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On the Central Limit Problem for Sums 
with Random Coefficients 

B. M. Brown, G.K. Eagleson* and N. I. Fisher 

1. Introduction 

One classical form of the central limit problem considers the asymptotic 
distribution of weighted sums of independent, identically distributed random 
variables (r.vs). In this paper we consider the asymptotic distribution of such 
sums where the constant weights are replaced by a sequence of non-negative 
r.vs, i.e. we consider the sum of weighted, independent, identically distributed 
r. vs, where the weights are themselves r. vs. 

Let X1,X2, . . . ,  be independent, identically distributed r.vs and for each 
n - - l , 2  . . . .  , let %, . . . . .  %, be non-negative r.vs which are independent of the 
{X,}. We consider sums of the form 

Sn=2~=l~nkXk, n = l ,  2 . . . . .  

Such sums can arise in various applications; one instance is in Brown and 
Fisher [2], where the r.vs %1 . . . .  , %, are proportions which are produced by 
a sampling process. 

When the {%k} are constants, Jamison, Orey and Pruitt [4] have derived 
a sufficient condition for S, to converge in probability to a constant. In Section 2 
their condition is generalized to allow the {%k} to be r.vs. The generalized 
condition is obtained by "randomizing" their condition, i.e. by taking their 
condition on the {%k} and insisting that it hold in probability. 

In Section 3 we consider the central limit problem for the {S,} and show 
how the martingale results of Brown and Eagleson [-1] can be applied to obtain 
two sets of sufficient conditions for {S,} to converge in law to normality. One 
of these sets of conditions (Theorem 3) corresponds to the randomization of the 
known results when the {%k} are constants (see, for example Theorem V, 1.2, 
p. 153 of Hfijek and Sidfik [3]). We also point out how the assumption that 
the {X,} and the {%k} are independent can be weakened. 

Finally, in Section 4 some examples are given and some remarks made. 

2. The Weak Law 

Theorem 1. Let X1, X 2 .. . .  be independent, identically distributed r.vs, and for 
each n = l , 2  . . . . .  let %1 .. . .  ,%,  be non-negative r.vs which are independent of 
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the {Xn}. For y>O, let 
f (Y )=y  P([Xll >y)  

and 
g(Y)= ~ Xl  dP, 

[[X~] < y] 
and assume that 

limy~ o~ f(Y) = 0, 
and that 

l i m y ~  g(y) exists and is equal to #. 

Assume further that 
m a x k  <_n O:nk -----~P O a s  n --* ct3 , 

(1) 

(2) 

(3) 

and that there exists a finite constant C for which 

lim,,~ oo P ( ~ = I  cZ,,k> C)=0 .  (4) 

Then 
E~=lO~nk(Xk--#)---~PO aS n-:-~oo. 

Proof. Our proof  is based on that of Theorem 1 of Jamison, Orey and Pruitt [4]. 
Assume without loss of generality that # = 0 (or alternatively, consider the r. vs 
{Xn-#}  instead of {Xn}), and for y > 0 ,  let 

h(y)=Y -1 S X~ dP. 
[Ixd < y] 

Now both f(y)--~0 and g(y)---~0 as y - - - ~ ,  by hypothesis, and h(y)--+0, as 
shown in the proof of Theorem 1 of Jamison, Orey and Pruitt [4]. Thus if 

f *  (y) = SUpz~y f(z) ,  

g* (y) = supz> y g (z), 
and 

h* (y) = supz >= y h (z), 

then f *  (y), g* (y), and h* (y) each tend to zero monotonically as y ~ oo. 

For  fixed e > 0, let A = [max k_, ".k > el, and B = [~ ,=  1 ~.k > C], and choose n 
so large that both PA <= e and PB < a. 

Define W~k=..k X k I(["nk Xk[< 1), where I(D) denotes the indicator function 
of the set D and let cg = ~ ( . . ~ , . . . , a . . )  be the o-field generated by the r.vs 

O~nl , . . . ,  O~nn. Then 
P(W~k+. .kX  k for some k = 1 , 2  . . . . .  n) 

<= Z~,= ~ P( A~ B~ I (la.k Xkl >= 1))+ PA + P B 

= ~ , =  1 E(I( Ac B~) P([a.k Xkl > l[Cd.)) + P A  +PB 

= ~ ,  =~ E (I(A ~ B ~) %k f ( ~ k  1 )) + P A  + PB 

< Cf*(e -1)+~+~,  

which is made arbitrarily small by taking e small. 

Thus it suffices to show that 

T.II ~ ~ r l  = ]. W n  k . 
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NOW 

E ( Yn[(~Yn)= 2~=l g(O~nk X k I (]O~nk Xk[ < 1) [c~,) 

= ~,= 1 gnk g(~Z;k 1) 
and thus 

P(IT,[ > 6]cg,)<b -2 E (T21 cg,) 

=6  -2 {E( (T-E(T ,  ICg,))z[cg,)+(E(T.]C(,)) 2} 

= E ( ( w . , -  :} 
__<6-: E (W.]l + (e 

so that, with a computation similar to a previous one, 

P([T,[> 6)< E(I (X  B~) P([T,I>6[cd.)) + PA + PB 

and T, -+P 0 as n --~ ~ .  The proof is complete. 

Corollary. Let (1), (2) and (3) hold. I f  we also have 

~ = l  ~,k---~P O, constant, as n -+~ ,  
then 

~ = l  ~nkXk--)'P ]AO as n-->~. 

Proof The proof follows immediately from the Theorem. 

3. The Central Limit Theorem 

In some practical situations one would observe S,, knowing the value of n, 
whereas the r.vs {Xk} and {~,k} may be unobservable. Thus we need to consider 
the limiting distribution of a, S, as n--+ ~ ,  where {a,} is some sequence of norming 
constants, and to determine conditions under which the limit distribution is 
normal. However, to make the notation simpler, we shall absorb the norming 
constants into the {~,k} and consider the convergence to normality of S ,=  

One approach to the problem would be to randomize classical conditions 
as was done in Theorem 1 of Section 2. That  is, take the known conditions on 
the {=,k} for S, to converge to normality, when the {C~,k } are constants, and 
make the convergences in these conditions hold in probability. By conditioning 
on the values taken by the {~,k}, the classical central limit theorem can be applied. 
This approach can certainly be used, but it will only work when the {%k} and 
the {Xk} are independent. However, this assumption of independence can be 
weakened if we first note that, for each n, S, is a sum of martingale differences; 
and then use the following result of Brown and Eagleson [-1] (Corollary 1 to 
Theorem 1), restated here as a Theorem for convenience: 

Consider a double array of random variables, which we take without loss 
of generality to be a triangular array, whose rows are martingale difference 
sequences. That is, for each n = 1, 2 . . . .  we have r. vs X,1 . . . . .  X. ,  on a probability 
space (f2, ~ ,  P), with sub a-fields ~.o c ~ l  c . . .  = ~ , ,  of ~ such that X,k is ~k -  
13" 
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measurable and E(Xnkl~n,k_l)=O a . s .  for k = l , 2  . . . .  , n. Such an array is called 
a martingale triangular array. Let S , = X , ~  + ... + X , , ,  n =  1, 2 . . . . .  

Theorem 2. I f  for  a martingale triangular array (X,k ,  ~ k ,  1 < k <= n), n = 1, 2 . . . . .  

and 

max k <= ~ E (X2k]~,  k-  1) --'P 0 

~ =  1 E(X~kI~ --*P a2 (constant) 

as n - ~  oe, (5) 

as n ~ co, (6) 

as n---~oo for all e > 0 ,  (7) Y;= l E(X:\ ; (IX.~l >= ~)Lg., k-1)-~P 0 

then S,  converges in law as n --* oo to N(O, a2). 

Since for any e > 0, 

2 max k <, E (Xnk [ ~ , k -  1) <= e2 + ~ ,=1 E (X ,  2 1 (IX, k I > e)[o~, k_ 1), 

condition (7) implies condition (5). So in order to apply the Theorem, only (6) 
and (7) need be checked.  

In what follows we will consider, for simplicity, only the case when the {%k} 
are non-negative and independent of the {Xk}. However, an advantage of obtaining 
our results through applications of Theorem 2 is that more general situations 
could be considered. In particular, all our results still hold when the {%k} are 
not necessarily non-negative, and when {~1 . . . .  , %k} are independent of { X  k, 
Xk+ 1 . . . .  }, for each k. This will be the case, for instance, when ~,k depends only 
on X1, ..., X k_ 1; see for example Theorem 7. 

In applying Theorem 2, for the same {X~k } one may choose different sequences 
of ~r-fields {O~k } and thus obtain different sufficient conditions. For  the S, we 
are considering there are two obvious choices of {O~k }, leading to the following 
two theorems: 

Theorem 3. Let  X1, X 2 . . . .  be independent, identically distributed r. vs with zero 
mean and unit variance and for  each n = 1 , 2 ,  ..., let ~1 ,  ...,c%~ be non-negative 
r. vs which are independent o f  the {X~}. In order that the sum 

sn= E L  I ~o~ x~ 

should converge in distribution to the standardized normal distribution, it is suf- 
f ic ient  that 

2 ~ p O  as n-*oo,  (8) m a x k  <= n O~nk 

and 
~ , =  1 ~2k--*P 1 as n --+ oo. (9) 

Proo f  Let O~,o = ~ (0%1, .. . ,  %,) and ~,k = ~ (~.1, "'", ~,,,  X1, "'", Xa), k = 1, 2 , . . . ,  n. 
Clearly ~ o ~ , 1 c - . - = ~ ,  and a~kXk is ~ Further, because of 
the independence assumptions, 

=~.~ E(X~)=0. 

Thus for each n, { % k X k ,  ~ k ,  l < : k < n }  is a sequence of martingale differences 
and we may apply Theorem 2. 
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F o r  this sequence of  mar t inga le  differences 

2 2 E((~.~x~) I~ . ,~_0=~.~ ~ ~ E(Xk  I~ , ,k_0 = 0~,k �9 

Thus  (9) immedia te ly  implies (6) and it only remains  to check condi t ion (7). 

Let  k ( y ) =  ~ X 2 d p .  Then  k ( 0 ) = l  and k(y) is a monoton ica l ly  decreasing 
[IXd >- r] 

function of y which tends to zero as y -~oo .  Since maxk_<.~ .k~PO as n - ~ ,  

k ( e ( m a x k _ < , ~ , k ) - ' ) ~ O  as n ~ o o ,  
for all e > O. Hence  

Z~,=l E ((~.k Xk) 2 I(I =.~ Xkl > e)l~,k_ 1) 
= Z~,=l ~.~ E(X~ I(IX~I _-> ~ ~;1)) 
--<Z~=, : ~ -1 " ~.~E(X;~ I(IX~l>e(max~_<.~.~) )) 

= k ( ~ ( m a x ~ _ < . ~ . ~ ) - l ) E L l ~ 0  as ~ 

since ~ = 1 ~ k  --~P 1 as n ~ ~ .  The  theorem is proved.  

Mak ing  ano ther  choice of  the a-fields {~k}  we obtain:  

Theorem 4. Let  X 1 , X z ,  ... be independent, identically distributed r.vs with 
zero mean and unit variance and for each n = 1, 2 . . . . .  let ~,, , . . . ,  ~, ,  be non-negative 
r. vs which are independent of  the {if,}. In order that the sum 

should converge in distribution to the standardized normal distribution, it is suf- 
f ic ient  that 

maxk=<,~ ,k~P0 as n - - * ~ ,  (10) 
and 

n 2 ____~V (11) ~k=lE(Ct.klJf . ,k_O 1 as n ~ ,  

where ~ o  = {c~, ~}  and ~ , k  = ~(~,1 . . . . .  O~,k ), 1 < k < n, n = 1, 2 . . . . .  

Proof. Let ~ o  be the trivial a-field and  let ~ k = ~ ( ~ , l  . . . . .  ~,k, X1 . . . . .  Xk), 
k =  1 . . . .  , n. Clearly ~ o C ~ , 1  = ... = ~ ,  and ~,k Xk is ~ ,k-measurable .  Let  ff, k = 
Y ) ( ~ , I , . . . , ~ , , k + I , X 1 , . . . , X k ) ,  k = 0 , . . . , n - 1 ,  and f f , , = ~ , = ~ ( ~ , l  . . . .  , ~ , , , X 1 ,  
. . . .  X,). Then  ~ k = ( # , k = ~ , k + ~  =~ , , k+ l ,  k = 0  . . . .  , n - 1 .  Thus  

a s  

E(Xkl~n,k_l)=EXk----O. 
Thus  for each n, {~nk Xk,  ~ k ,  1 <_k<_ n} is a sequence of mar t ingale  differences 
and  we m a y  again  apply  T h e o r e m  2. 

Fo r  this sequence of mar t inga le  differences, 

2 ~ "  _ 2 2 ~ -  E((CC.a Xk) I~*.,k_l)--E(X;)E(C~.kl~'. ,k_0 
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So (11) implies (6) and it only remains to check condition (7). Let the function 
k(.) be as in the proof  of Theorem 3, and let {5,} be a positive real sequence 
which tends monotonically to zero slowly enough so that if 

A, = [max k =<, a,k < 5,],  
then 

lim,_~ o0 PA, = 1. (12) 
qqaus 

Z~=I E((O~nk Xk) 2 I([O~nk Xkl ~--- g)[~n,k-1) 
=E~=I  E 2 2 (E(a,k X; I(]a,k Xk} > e)lff ,,k_l)i~,,k_l) 
= Z~,=i E (aZk k (e. a;kl)[;,~,,k_ 1)" 

On the set A,, this r.v. is less than 

k(8 ~nl) Ek=l 2 " E(a, kl~/g,,k_l)~PO as n - + ~  

because of (11) and the fact that k (e 6 21)$0 as n ~ ~ .  From (12) the exceptional 
set A~, has small probability for large n, so it follows that condition (7) is satisfied. 
The Theorem is proved. 

Remark. Under the extra condition that lim ~".. 1 E a , j=  1 and using the 

methods of Scott [5J, the conditions of Theorem 3 and 4 can easily be shown 
to be equivalent. 

4. The Weighting Random Variables 

In this section, we introduce two examples of weighting r.vs {a.k } and con- 
sider when the conditions of some of the previous theorems are satisfied. 

Example 1. Let Y~, Y2, ... be independent, identically distributed non-negative 
r. vs which are not  degenerate at zero, and set 

a . ~ =  y~(y~ + . . .  + y . ) - l .  (13)  

If the { Yk} are gamma variables, then for fixed n, {%a, 1 < k <  n} have a joint 
multivariate beta distribution. If the { Yk} are degenerate, then ~,k = n-1 for all k, 
l < k < n .  

The conditions of Theorem 1 are closely related to those of the classical 
weak law of large numbers, and in this connection, a corresponding condition 
on the { Yk} ensures that conditions (3) and (4) both hold, as follows. 

Lemma 1. Let {%k} be given by (15) and let 

limy~ ~ y P(Y~ > y ) = 0 .  (14) 
Then 

maxk=<,~,k--+P0 as n ~ .  (15) 

Proof Let W~= YjI(Yj< C) for all j, where C is a positive, finite constant, 
chosen so that EVV 1 >0.  Then EVVj=EVV~ < ~ ,  for all j, and 

lim sup,~ ~ n(Y 1 + . . .  + y,)- i  

< lim,~ ~ n(W~ + . . .  + IV,) -1 (16) 

= ( E W i )  -1  . 
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But 
maxk=<, O~nk=(maxk<=, Yk) (Y1 +""  + y,)- I 

so to prove (15) it will suffice, from (16) to show that 

n - l  maxk<=n Yk--~P O as  n--~cx3. 

We have 
(17) 

with 

Then 

and 

and 

Then 
limy__, ~o 

(Y~ +.. .  + Y,)-x y, L1 

y P(Y~ > y)=O. 

Yk (xk - / / )  ~ v  o as n ~ .  

If attention is now turned to the central limit theorem, the {a,k} must be 
adjusted with appropriate norming constants, and so we set 

a,a=n �89 yk(y a +. . .  + y,)-l .  (18) 

Lemma 2. Let the {a,k } be given by (18) and let 

E Y12 = 6 2 -1- // 2 < oO , (19) 

EY~ =// .  

maxk<=,a,k--+PO as n - * ~  (20) 

" 2 = 1 + 0 " 2 / / / 2  a.s .  (21) limn~ o~ Ek=l O~nk 

Proof The proof of (20) corresponds exactly to that of Lemma 1 since we 
know from (19) that 

limy~ ~ y P(Y1 > y~)=0. 

Eq. (21) follows from (19) and the strong law of large numbers. 
We can now combine Lemma 2 with Theorem 3 to yield 

Theorem 6. Let X1, X2,  ... and Y1, Y2, ... be two independent sequences of 
independent, identically distributed r. vs with the { Yk} a.s. positive and 

EX~ = 0 ,  E X  2 = 1, 

EYI=/ /  and E Y12 --  0"2 + / / 2  < i:~. 

P(n -1 maxk=< . Yk< e) = (P(Y1 < n  e))" 

= ( 1 - P ( Y l > n e ) ) " - ~ l  as n--+~,  

from (14), thus establishing (15) and completing the proof. 

Since ~ = l a , k = l  a.s. when the {a,k} are given by (13), we immediately 
have, upon combining Lemma i with Theorem 1, 

Theorem 5. Let X1, X2,  ... and I71, YE . . . .  be two independent sequences of 
independent, identically distributed r.vs, the {Yj} being non-negative and not 
degenerate at zero, with 

limr~ co Y P(lXll __> y)=O, 

limy~o~ ~ X l dP = //, finite, 
[IXd < yl 
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Then 
n*(~ +... + y,)-i Z~=I ~xk 

converges in law as n ---> oo to a N(0, 1 + a2/# 2) distribution. 

E x a m p l e  2. For an example where the {a,k} are neither non-negative nor 
independent of the { X , } ,  consider a case of serial correlation, namely 

O~nk = n~ X k _  l , 

with Xo= 1. Here, ~.k depends only on n and X 1 . . . .  , X  k_ 1 SO that S n will be 
asymptotically normally distributed provided that the conditions of Theorem 3 
are satisfied. For these ~.k, if E X  2 = a2<  ~ ,  then 

lim.~ ~ ~ =  1 ~ 2 k  = 0-2 a.S. 

by the strong law of large numbers, and maxk<=.~Ek--+PO as n - ~ ,  by similar 
reasoning to that in the proof of Lemma 1. Then we have the following (well- 
known) 

Theorem 7. L e t  X t  , X 2 . . . .  be a sequence o f  independent,  identically distributed 
r. vs wi th  E X  1 = O, E X ~  = a 2 < oo and let X o =- 1. Then 

n~ Y,~=I X~_l Xk 
converges in law as n--~oo to a N(O, a 2) distribution. 
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