y) . u(dy), attains its maximum on K.

For an arbitrary strong harmonic space (# E) the maximum principle is
clearly weaker than the domination principle. However, if a Green function for
(o, E) exists, by (4.c) we are in the case (B;) and hence the hypothesis “semi-polar
sets are polar” is equivalent to the maximum principle. But in our previous work
[9¢] we showed that in the case (B,) every finite potential is semi-bounded. If also
the domination principles holds for (4%, E) then this fact is equivalent to the follow-
ing:

A finite potential p on E (say of compact carrier S(p)) is continuous in E if p is
continuous on S(p) (Th. 10.15, [6]).

2) In [9b] we supposed that p is semi-bounded, i.e., is X-uniformly integrable
in the sense of Definition 1.c). Then the hypothesis a) of Theorem 8 can be weakened
to allow that y belongs q.e. to the fine boundary of U. However, if p is an arbitrary
potential on E, this condition a) cannot be weakened, even in the classical case as
shown by the following counter-example:

E=R?; (#, E)=Newtonian potential theory.
U = Open unit ball minus the center and f(x)= —|x| "' +1.

Note that in the case (B,), we can suppose in Theorem 8 that y belongs g.e. to the
fine boundary of U and that p is finite.

3) For a strong Brelot harmonic space with the domination principle, Fuglede
([6], Lemma 10.14) proved that the fine BMP in the form of Theorem 8 is equivalent
to the following statement:

For every potential p the relation le: p holds for every finely closed set S such
that p is finely harmonic in EXS (i.e. both p and — p are finely hyperharmonic on
this set) and finite on the fine boundary of S.

Appendix
Given a strong harmonic space (Brelot or Bauer), where the state space E has
countable base and the function 1 is hyperharmonic, we will show that our proof
of the fine BMP gives again in a rather simple way the classical BMP where the
initial topology on E is concerned.
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Let % be an open relatively compact subset of E and let f be an hyperharmonic
function in %. Suppose that
hm inf f(x)=0 for every y on the boundary of
xe¥, L, X~y
Then fis non-negative in %.

By the definition of hyperharmonicity of fin %, there exists a sequence (V,),.x
of open sets with closure in % such that:

1) f(x)zEx(f(XTE\V"); Ty v,<() forxinE (n=1,2,..),
2 V=
n=1

where X =(Q, #, #,, X,, 8., (, P¥) is a Hunt process associated with the given har-
monic space. Now let f be the function equal to fin and equal to zero in E \ %, and
let 7; be the hitting-time of X for the closed set EXV, (i=1,2,...). Consider the
increasing sequence of stopping-times (4¥),.y constructed from (T;; i=1,2,...,k)
by formula (15). By the quasi-left continuity of the process X it is not difficult to
see that

k k r
lim,nk=1, a.s. P* for every x outside of [} (EX V)~ ( (N (E~ Vi)) ,

i=1 i=1

where 1, is the hitting-time of X for ﬂ (E~V)) (see for example the proof of ([12],

=1
Lemma 2) and Remark 1 of Lemma L§1).

Now, since f satisfies all the hypothesis of Lemma 1.b), § 1, we have

FEZE(f(X,); u<{)

for x outside of a semi-polar set and k=1,2, ....

Again by the quasi-left continuity of X we have lim, 7,=T; _4 a.s. P* for x
outside of a semi-polar set. For such points we have

JOZE(f (X1, Tewa<?)-

Since Xy, (w) belong a.s. P* on {Tz 4 <} to the boundary of %, we have
f(x)=f(x)=0 for x in % outside of semi-polar set. Hence fis non-negative in %.
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