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Fine Boundary Minimum Principle and Dual Processes 

Nguyen-Xuan-Loc* 

Introduction 

The boundary minimum principle (BMP) plays an important role in axiomatic 
potential theory. For instance it is a key argument in the method of solving the 
Dirichlet problem in harmonic spaces ([1 a, 8]) and consequently it becomes an 
essential hypothesis for the local theory of cones of potentials I11]. 

Given an open set q /o fa  strong harmonic space (~, E), one can state the BMP 
as follows: 

Suppose that f is hyperharmonic in ~//and that 

lim inf f (x)  > 0 for every point y of the boundary of ~//, 

and moreover that there exists a potential p on E such that f > - p in ~.  Then f is 
non negative in ~#. 

If q/is relatively compact the above result reduces to the classical form of the 
BMP which was first obtained by Brelot [3]. However the most general setting of 
the BMP is the abstract minimum principle of Bauer ([1 a], p. 7), whose proof is 
essentially based on the compactness property of the state space. 

Starting from the case of a strong Brelot harmonic space with the domination 
principle, Fuglede has recently succeeded in building up a "fine harmonic space" 
where the underlying topology on E is the fine one. Thus he was lead to a new type 
of potential theory with results analogous to the usual ones. 

Arguments based on the local compactness fail in this fine harmonicity theory; 
for instance Fuglede's proof of the following fine BMP ([6], IV, 9.1) is mainly based 
on capacity-theoretic arguments: Suppose that f is finely hyperharmonic in a 
finely open set U of E (see Def. 2, w 4) and that fine-lim inff(x) >__ 0 for quasi-every 

x e U ,  x ~ y 

(q. e.) y on the fine boundary of U. Suppose moreover there exists a semi-bounded 
potential p on E such t h a t f > - p  in U. Thenf i s  non-negative in U. Using a Hunt 
process X = (s ~ ,  4 ,  Xt, Or, ~, px) associated with the given harmonic space, a 
probabilistic proof of the above result was given in ([9b], Th. 6). The proof is 
reduced to the study of the following inequality: 

For q.e. x in E: 

f (x )  > lim inf. Ex (f(x~.); q. < () 
(1) 

> E~(lim inf. f (X~.); lim. q. < 0 

* Thiswork was done while the author wasstaying at Erlangen-Niirnberg University during 1972-1973, 
and was supported by the Alexander von Humboldt Foundation. 
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where f is the function equal to f in U and 0 in E \ U, and (~/,),~N is an increasing 
sequence of {~}-stopping times such that 

For q.e. x in E: 
lim, q, = T~\ U a.s. px in t2 

and (2) 
f ( x )>Ex( f ( x , , ) ;  n , < 0  for n=1 ,2 ,  .... 

The proof of (1) and (2) is based on two main arguments: 

a) If U is open for the initial topology of E, such a sequence (q,),~N was con- 
structed by Sur in [12], and if the capacity A ~ R~ (x) (---inf{u(x): uX-excessive 
and > 1 on A}) has the Choquet property then one can pass from the initial 
topology to the fine one. Recall that in a strong Brelot harmonic space the Choquet 
property of A ~ R~ (x) is equivalent to the domination principle. 

b) For each point x in E such that the supermartingale (p(XO, {~}, P~) is of 
class (D) the Fatou-type lemma in (1) holds for the sequence of random variables 
(f(x~I,)),~N at such a point x. Recall that in a strong Brelot harmonic space a 
potential p is semi-bounded iff the supermartingale (p(Xt), {~}, P~) is of class (D) 
for q.e. x in E. 

It is natural to ask whether in a) the Choquet property of A ~ R~(x) and in 
b) the semi-boundedness of p could be removed. 

Lemma 1 and its Corollary 2 of Section w affirm that such an increasing 
sequence of stopping-times (q,),~N could be constructed for any transient standard 
process with a reference measure. Lemma 4 shows that under the duality hypo- 
thesis the Fatou-type lemma in (1) holds for a rather large class of diffusion 
standard processes and cofinely lower semi-continuous (1. s. c.) functions f 

Section w is concerned with the fine BMP under the duality hypothesis of a 
class of numerical and fnely 1. s.c. functions in E (Th. 6 and Cor. 7). As far as we 
know, even in the brownian motion case, the above problems seem to be new in 
probabilistic potential theory since one used to consider only the cone of excessive 
functions of a standard process. Note that in the case of a strong harmonic space, 
the cone of excessive functions of the associated Hunt process is identical to the 
cone of non negative hyperharmonic functions. 

In Section w we apply the results of Section w to prove the following form 
of fine BMP in a harmonic space: Given a strong harmonic space (~,  E) (Bauer or 
Brelot) where: 

The state space E has a countable base and the function 1 is hyperharmonic. 

A Green function for (~,, E) exists. 

Semi-polar sets are polar. 
Let f be a finely hyperharmonic function in a finely open subset U of E. 

Suppose that 

fine-lim inff(x)  > 0 for every x in the fine boundary of U, 
~ U ,  X--~y 

and moreover f >  - p  in U, where p is a potential in E. Then f is non negative in U. 
Let us note that in the given harmonic space (~,  E) every finite potential is 

semi-bounded [9 c]. 
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In the appendix we show that the classical BMP of Brelot [3] could be deduced 
easily from our method of proving the fine BMP. 
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1. Some Preparations on Dual Processes 

The framework of the duality theory of two standard processes is presented in 
([2a], Chap. VI). We assume that the reader is familiar with this chapter, so proofs 
which are readily available in this literature are not repeated. Because we will 
make use of them later, we introduce here a survey of some new results of Blu- 
menthal and Getoor  [2b]  on the relation between the fine and cofine topologies 
and those of Weil [14] on the behaviour of coexcessive functions on paths. The 
results (1.d) and (1.e) are consequences of the above mentioned ones and seem to 
have some independent interest. 

Duality Hypothesis 
Let (Pt)t>__0 and (~)t__>o be two submarkovian, standard semi-groups on the 

same state space E, (Uv)p> o and (~v)~---o be respectively their resolvents and 
X = (t2, ~ ,  4 ,  Xt, 0t, (, px), --~ = (O, o ~, 4 ,  X~, 0t, (, PX) be respectively their real- 
izations. We say that (Pt)t_>_0 and (~)t>__o (or equivalently (Uv) and (Op)) satisfy the 
hypothesis of duality if: 

1) There is a positive radon measure m(dx) on E such that all the measures 
ex Up, fJp ex (xeE) are absolutely continuous w.r.t, m(dx) and: 

5 f Upg dm=I f Ovg dm (3) 

for every p > 0 and for every couple f, g of non-negative, measurable functions. 

2) The function Uf ( -Uof  ) ( r e s p . f 0  (==_fOo)) is bounded for every f non- 
negative, bounded, Borel and with compact  support, i.e. both X and 2 are 
transient standard processes. 

Recall that by convention ~(dy, x) (t>O) and also its resolvent Op(dy, x) are 
cokernels, i.e. a kernel on ~ x E which acts on the left on functions and on the 
right on measures. 

If X and 2 satisfy the hypothesis 1) then every couple of e-processes (e>0)  
constructed from X and 2 is in duality. Under the hypothesis of duality there is a 
measurable function u (x, y) on E x E (E is equipped with the a-algebra of uni- 
versally measurable (u.m.) sets) such that: u ( . , y )  is X-excessive for every yeE 
17 Z. Wahrscheinlichkeit stheorie verw. Geb., Bd. 27 
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and u(x, .) is )(-excessive for every x in E and 

U(x, dy)=u(x,y)m(dy); U(dx, y)=m(dx)u(x,y). (4) 

Terminology and notation associated with the process ~7 will be distinguished 
from those of X by the prefix co-. For instance u(x, .) is coexcessive for every x 
in E and we have also corresponding notations such as cofine topology, cothin, 
copolar etc . . . .  

We say that the fine and cofine topologies differ by semi-polar (or polar) sets 
provided that the fine and cofine interiors of an arbitrary subset of E differ by a 
semi-polar (polar) set. 

(1.a) Under the duality hypothesis semi-polar sets (polar) are cosemipolar 
(copolar) and vice-versa, and the fine and cofine topologies differ by semi-polar 
sets (see I-2 b], (4.1)). 

(1.b) Let f :  E ~  [ - ~ ,  + c~] be finely lower semi continuous (1.s.c.), i.e. 1.s.c. 
for the fine topology. Then there exists a f , :  E ~ [ -  ~ ,  + ~ ]  cofinely 1. s. c. such 
that f>=f, and { f > f , }  is semi-polar ([2b], (4.2)). 

(1.c) Let f be ~-coexcessive (~ > 0). Then: 
a) f is nearly Borel. 
b) For every probability law # on E, the map t ~f(Xt_ (co)) is left continuous 

and has right limits on ]0, ((co)[ P.~ a.s. (see [14], Th. 6). 
(1.d) The U-potential of an u. m., cofinely open non-empty set is non identically 

null, consequently the complement o fa  m (dx) null set is cofinely dense. 

Proof Since m(dx) is a reference measure for both processes X and X, every 
cofinely open and u.m. (finely open and u.m.) is nearly Borel (n.b.) (see [10], XV, 
Th. 66). X is transient, for every n. m. and finely open set B: 

U(x,B)=E~(~zB(Xt).dt)>O for x~B, 

where Zn is the indicator function of the set B. Now let A be u.m. and cofinely 
open and B be its fine interior. By (1.a) A \ B  is semi-polar, therefore B is not 
empty, hence: 

U(x, A)> U(x, B ) > 0  for x~B. 

Consequently re(A)> 0, and the complement of a m(dx) null set is cofinely dense 
in E. This fact could be seen also directly from the 0-potential of a u.m., cofinely 
open set. 

(1.e) Let # be a probability law on E. 
a) If A ~ E is u.m. and cofinely closed, then 

{t: X~_ (CO)cA; O<t<~(co)} 

is closed for the left topology in ]0, ((co)[, a .s .W. 

b) Let f :  E ~ ] - ~ ,  +0o]  be u.m. and cofinely 1.s.c. Then the function 
t ~ f ( X  t_ (co)) is well defined and 1. s. c. for the left topology in ]0, ~ (co)[, R u a. s. 

Proof a) Let b] (a > O) be the a-coequilibrium potential of A: 

b~ (x) = E~ {exp ( - ~ Ta)}. 
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Then by ([10a], XV, T31) and by [4], 

{t: Xt_ (co)cA.; te]0,  ~(co)[} 

is discrete P" a. s., where { 1} 
A.= ~ < 1 -  n nA  (n~N). 

On the other hand since ~ is ~-coexcessive, by (l.c) the map 

t -~ ~(X~_ (co)) is left continuous on ]0, ~(co)[ (5) 

for a. s. P~'. We have finally a set ~ of P"-measure 1 such that for every coe~7 

t ~ ~ ( X , _  (co)) is left continuous in ]0, ~(~)[ 
(6) 

{t~]0, ~(~o)[; Xt_ (c~)eA,} is discrete 

a) follows then from (6) by an argument analogous to that of([10a],  XV, T 38), 
b) the proof  of this part follows from part a) and an argument analogous to 

that of([10a],  XV, T 39). Note that f i s  not allowed to take the value - ~ .  

Given a triple ((U,)~>=o, (0,),>o, m(dx)) with the duality hypothesis, we intro- 
duce a regularity condition on the co-resolvent (0,) ,  >= o, namely: 

(K-W) The function f 0, (~>0) is bounded and continuous on E for every 
bounded Borel function f with compact support. 

Under this condition, the triple ((U,)~>__o, (0,)~=>o, m(dx)) satisfies the so-called 
Kunita-Watanabe hypothesis (see [10b], Chap. II, 2). We still have to check the 
condition that ctfO, converges pointwise to f as a ~ ~ for every continuous f 
with compact support. But this is automatically satisfied since we suppose that 
(0~),>o is a standard co-resolvent. 

(15) The triple ((U,),>o , (0,),>=o , m(dx)) satisfies the hypothesis of duality 
and (K-W). 

Let (#,),~N be a sequence of non-negative measures. Suppose that the sequence 
of excessive functions 

u,(x)=~u(x, y)m(dy) (n= 1, 2, ...) 

has terms bounded by a fixed potential and converges a.s. m(dx) to an excessive 
function u. Then the sequence of measures (/M converges vaguely to a measure 
# and 

u (x) = l u (~, y) u (ay) 
(see [-10b], Chap. III, T 8). 

In order to shorten the exposition, let us denote by (B0 respectively (B2) the 
following hypotheses: 

(B1) Duality hypothesis between the standard resolvent (0~)~ o and the standard 
co-resolvent (0,), = 0- 
Hypothesis (K-W) 
The standard process X = ( f L  o~, ~ ,  Xt, Or, (, P~) associated with (U,),=> o 
has continuous paths. 

17" 
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(B2) All the hypotheses of the case (B0. 
Semi-polar sets are polar. 

The above hypotheses are natural in potential theory since we will see in w that 
the Hunt process associated with an harmonic space which has a Green function 
satisfies always (B0. 

2. Three Lemmas 

The first lemma and its corollary are concerned with the approximation of the 
first exit-time of the union of a countable family of u.m., finely open sets by those 
of each element of the family. Note that the only hypothesis used in these lemmas 
is the existence of a reference measure for the transient standard process X =  
(f2, ~,  ~t ,  Xt, Or, (, P~). The remaining lemmas use (B2) (see w 1). 

Lemma 3 extends to a abitrary potential a property on balayage known for 
uniformly integrable potentials. Lemma 4 describes the behaviour of the balayage 
operator of X on a class of cofinely 1. s.c. functions in E. We introduce first some 
conventions which generalize to arbitrary u.m. functions some integral notations 
usually defined for bounded u.m. functions. 

Let T be a {~}-stopping time and f be a numerical u.m. function. We will 
write 

Ex( f (XT); T< ~)= ~r  <~ f (XT(~) ) .P~ (dog) (7) 

provided that 
~(T < ;~ f -  (XT (09)). P~ (d co) < + 0% 

where f - = s u p ( - f 0 ) .  Hence E~(f(XT); T<~) is finite if and only if f ( X r )  is 
px-integrable on { T< ~}, otherwise it is equal to + ~ .  

A numerical function defined on E is always assumed to have value null at the 
point A. In the rest of the paper we denote by Ta the hitting-time of the process X 
for a n.b. set A o f E n ( = E u  {A}), and by za the first exit-time of X from A, i.e., the 
hitting-time of the complement of A. 

Lemma 1. Let X = (f2, ~,  4 ,  Xt, Or, ~, P~) be a transient standard process with 
a reference measure. Let A 1 and A 2 be two n.b. subsets of Ea. Then there exist an 
increasing sequence (~,) of {4}-stopping times and a semi-polar set e of E such that 

a) For every x in E \ e, one has 

~o: - l im,~ ,  a.s. P~. (8) 

b) I f  the function f is I. s. e. and bounded from below on Ea with f (A)  = 0 and if 

f (x )>Ex( f (XTa, ) ;  TA~<~)x~E (i= 1, 2). 
Then 

f ( x )  > E x ( f ( X  ~,); ~, < 0 

>Ex(f(XTalna2 ); Ta, ha2 <( )  for every x in E \ e  and neN.  
(9) 

Proof. If x is a regular point of AlcoA2,  it suffices to define ~n=TAlr~A2 
(n = 1, 2 . . . .  ) and (9) is trivial. 
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In the general case we construct an increasing sequence (41,) of {~t}-stopping 
times, setting 

4~ Tal, 4~ = 4~ + Ta~ (0d), 1 . . . .  ,42k+1 = 4~k + Ta, (0r 
(lO) 

If x is irregular for A1 ~ A2 and if px 1 { ~ <  Ta, na~}-0,  then the sequence (4,1) 
satisfies (8) at this point. Otherwise, we construct again an increasing sequence 
(42) of {~t}-stopping times, setting 

42(co) ~4~(co)+Tal(0eL ) if ~ ( c o ) <  Ta,~a2(co ) 
= (Ta, ,~ a2 (co) if ~ (o9) = TA, n as (co) (11) 

2 2 2 42 = 41 + TA2 (0r -.., 42k+t = 42k + Ta, (0r . . . . .  

By a transfinite induction argument, namely the Tukey Lemma, there exists 
a filter i (4~)~  of stopping times such that 

�9 x i - -  lnfi~i P {40~ < TA~ naz} - 0 .  (12) 

I claim that every stopping time ~ (i~ I) satisfies the condition 

i i x t + 4~ (00 > 4oo, P a.s. for every t > 0. 

In fact, since ~ = TA~ by definition, 4~ satisfies the above properties. By induction 
it suffices to verify those properties for 4~ and 41 . We have 

t + 412 (0,) = t + ~ (Or) + TA~ (0r 

= t+ r (0,)+ TA~(O,+d(oo ). 

Now, since for each fixed co E f2 the function s ~ s + Ta~ (0~ (co)) ( - inf{t  > s: Xt(co)eAx }) 
is an increasing function of s and since t + 41 (0~)> 4~ a.s. W, we have t + 4~(0t)> 4~ 
a.s. (xr 

Since every term of the increasing sequence of stopping times (4~,), satisfies 
the required properties, it is clear that 1 40~ = sup ~,~ satisfied the required property. 

n 

Since the potential kernel of X is transient, for each ir I the function 

ui(x) = W {r < TAt ~a~} 

is an ( X - M )  supermedian function w. r.t. the exact multiplicative functional 

M, = 11o ' Ta~ ~a~ (t) 

(see the proof in [9a], Lemma 2.2). We denote also by ~i the ( X - M )  excessive 
regularization of u i. 

The Cartan-Meyer convergence applied to the M-subprocess ([2a], (V, 1.6)) 
implies from (12) the existence of a decreasing sequence (u"J)j~N of the filter (fii)i~x 
such that 

inffi"J(x)= 0 for x~.EM_eo , 
J 

where Eu  is the set of permanent points of (Mr) which is nothing else than the set 
of irregular points of A1 n A2, and where eo = EM is semi-polar. Thus the designed 
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semi-polar set e is e0u  {h,j<u,~} and the designed sequence of stopping 
times (4,) is: J 

4~1, ..., 4~' . . . .  ,4~ ,  ~2 . . . . .  ~ ,  4~ ~§ . . . . .  (13) 

(b) Consider first the sequence (~). By hypothesis b): 

f ( x )  > Ex f(Xel); 41 < ~)- 

By the definition of (4~)~ in (10) and by the strong Markov property of X, we have 

f(x)>=E~(f(Xd); 41 < 4) (ieN). 

The process X is quasi-left-continuous, hence 

f ( x )  > E~(lim inf, f(Xe.0; ~ < 0 + E~ (lim inf, f(X~.0; 4, ~ < (; ~ = 0 

by the Fatou lemma and the lower-semi-continuity of f. Since f is l.s.c, in E~ 
and f ( A ) =  0, we have 

f(x)>= Ex(f(X~s 4~ < ~)- (14) 

By recurrence, the inequality (14) is true for every term of the sequence (13), 
hence part (a) implies 

f ( x )  > E~(f(XrA~ ~a~); TA, n A2 < 0 
for x in E - e .  

Remarks�9 1) Lemma 1 generalizes a result of Sur ([12], Lemma 2). Sur treated 
the case of two closed sets for the given topology and showed that for every x in E, 
~ = TA, ~A~ a. s. px. However this fact is true if and only ifx belongs to the comple- 
ment of A~ n A~ \ (A1 c~ Az)' as we pointed out in the "note added in the proof" 
of [-9 b]. It is an interesting question to ask whether the semi-polar set e in Lemma 1 
is exactly the set A~ n A~ ~.(A 1 ~ A2) r. 

2) Part b) of the Lemma 1 is presented here to illustrate the approximation 
procedure of part a). The next Lemma 4 is a much deeper result of this kind and is 
a key argument of the next section. 

C o r o l l a r y  2. Assume the same assumption as in Lemma 1. Let (Ai)i~N be a sequence 
of  n.b. subsets of E. Then there are a sequence (q,) of  {~}-stopping times and a 
semi-polar set e such that for every x ~ E  \ e, 

lim, t/, = Too a.s. P~. 
(3A~ 

i = l  

Proof. 1) For the case of k finely closed, n.b. sets A~, A2,... ,  Ak, it is enough 
to define first the increasing sequence of {~t}-stopping times (~/~), defined by: 

~l=r l ,  
~, = ~ + r~ (0e), 

.) k =~j- l  + r~(oe ), 
j - I  

where Ti= TA, (l__<i__<k). 

~f = ~I + r~ (o.9 . . . . .  ~ = ~ - '  + r~ (o e_ 0 
~ = ~ + T~ (0.21) . . . . .  ~ = ~ - ~  + r~(%_ ~) 

2 1 ,t/i  r/i-1 

(151 
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Then for each fixed 1 <Jo < k  we can apply the arguments of part a) of Lemma 1 
to the sequence (q~~ and get finally a semi-polar set ejo and a sequence (~0) of 
{~}-stopping times such that lim. ~ = T~A , a.s. P~ for xCejo. 

2) Setting/7--l im k To~ a,' we have H <  T~A. Consider the increasing sequence 
of stopping times , = 1 

1 1 HI=FI + T~(On); H~z=Fll + Tz(On~); . . . ;  FI.-FI ,_ ,  + T,(On~_,). (16) 

Now (q,) can be constructed in the same way as (~,) in the proof of Lemma 1. 

Let X = (O, ~ 4 ,  Xt, Or, ~, px) be a standard process on the state space E. 
Let (K,),~N be an increasing sequence of compact sets of E such that 

K , c / ( , +  a (n=1 ,2 . . . )  and U / ( , = E  (17) 
n= l  

and write TE\ ~. = z,. 

Definition 1. Assume that a reference measure m (dx) for X exists. 
a) A X-excessive function p is a pseudo-potential if there exists a sequence (K.) 

with the property (17) such that 

lim, p(X~.)=0, a.s. PX a.s. m(dx). (18) 

b) p is a potential provided that p is finite a.s. m(dx) and lira, E~(p(X~.))=O 
a.s. m(dx). 

c) p is an uniformely integrable potential if 

lim, Ex (p (Xn.)) = 0 

for all x outside of a semi-polar set of E and for every increasing sequence {q.} of 
{~}-stopping times such that lira, ~/, = ( a.s. 

Remarks.I) Since for every x in (p< + oo) E(p(X~.)),~ N is a non-negative super- 
martingale adapted to (O, ~ . ,  P~) a potential is a pseudo-potential. The converse 
is no more true. For instance, let X be the brownian motion on E = R 3 \  {0} and 
let p(x)= Ix[ -1. Then p is a pseudo-potential but not a potential. 

2) I f X  is the brownian motion on R 3 then p(x)= Ix[ -1 is a potential but not a 
uniformly integrable one. 

3) If p is a pseudo-potential then 

lim, p(XR.)=0 a.s. P~ on {R=~} (see [2a], IV, 5), 

whenever (R,) is an increasing sequence of stopping times with limit R. 

4) Our Definition 1 differs from the usual ones ([2a], IV, 5) by the fact that p 
is allowed to have infinite values. 

Lemma 3. Assume (B2). Let A 1 and A 2 be two n.b. subsets of E. Let p(x)= 
u(x, y)r (dy) be a potential which is finite on the cofine closure of E \ A 1  c~A2. 

Let (~,),~N be the increasing sequence of {~}-stopping times: 

~=TA,  ; ~2=~+Ta~(0~) ;  . . . ;  ~ 2 K + I = ~ 2 K - [ - T A I ( O ~ 2 K ) ;  . . . .  (19) 

Then there exists a polar set e ~ E such that: 
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For every x~(p < + oo)'., e, the supermartingale (p(X~.) X{r ~}),~N is uniformly 
integrable and: 

lim, Ex(p(Xe.); 4 ,<~)=Ex(p(XeJ;  ~ < ~ )  (20) 
where 4 o~ = lim, 4,. 

Furthermore of  A 1 and A2 are finely closed, then (20) holds for every x in 
E \ A  1 ~ A  2 . 

Proof We are familiar with the sequence (4,) in the proof  of Lemma 1. We con- 
struct now an increasing sequence of {~}-stopping times, setting 

 1= A2; ...; 
and 

~'~ = lim, ~,. 

Then it follows immediately from PA~ U (X, y)= U PA~ (x, y) (see [-2 a], (VI, 1.16)) that 

(PA~. PA,) U(X, Y)=u(PAI. PA~) (X, y). 

Hence it follows from an induction argument that 

P~ u ( x , y ) = u P ~ , ( x , y )  (n>2).  

Consider now two arbitrary u. m. non-negative functions f and g. Since Uf(Xr 
Uf(Xr a. s. and g 0 (X~ . )  ~ g 0 ( X ~ )  a. s. as n -~ + ~ ,  we have 

~ g (x). Pr u (x, y) . f(y) . m (dx) m (dy) = E~ (uu(xr = lim, E~ (U f(Xr 

where v(dx)=g(x),  m(dx), and 

~ g(x).  u ~= (x, y) . f(y) . m(dx) . (d y)= Eu(g 0 ( X ~ ) ) =  lim, ~,(g C;(2~.)) 

where p(dy)= f(y) . m(dy). Hence 

uP~(x ,y )=Pc u(x,y) a.s. m(dx)• on E•  

But on the one hand for a fixed x in E the coexcessive function y ~ P~= u (x, y) is the 
.Y-excessive regularization of the co-superrnedian function y ~ uP~= (x, y) and on 
the other hand u P ~  (x, y) = u (x, y) for y belongs to the co-fine interior of A 1 m A2, 
we have: 

For  every x fixed in E: 

{ylu~=(x,y)>Pc u(x,y)} 

is a polar subset of the cofine closure of E \ A~ c~ A2. 

Suppose first that r(dy) is a bounded Radon measure on E. The decreasing of 
excessive functions: 

u,(x)=E~(p(Xr ~,<~) (n= 1, 2 . . . .  ) 

converges a. s. m (dx) to the excessive regularization fi of inf. u, and furthermore: 

P~.p(x) = ~ r(dz). P~ u(x, z) 

=Iu(x , y ) .P~r (dy )  (n=1 ,2  . . . .  ). 
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We claim that the sequence of Radon measure r . =  P~,.r (n= 1, 2 . . . .  ) converges 
vaguely to the measure P ~ .  r. In fact, for a continuous function f with compact 
support we have 

Sf(Y)" r, (dy) = S/~z (f(Jf~.); ~, < ~). r (dz). 

Since the process ~ is quasi-left continuous, the sequence of bounded functions 
(z --./~ (f(2~.))),~u converges pointwise to the bounded function (z ~/~(f(2~=))).  
Thus we have: 

lira, ~ f(y) . r. (dy) = ~ Ez(f(X~=) . r (dz) 

= If(Y).  P2_~. r (dy). 

By assumption p(x) is finite on the cofine closure of E \ A l r ~ A 2 ,  hence r(dy) 
doesn't change polar subsets of this set ([9 c]), by (1.g) w 1 it turns out that 

(x) = u(x,  y ) .  r (dy) 

-- ~ r (dy) ~ u P~.~ (x, y) 

=~ r(dy) ~ P~ u(x, y) 

Now let e be the polar set {inf, u,>fi}. For a point x of (p< + o o ) \ e ,  
(p(X~.) X(~,<r is a non-negative supermartingale adapted to (O, (~.),~u, W), 
and furthermore since lim, p (Xr = p (Xr a. s. W on {~ ~ < ~}, hence (20) is proved 
for every x in (p < + o e ) \  e. For every x in (p < + oo) and every q>0,  we have by 
strong Markov property: 

q Uq h (x) = q Uq inf, u, (x) = inf, q Uq u. (x) 
oo 

oo 

>inf~ ~ q e -~t . E~(p(X~.). )~,>t/). dt. 
0 

If x belongs to (E "-. A t c~ A2) then p (x) < + oo and ~, > 0 a.s. W for n_>_ 2. Hence, if 
we let q increase to + o% the last right hand side term will converge to inf, u, (x) 
while the left hand term increases to fi(x). This implies ~(x)=inf~ u,(x). Since 
every non-negative Radon measure on E is the sum of a sequence of non-negative, 
bounded Radon measures, the case of an abitrary measure r(dy) could be deduce 
easily from the above case. 

Lemma 4. Assume (B2). Let f be a numerical function defined on E and A1, A 2 
two u.m. subsets of E such that: 

1) A1 and A 2 are finely closed. 
2) f i s  > - ~  and eofinely l.s.c, on E. 
3) For i=1 ,2 :  

f (x)  >= E~ ( f (XT A); TA~ < ~) quasi-everywhere (q. e.) in E. 

4) f(x)>= - p ( x )  q.e. in E, where p is a potential finite on the cofine closure of 
E \ A l n A  2 . 
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Then there exists a polar set ~ E  such that: 

f(x) > E~(f(XTa x ~a~); TA, ~a~ < ~) (21) 

for every xa(E \ (A1 c~ A2) u ~) n ( f <  + oo). 

Proof By "q.e." we always mean "for x outside of a 
f -  (x) = sup ( - f (x ) ,  0) < p (x) q.e. by 4), we have 

E~(f-(XT~,); Ta,<~)<=P(X)< +o0 for xe{p< +oo}.  

Due to assumptions 1), 3) and the convention (7), there are two polar sets e~ and e2 
such that 

E,~(f(XTA); TA, < ~) 

f(x)>Ex(f(XT~); Ta,<~ ) 

(i = 1, 2) is well-defined for x in 

( E \ e  1 n e 2 ) u  {p< +oo} 

for every x in E "-. ei (i = 1, 2). 

polar set". Since 

By Lemma 1 there is a polar set el  c E \ (A1 n A2) r and an increasing sequence of 
{~}-stopping times 01,) such that for every x in E \ ~ 

lim, qn=TA~a2 a.s- PX on {Ta~ ~a2 < ~}. 

Note that for f ( x ) =  + oo. (21) is trivially true provided that the integral in the 
second member of this inequality is well defined, i.e., at least if the point x belongs 
also to (E \ el n e2) u {p < + oo }. 

1) As the first step, we will now show 

For every x ~ ( E \ a l n a 2 ) n ( p <  + o o ) n ( ( / <  + o o ) \ ( e x u e 2 )  ) (f(Xtl,)),~ N is 
a supermartingale adapted to 

(Q, (~-~,,),~N, px). (23) 

Consider first the increasing sequence of stopping times (~)k~U defined by (13) 

f(x)>=Ex(f(Xr~,); TA, <() for xEE~.e 1 
=Ex(f(X~l); ~I<~) for x~E \ea .  

Set 
gk(co)=f(X~,~) Z~I <~ (co) (k = 1, 2.. .).  (24) 

Then, again by 3), we have a.s. W on {~ < ~} : 

If Xr 2 then Ex~ Ico,)(f(XTA2))~{TA2<r162 
(25) 

If XeI(co)eA 2 then EXr162 ). 

For every x e ( E \ e l  u e2) c~ {p< + oe} n { f <  + 00}, f(XT~:) is W-integrable and 
furthermore, since ~ is a strong terminal time, we have by the strong Markov 
property of X 

E~ (g2 (co) [ ~ I )  = Ex (f(Xr Z~r < r [ ~ 

= E~(f (Xr~)  Z~r~ < r (0~I) [ ~r 

= Exr <o,)(f(XTA2) Z~Ta2 < ~)" 

(22) 
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Therefore (25) implies 

E~(g2(og)l,~'cO<gl(co) a.s. px. 

(gg(og))k~S is a supermartingale adapted to (Q, { ~ } ,  W). But 

SUpk E~(gZ)=SUpk E~(f- (Xr ~k 1 <~) 

< supk E~ (p (Xr 41 < 0 =< P (x) < + oo. 

Hence there exists a P~-integrable randon variable Z(og) such that 

and 
lim, gk (CO) = Z (co) a.s. W 

f(x)>E~(gk(o9)) (k= 1, 2 . . . )  

> lim k E~ (gk (CO)). 

Sincefis finely 1. s. c. and since X has continuous paths, we have by (1.e), w 1 

Z (co) = lim k gk (O9) 

= limkf(XcL(~)). Z{r o > (limk Xr (o9)) =f(Xr (09)) 

a.s. W in { ~  <~}. 
Now, since by assumption A 1 and A2 are finely closed and p is finite on the co- 

fine closure of E \ A~ c~ A2, it follows from Lemma 3 that for every x e (E \ A~ c~ A2) 
the supermartingale (p (X~)),~N is uniformely integrable and converges to p(Xck). 

Let A be a fixed element of~r Then, by 4) and by Fatou's lemma 

f(Xr162 a.s. (n= l, 2, ...) 
and 

Therefore 

lim inf, E~(f(Xr A)+l im inf, E,(p(Xr A) 
> Ex(Z (o9); A) + E~ (lim, p (Xr A). 

(26) 

Ex(f(X~.); A)> lim inf, Ex(f(X~,); A) 
> E~(Z(O9); A) (27) 

> Ex(f(Xr A) 
which shows that (f(Xr N ~ {o~} is a supermartingale adapted to ((2, (YC~)k~N ~ {oo}, 
W). NOW consider the increasing sequence of {~}-stopping times (~2)k~N defined 
by (11). Then, since for y fixed Pr u (x, y) = u/3~.s (x, y) for q. e. x e E similar arguments 
as those of the proof of Lemma 3 show that the sequence of random variables 
(p(Xr162 is a uniformly integrable supermartingale for every x~ 
(E'..Alc~A2). Therefore it turns out that (f(Xr (f(Xr a super- 
martingale. And so we can apply the above arguments step by step to every 
increasing sequence of stopping times (~)k~N (ieI). Since (t/,),~ N is defined by 
(13), (23) is proved. 

2) From the proof of the 1st step, we have 

P. u(x, y)= . &  u(x, y) 
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where (q.).~N is an increasing sequence of {~}-stopping times, constructed step by 
step from (t/.).~N as in the proof of Lemma 3. The proof of Lemma 3 applies without 
change to the sequence (q.) and so the supermartingale (P(X,.)).~N is uniformly 
integrable for every xe (E  \ A 1  c~ Az). Using (23) and the arguments of the proof of 
(27), we have 

f (x)  > E~ (f(X~o~); q~o < 0 ~ ~= lim. t/. (28) 

for every x e ( E \ A : c ~ A 2 ) n ( ( f < + o e ) ' . . e l w e 2 ) .  This implies (21) with ~=  
e I u e 2 u e l .  

Remarks. 1) To show that (gk)ksN is a supermartingale adapted to (f2, (~l)keN , px) 
for each x in (E \ e 1 u e2) 6"~ {D < -~- o9 }, we don't have to use the continmty of the 
paths of the process X. Hence, if ~ =  Tm~A~ a.s. W on {TA,~A~<(} and if a.s. 
W, 3 k(co)GS such that ~kl(CO) = TA, ~a2 (0)), then 

f (x)  > E~(f(XTA ~ ~ A~); TA~ ~ A: < (), (29) 

wheneverf is  u.m., non-negative and satisfies 3) of Lemma 4. In [12], Sur showed 
that if A: and A 2 a r e  closed for the initial topology, a sequence of stopping times 
with the above mentioned properties can be constructed and (29) is true for every x 
in E. But in general (29) does not seem to be true for x belonging to the semi-polar 
set A l n A E \ ( A I ~ A 2 )  r, which is nothing else than the semi-polar set ~ of our 
Lemma 4. 

2) The difficulty of the proof comes from the fact that, although gk (~O) converges 
to an integrable random variable Z(~o), we don't have in general the inequality 

limk Ex (gk ((9)) ~ E~ (Z (~o)), 

since the supermartingale (gk (O)))keN has signed values. If, however, the potential p 
is uniformely integrable (in particular if p--0), then the above inequality is true for 
every point x such that (p(XO, W) is a supermartingale of class (D). This special 
case is treated in our previous work [9 b]. 

3. The Fine Boundary Minimum Principle 
In this section, we describe the fine BMP for some class of finely 1. s. c. functions 

in E under hypothesis (B2) .The main results are Theorem 6 and its Corollary 7. 
The following proposition is proved without the duality hypothesis and seems 

to have some independent interest. 

Proposition 5. Let X = ((2, ~,  ~ ,  Xt, Or, (i px) be a transient standard process, 
A, a n.b. finely closed subset of  E and f a numerical u.m. function in E. Then 

a) the set 
U = (E \ A) c~ {x I E x ( f -  (XrA); Ta < () < + oo} (30) 

is finely open, and 
b) the function 

x ~ F(x) = E~(f(XrA); T a < ~) (31) 

is well defined and finely u.s.c, in U. 

Proof. By our convention (7) the function F(x) is well defined in U; it may have 
the value + oo. 
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1) Suppose first that f is non-negative and let B c U ( = E \ A )  be finely open 
with the fine closure contained in U. It suffices to prove that f i s  finely u. s. c. in B. 
I claim that for every n.b. set C c B  and for x e C r n B  

F(x) > inf {F (y): y e C}. (32) 

In fact, let K ~ B be compact and denote by I c the infinimum on the right side of 
(32). Then 

Ex(F(XT~); TK< TA)>=Ic. P~(TK< TA) 

since XT,, (09)~ K ~ C a. s. px in { TK < ~}. On the other hand 

F(XT,,) = EXT, ̀ (f(XTA); TA < ~) 

Hence 

E~(F(XTK); TK < TA)= Ex(f(XT~+ T ~(OT~)) " ZtTK + T A(OT~,} ; TK < TA < ~) 

= Ex(f(XT A); TK < TA<~) 

<F(x) 

so that 
F(x)> lc. pX(TK< TA). (33) 

Now, if x e C" c fine closure of B c C, then px (Tc < TA) = 1. By a theorem of Hunt 
(1-2 a], (I.10.19)), there is an increasing sequence {K,} of compact subsets of C such 
that TK.+Tc=O a.s. px. Hence lim, P:'(TK,<Z,)'~I, and (32) follows from (33). 
Now let Jc be the interval ( -oo;c )=R and define W=F-I(Jc)~B. If x e W t h e n  
by (32) x is irregular for B \ W,, and so Wis finely open. 

2) It follows from the 1st step that for an arbi t raryf the set U defined by (30) is 
finely open. Furthermore the proposition is true for every function f bounded 
from below on E. Let f be arbitrary and define f,, = f  v (-n). Then 

F~(x)=Ex(f v( -n)(XrA);  Ta <O 

is finely u. s. c. on E \ A, and it is not difficult to see that F~ (x) { F(x) for x in U. 

Remark. The integral Ex(f(XrA); TA< 0 makes also sense if we suppose 
E~(f+(XT~); T a < 0 <  + ~  and adopt the convention that E~(f(Xr~); Ta< 0 
is - o o  if Ex(f-(XT~); TA<0 = - - ~ .  In this case F is finely 1.s.c. on the finely 
open set (E\A)c~ {x[E~(f+(Xr~); T a < 0 <  + ~ }  and consequently F is finite 
and finely continuous in ( E \ A ) n  {x IF(x) finite}. 

Theorem 6. Assume (BE). Let (Ai)i~N be a sequence of u. m. finely closed subsets 
orE. Let f be a numerical function on E such that 

1) f >  -oo ,  cofinely l.s.c, in E. 
2) f >  - p  q.e. in E where p is a potential, finite on the cofine closure o r E \ A ,  

where A -  ~ A i. 
i = 1  

3) For i=1,2 ,  ...: 
f(x)>E~(f(XrA); TA,< 0 q.e. (34) 
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Then: 

a) There is a semi-polar set -d ~ E such that 

f(x)>=Ex(f(Xr~); TA<0 for x e ( E \ ( A w - O ) n ( f  < +o9). (35) 

b) Furthermore 

f(x)>Ex(f(XrA); T a < 0  for xe(E'..A)c~ (x[E~(f(XrA); T a < 0 <  + ~ } .  (36) 

Proof. Consider first k sets A1, A2 . . . .  , Ak. By 3) there are then k polar sets 
e l , . . . ,  ek such that 

f(x)>=E~(f(XrA); TA,<0 for x e E \ e k  ( i = l , . . . , k ) .  

By Corollary 2 there are a polar set ek and a sequence of stopping times (~/~)n~N such 
that lim n ~/~ = T k a.s. px for x e E \ ek, where T k = Tk . Lemma 4, applied to this 

i~l Ai 

finite case. shows that: (f(X,~))n~ N is a supermartingale adapted to (0. (~)n~N. P~) 
and that 

f(x) >= E~(f(Xrk); Tk < 0 

for every x in \ ~i=~A~/t)-ek t . .)  lei r~ ( f <  + ~).  It is not difficult to see that 

(f(Xr~).Z(r~<O)k~N is a supermartingale adapted to ( f 2 , ( ~ ) , P  x) and that 
f (Xn).  Z(n < o is P~-integrable, where H = limk T~, for every x in 

( ) E \  U(eku?k)  n { p <  + o e } c ~ { f < + o e } .  
\ k = l  / 

On the other hand, since 

Pr~u(x,y)=uPr where Tk=T~ (k= 1,2, ...) 
(31Ai 

i= 

it can be shown as in the proof of Lemma 3 that: 
For every x fixed in E: 

o f )  

Pn (x, y) = u P~ (x, y) for V y e cofine interior of (]  Ai 
i = 1  

Puu(x,y)=uPa(x,y) (q.e.), whe re / I= l img  T k. 

Hence the proof of Lemma 3 applies without change to the sequence of stopping 
times (Tk), and it turns out that the supermartingale ((P(Xr~)k~N, P~) is uniformly 
integrable for every x in (E\A) .  Ther, efore the sequence of random variables 
((f(Xr~))k~N,f(Xn)) forms a supermartingale adapted to (f2, (~rk)k~, ~ ,  P~) for 
any such x. Now we repeat the same arguments with the increasing sequence of 
{~t}-stopping times (II~)k~ s defined by (16), and so on. Finally, we get: For every x in 

( E \  ~ A~ , (P(X..))n~N is an uniformely integrable supermartingale, where (tl.) 
\ i = 1  I 

is the sequence of stopping times defined in Corollary 2, and for every x in 

-- hA,  +oo) 
i -  \ i = 1  

(f(X,~))n~s is a supermartingale adapted to (f2, (r/n)n~N, P~). (37) 
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But by Corollary 2 there is a polar set ~' ~ E such that 

lim, r/,=TA a.s. PX on {Ta<(}. 

Setting ~==--gu lek U ek , the proof for (35) is exactly the same as for (27), 

and we have finally for every x in ( E \ A  u -~) n ( f <  + ~ )  

and 
f(x) > lim inf, E, (f(X,.); q, < () 

f(x) > E~(f(Xr,); TA < ~). 

To prove (36), consider first the function 

F (x) = E~ (f(XTa); ra < () 

which by Proposition 5 is well defined and finely u.s.c, on the finely open set 
(E \A)n(x[E~( f - (XT~) ;  T a < ( ) < + ~ } .  By (1.b), w there is a finely 1.s.c. 
function f*  such that f > f*  and { f  > f*}  is polar. Hence on the finely open set: 

U = ( E \ A )  c~ {p< + ~}  n {xlF(x)< + ~ }  

the function u (x) = f*  (x) - F(x) is well defined and finely 1. s. c. But for xe U n (E \ ~), 
u(x) is non negative by (35). Since ~ is polar, u(x) is non negative for any x in U. 

Remark. For every x in E \ A u  ei n { p <  +oo}, the supermartingale 
i =  

f(Xtl,)Z~,.<~ converges a.s. P~ to a P~-integrable randon variable Y(e)). We 
know from the proof of the theorem that E~(Y(co))> Ex(f(Xr~); TA < Q for x in 
(E'-.e-)c~{p< +oo}, and therefore f(Xr~)Z~r~<~ is px-integrable for such x. 
Consequently the set (E "-. A u e-) is contained in {x IF (x) < + oo }. 

Corollary 7 (the fine BMP). Assume (Bz). Let U be a.u.m, finely open subset 
of E. Let f be a numerical function defined on U such that: 

1) f >  - o%finely l.s.c. 
2) f >  - p  in U, where p is a potential, finite on the cofine closure of U. 
3) There is a base (V~)~ I of the fine topology in U, consisting of finely open sets 

V~ (c~sI) such that for every eeI,  the fine closure of V~ is contained in U and: 

f (x)>Ex(f (X~);  %<~) for in x in V~ 
where z~= TE..V ~. 

4) fine-lira i n f f ( x ) >  0 for every point y of the fine boundary of U. 
x E U ,  x ~  y 

Then for every finely open subset V of U we have: 

f(x)>Ex(f(X~v); ~v<Zv) forq.e, x in Vr~(f< +oo). (38) 

Furthermore f is non-negative in U. 
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Proof Define the function f =  E ~ ] - o% + oo] as follows: 

f = ~ f i n  U 
- [ 0  in E \  U. 

Then f is finely 1. s. c. a n d  > - oo by 4). 
Due to (1.b), w 1, there is a co-finely 1. s.c. function f *  defined on E such that 

f>=f* and ( f > f * )  is semi-polar, hence polar. Consequently f * > - o o  since 
E \  { f > f * }  is cofinely dense in E. Clearly f *  _> - p  q.e. in E by 2). 

Let V be a finely open subset of U. By 3) there exists an open covering of V by 
elements of the base (V~)~x; Since the fine topology is quasi-Lindel6f([-5], Theo. 8.1), 
there is a sequence (Vi)i~N of elements of (V~)~I such that: 

ZO V,=Zv q.e. 
n = l  

p has finite values on the cofine closure of 0 V, since this set is contained in the 
cofine closure of U. ,= 1 

Setting Ai=E\ V~ (i~N), the function f *  and the sequence of finely closed 
sets (Ai)i~N satisfy all the assumptions of Theorem 6. Hence (35) implies: 

f*(x)>E~(f*(XT-A); Ta<() for q.e. x in V n ( f * <  +oo) 

oo 

where A = U Ai. 
i=1 

Since f *  is equal to f q.e. in U and equal to 0 q.e. in E\U, (38) follows 
immediately from the above inequality. Furthermore if we put V= U in the above 
equality, then: 

For q.e. x in Uc~(f< +oo): 

f(x) = f *  (x) 

=E~(f*(X~); ~v<Q 
= < 

Since X,~ (a~) ~ E ' ,  U a. s. P*, it follows that f (x) > 0 for q.e. x in U, hence f is non- 
negative everywhere in U. 

4. Appl icat ions  to A x i o m a t i c  Potent ia l  Theory  

As we mentioned in the introduction, one can construct from a Brelot har- 
monic space satisfying the domination principle a sheaf of finely harmonic func- 
tions on the class of fnely open sets. The most crucial and basic steps in developing 
Fuglede's theory of fine harmonicity (c. f. [6]) consist in establishing a fine BMP 
for finely hyperharmonic functions and in asserting the continuity for the fine 
topology of these functions. These properties have been proved by probabilistic 
methods in [-9 b]. Applying the results of the last section, we will give in this 
section a more general form of the fine BMP, which holds both for elliptic and 
parabolic harmonic spaces provided a Green function exists. 
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(4.a) With a strong harmonic space (~,, E) (Brelot or Bauer), where E has 
countable base and the constant 1 is hyperharmonic, one can associate a Hunt 
process X = (f2, ~ 4 ,  X ,  Or, ~, px) with continuous paths such that: 

The cone of X-excessive functions is identical to the cone of non-negative 
hyperharmonic functions. 

The potential kernel V(x, dy) of the process X maps the function 1 into a 
strict potential of (~, E) and is called an admissible kernel. 

All the potential-theoretic notions of (oct,, E) can be interpreted by those of X 
(see [7] and [lb]). 

(4.b) Suppose we have a strong Brelot or Bauer harmonic space (~,, E) where 
the state space E has countable base and the function 1 is hyperharmonic. A func- 
tion u (x, y) defined in E • E is called a Green function if: 

1) u(x, y) is 1.s.c. in E x E and continuous offthe diagonal. 

2) For each fixed y in E, x ~ u (x, y) is a potential in E with carrier {y}. 

3) Each potential p in E can be represented in a unique way as 

p (x) = ~ u (x, y) mp (dy) (39) 

where mp (dy) is a non-negative Radon measure on E. 

4) The map y ~ u( ' ,  y) from E into the cone ~ of potentials on E is continuous 
for the T-topology of this cone. One can define the relative T-topology on the set 
~o of potentials on E with one point carrier as follows: Take the weakest topology 
on this set such that the map p ~ carrier (p) from ~o onto E is continuous, and the 
map p--,p(x) of elements of No with carrier ~: {x} into R + is also continuous for 
every fixed x in E. 

For a Brelot harmonic space such that for every point y in E all the potentials 
in E with the same singleton carrier {y} are proportional (the so-called case of  
unicity), a classical result of Herv6 showed that a Green function for the given 
harmonic space always exists ([8], Chap. III). 

(4.c) Recently Taylor ([13], Th. (5.4)) proved the following result: Given a 
strong harmonic space (R, E) (Brelot or Bauer) where the state space E has 
countable base, 1 is hyperharmonic and a Green function exists, there is a Green 
function G (x, y) of (W,, E) and a positive Radon measure m (dy) on E such that: 

1) V(x, dy) = G(x, y). m(dy) is an admissible kernel of (~,, E). 

We denote by (P0t_>o and by X=(f2,  f f , ~ , X t , O t ,  ~,px) the corresponding 
semi-group and the Hunt process associated with (W,, E). 

2) V* (y, dx) = G (x, y). m (dx) is the potential kernel of a transient Feller semi- 
group (~),=> o. 

3) (P0~=>o and (~)~>=o satisfy the duality hypothesis. 

It is proved furthermore in [13] that (Pt)t=>o and (~)t_>o are in duality in the 
sense of Kunita-Watanabe i. e., the hypothesis (K-W) (w 1, (1.t)) is satisfied. 

Definition 2 ([6]). Let U be a finely open subset of a strong harmonic space 
(~, E) (Brelot or Bauer). Suppose that E has countable base, the function 1 is 
hyperharmonic and finely open sets are nearly Borel. A numerical function f 
defined in U is called finely hyperharmonic if: 
18 Z'Wahrscheinlichkeitsthe~ verw. Geb., Bd. 27 
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1) f >  - ~  and finely 1.s.c. in U. 

2) There is a base (V~),~ x of the fine topology in U such that for every ~ I  the 
fine closure of V~ is contained in U and 

f(x)>R~"V~(x) for x in V~. (40) 

Using the Hunt  process X associated with (~,  E) (see (4.a)), (40) can be expressed 
as follows: 

f (x)>Ex(f(XTE. .v);  TI~..v< Q for x in V~. 

We can now state the fine BMP for finely hyperharmonic functions: 

Theorem 8. Suppose we have an harmonic space (~,, E) (Brelot or Bauer) where 
the state space E has countable base, 1 is hyperharmonic and a Green function 
exists. Assume furthermore that semi-polar sets are polar. Let f be a finely hyper- 
harmonic function in the finely open set U such that: 

a) fine-lim inf f (x)> O for every y in the fine boundary of U, 

b) f > - p in U where p is a potential in E. 
Then f is non-negative in U. 

Proof. By (4.c) we are actually in the case (Bz) where the process X is the Hunt 
process associated with the given harmonic space (~,  E) and 2 is a strong Feller 
process with semi-group (~)~ 0. Furthermore p is a potential of (~,  E) in E hence 
it is a X-potential in the sense of Definition 1.b). Define f to be the function equal 
to f in U and 0 outside of U and let f -  be sup (-]~ 0). It can be proved from 
assumptions a) and b) that p - f -  is anon-negative finely hyperharmonic function 
on E, hence by ([-9 b], Theo. 7) this function is actually an hyperharmonic function 
on E. Since 0 < p - f -  < p, p - f -  is even a potential in E which we call q. Then: 

f -  = p - q .  (41) 

Let e =  {p= + ~} ,  then e is a closed, polar set. Since f ( x ) >  - ~ for every x in U, 
it follows from (41) that f is locally bounded from below for the initial topology 
at each point of e. 

1) Suppose first that U is relatively compact, i.e., there is an open subset co 
of E such that U c co c N c E. Since e 0 = N  n e is a compact set, there exists an 
open set cot containing e 0 such that f is bounded from below on cot- Now let: 

con=COt ~ ( p > n )  (n= 1, 2, ...). (42) 

We will show that for every finely open set W c U \ e we have: 

f (x)>Ex(f(x~w);Zw=~ ) for q.e. x e W n ( f < + o e ) .  

For n = 1, 2 , . . . ,  setting W= (W \ co,)u ( W n  co,). For  each neN,  p (x) is finite on 
the cofine closure of W-co ,  since this set if contained in the closed set N -co , ,  
hence by Corollary 7: 

f ( x )>Ex( f (x~  . . . .  ) ; ~ w , ~ ~  q.e. x i n ( W \ c o , ) n ( f < + o e ) .  (43) 

On the other hand for each x in W p (x) is finite hence it follows from (42) that: 

lim, To, = + ~  a.s. P~. 
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Hence: 
lim, E x(f(X~ . . . .  ); z w . . . .  ='Cw < ~) = Ex (f(x~w); rw < ~) 

and 
lim inf, Ex ( f (x~o) ;  %~ < %) = 0 

since f is bounded from below on co s . 

It follows from (43) that: 

f (x )> l im ,  Ex(f(X,~...~,); Z w ~ . = r w < ~ )  

+ lirn inf. E~(f(XT~); T~, < ~w) 
=E~(f(X,~); Vw<~) for q.e. x i n  W n ( f < + ~ ) .  

If we put W= U \ e since X,(o,) (on) e E \ U a. s. W, we get finally: 

f (x)= f(x) 
>E~(f(x~,); Tv<~) 

=0  for q.e. x i n U n ( f < + ~ ) .  

f(x) is non-negative q.e. in U, hence everywhere. 

2) Suppose now that U is an arbitrary u. m. finely open subset of E. By definition 
of a potential (Def. 1.b)), there exists an increasing sequence of compact sets 

(K,)n~ s of E such that K,c/,~,+1, 0 / ( , = E  and 
n=l 

lim, E:,(p(X~ ); r~ < ~ ) = 0  a.s. m(dx). 

For fixed m define U., = U n/s Then we have 

(Tv~ < ~) = ( ~  < ~ )  u ( ~  >__ ~ )  

=(~u=Zv~; r u ~ < ~ ) u  (~u~> ~ ) .  

Hence it follows from 1) that 

f*(x)>=F~x(f*(X~u.)', ~ . . <  ~) 

- ~ ( f * ( X ~  ); ~ = ~ ;  ~ <~~ ); ~ _>_~,~=) 

for xeU,,n(p< + oo)n(xlE~(f*(X~v, )< + oo)). 
But on the other hand, since X ~  ~ E \ U a.s. on {rv < ~}, by the definition o f f  

and f* the first integral on the right hand side is equal to zero. Furthermore, by 2) 
the second integral can be estimated as follows: 

Letting m -+ + 0% we set that f* (x) and hence f(x) is non-negative, x e U n (p < + oo), 
a. s. m(dx). Thereforefis non-negative in U n (p < + oo) since the above mentioned 
set is finely dense in U n (p < + oo). 

Furthermore the set {x[p(x)=+oo} is polar, thus U n ( p <  +oo) is finely 
dense in U and by the fine 1. s. continuity off* we obtain 

f(x)>=f*(x)>=O for x in U. 
18" 
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Remarks. 1) Suppose that (~,  E) is a Brelot harmonic space and that we have 
the case of unicity. Since semi-polar sets are polar it turns out that the convergence 
axiom is satisfied, and hence by ([8], Th. 25.3) we have the domination principle. 

In this case there is no difference in supposing that (~, E) is elliptic or parabolic 
(see Revue Roum. Math. Pures et Appl. 12, 1489-1502 (1967)). On the other hand 
Lemma i could be proved in a much easier way by using the fact that the capacity 
t ~ R~ a (x) has the Choquet property (see [9 b]). Under the duality hypothesis and 

the assumption that X-excessive functions are 1.s.c., Blumenthal and Getoor 
proved in [2 b] that the hypothesis "semi-polar sets are polar" is equivalent to 
the maximum principle, i. e.: 

Let # be a non negative Radon measure with compact support K in E, then the 
potential of #, G p (x)= ~ u (x, y). # (dy), attains its maximum on K. 

For an arbitrary strong harmonic space (~,, E) the maximum principle is 
clearly weaker than the domination principle. However, if a Green function for 
(~,  E) exists, by (4.c) we are in the case (B0 and hence the hypothesis "semi-polar 
sets are polar" is equivalent to the maximum principle. But in our previous work 
[9 c] we showed that in the case (B2) every finite potential is semi-bounded. If also 
the domination principles holds for (~,  E) then this fact is equivalent to the follow- 
ing: 

A finite potential p on E (say of compact carrier S(p)) is continuous in E ifp is 
continuous on S(p) (Th. 10.15, [6]). 

2) In [9b] we supposed that p is semi-bounded, i. e., is X-uniformly integrable 
in the sense of Definition 1.c). Then the hypothesis a) of Theorem 8 can be weakened 
to allow that y belongs q.e. to the fine boundary of U. However, ifp is an arbitrary 
potential on E, this condition a) cannot be weakened, even in the classical case as 
shown by the following counter-example: 

E = R 3 ; (~,  E) ~ Newtonian potential theory. 

U---- Open unit ball minus the center andf(x)  = - [x1-1 + 1. 

Note that in the case  (B2) , we can suppose in Theorem 8 that y belongs q.e. to the 
fine boundary of U and that p is finite. 

3) For a strong Brelot harmonic space with the domination principle, Fuglede 
([6], Lemma 10.14) proved that the fine BMP in the form of Theorem 8 is equivalent 
to the following statement: 

For every potential p the relation ~s  = p holds for every finely closed set S such 
that p is finely harmonic in E \ S (i. e. both p and - p are finely hyperharmonic on 
this set) and finite on the fine boundary of S. 

Appendix 
Given a strong harmonic space (Brelot or Bauer), where the state space E has 

countable base and the function 1 is hyperharmonic, we will show that our proof 
of the fine BMP gives again in a rather simple way the classical BMP where the 
initial topology on E is concerned. 
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Let  0//be an open relatively compac t  subset of  E and  l e t f b e  an hype rha rmon ic  
function in q/. Suppose that  

lim i n f f ( x ) >  0 for every y on the b o u n d a r y  of  
xEq/, x ~ y  

T h e n f i s  non-negat ive  in q/. 

By the definition of hyperharmonic i ty  of  f i n  q/, there exists a sequence (V~),~ N 
of  open sets with closure in q / s u c h  that :  

1) f ( x )>=Ex( f (Xr~ . . v ) ;  T E . . v < ~  ) for x in E ( n = l , 2  . . . .  ), 
oO 

2) U y.=o  
n = l  

where X = (f2, ~,, 4 ,  Xt, 0F, ~, px) is a H u n t  process associated with the given har-  
monic  space. N o w  letf be the function equal  to f i n  and  equal  to zero in E \ q/, and 
let T~ be the hi t t ing-t ime of X for the closed set E \  V~ ( i=  1, 2, ...). Consider  the 
increasing sequence of s topping- t imes  (~/k),~N constructed f rom (T5 i =  1, 2, . . . ,  k) 
by formula  (15). By the quasi-left cont inui ty of  the process  X it is not  difficult to 
see that  

lira. k px r h = z k a.s. for every x outside of  (E \ V/) \ E \ 
i = 1  i 

k 

where Zk is the hi t t ing-t ime of X for ~ (E \ V 3 (see for example  the p roo f  of  ([12], 
i=1 

L e m m a  2) and R e m a r k  1 of  L e m m a  1, w 1). 

Now,  since f satisfies all the hypothesis  of  L e m m a  1.b), w 1, we have  

for x outside of  a semi-polar  set and  k = 1, 2 , . . . .  

Again  by the quasi-left cont inui ty of  X we have  limk Zk = TE \ ~ a.s. P~ for x 
outside of  a semi-polar  set. Fo r  such points  we have  

f(x)---  E ~ ( f ( X r E ,  ~); rE-  ~ < 0"  

Since XrE\~(co  ) be long a.s. P~ on {TE..~u<~ } to the bounda ry  of 0g, we have  

f ( x )  = f ( x ) >  0 for x in q /ou t s ide  of  semi-polar  set. H e n c e f i s  non-negat ive  in ~//. 
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