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Infinitely Divisible Processes 
with Interchangeable Increments 
and Random Measures under Convolution 

Olav Kallenberg 

1. Introduction 

In [3, 4], a unified theory of interchangeability was developed, based on representa- 
tions in terms of canonical random elements. In the present paper, we continue 
this study by examining the form of those processes with interchangeable incre- 
ments which are infinitely divisible. A special case of this problem has been 
treated previously by Kerstan, Matthes and Mecke [63, PP. 76-77. Here we give, 
in each of the four fundamental cases of processes with discrete or continuous 
parameter varying over a bounded or unbounded interval, a characterization 
in terms of a unique decomposition of L6vy-Hin~in type, which is made clear 
by the use of shower integrals, the latter generalizing a notion from [6, 7]. Our 
results in the case of infinite sequences provide the key to an examination of 
the class of bounded random measures which are infinitely divisible w.r.t, con- 
volution (as opposed to addition, cf. [-2, 6, 7]). 

It is convenient to include at this point a summary of the canonical repre- 
sentations in [3]. This requires some terminology and notation which we give 
first. As in [3, 4], 9R (S) denotes for any locally compact Polish space S the class 
of locally finite measures on S, while Tt(S) denotes the subclass of Z -valued. 
measures. Random measures and point processes on S are random elements 
in these spaces such that ~B is measurable for every Borel set B in S I-2, 6]. 
Integrals are denoted by # f =  ~f(s)#(ds), and for any measure # on R, the 
measures/~t and ~2 are defined by #k(dx)=--xkp(dx). By 1B we mean the indicator 
of the set B, and we write for brevity 1+ = 1R+. The symbol 3~ denotes for fixed s 
the measure satisfying 6~B-1B(s), while L, g, gl and g2 denote the functions 

L(x)-x,  g(x)=_x/(l+x), gk(x)----Xk/(l+X 2) 

on R. Moreover, R ' = R \ { 0 }  while Do [.0, 1] and Do(R+) denote the classes of 
functions on [0, 1] and R+ respectively which are right continuous with left- 
hand limits, and which start at 0. Finally, a= means equality in distribution. 

For any fixed h e n  and any zcegl(R) with foR=n, say rc=~j6xj , let V~ be 
a random vector in R" whose components are obtained by a random permutation 
of Xl, ..., x,. Such a vector will be called a sampling vector based on re. The most 
general (distribution of a) random vector in R" with interchangeable components 
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is obtained from V~ by mixing w.r.t, n, i.e. by considering n as a point process 
on R with n R = n  a.s. The same approach can be used for infinite sequences, 
except that we then start with a sequence Y~ of independent random variables 
with common distribution /~, such a sequence being referred to below as a 
sampling sequence based on #, and then mix w.r.t. #, when regarded as a random 
measure on R with # R = 1 a.s. 

We next consider a process in Do [0, 1] of the form X = ~ L + a B + J~, where 
B is a Brownian bridge while 

Jp(t)=Yj/ j[l+ teE0, 1], (1.1) 

for some i.i.d, variables z~, zz, ... which are independent of B and uniformly 
distributed on [0, 1]. Here eeR  and o-eR+ while f l = ~ j  •pj is a measure in 9~(R') 
with f12 R = ~ fl~ < co. Such a process X, being the limit of cumulative sampling 
vectors [3], will be called a sampling limiting process based on (o~, r z, fl). The 
most general process in Do [0, 1] with interchangeable increments is obtained 
by mixing w.r.t. (e, a z, fl), i.e. by considering e and 0 "2 a s  random variables and 
fl as a point process on R' with flZR < co a.s. (As shown in [3], little is lost in 
generality by a restriction to D-spaces.) 

In the final case of processes in Do(R+), we start with an arbitrary process 
with stationary independent increments X = ~ L + < ~ M + Z ~ ,  where M is a 
Brownian motion while Z z is independent of M with independent increments 
and satisfies 

logEei"Z~=t ~ { e i " X - l - i u g l ( x ) }  Z(dx), u~R, teR+. (1.2) 

In this case, ~ R  and aER+ while 2~gJ~(R') with 2g2<co,  and the process X 
above will be referred to as an additive process based on (~, a 2, 2). The most 
general process in Do (R +) with interchangeable increments is obtained by mixing 
w.r.t. (~, a 2, 2), i.e. by regarding ~ and a 2 as random variables and 2 as a random 
measure on R' with 2 g2 < co a.s. 

The quantities re, #, (~, a 2, fl) and (~, a 2, 2) above are a.s. unique measurable 
functions of the corresponding processes X and will be called the canonical 
random elements of X. 

The notion of shower integral is best introduced by means of an example. 
Consider the additive random process Z~ in (1.2), and let ~ be a Poisson process 
on R' with intensity 2 I-2, 6]. If 2 is bounded, then ~ has a.s. finitely many unit 
atoms, say at fll . . . . .  fly, and it is well known that Zx is distributed on 1-0, 1] 
as the process 

v 

X(t)= ~f l j  1+ ( t - z j ) - t  2 g~, t~1-0, 13, (1.3) 
j= l  

where the variables zj are independent of 4, mutually independent and uniformly 
distributed on 1-0, 1]. It is suggestive to write (1.3) in the form 

X(t)= ~ { x l + ( t - z ' ) ~ ( d x ) - t g l ( x ) 2 ( d x ) } ,  t~ 1-0, 1], (1.4) 

the prime on z indicating the assumed independence. From [5-] it is seen that 
the above statement remains true for arbitrary 2 with the integral in (1.4) inter- 
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preted in the sense of a.s. uniform convergence. By this we mean that, whenever 
Mt, teR+, are measurable sets in R' satisfying 2 M, < oo and MtT R', the restrictions 
of the integral in (1.4) to Mt converge a.s. uniformly to a unique limit X which 
is distributed like Zx. We shall call this common limit an a.s. uniformly convergent 
centered Poisson shower of processes x 1+ ( t -z) ,  te[0, 1]. All shower integrals 
below should be interpreted in this way, with appropriate modifications in each 
case. 

We are now in a position to describe our main results. Under the assumption 
of infinite divisibility, our random vectors, sequences, processes and measures 
are distributed as essentially unique sums (or convolutions respectively) of 
independent random elements of the types listed under the relevant headings 
below. 

1. Vectors with Interchangeable Components 
a) symmetric Gaussian vector 
b) centered Poisson shower of sampling vectors 

2. Infinite Sequences of Interchangeable Variables 
a) common Gaussian translation 
b) infinitely divisible sampling sequence 
c) centered Poisson shower of sampling sequences 

3. Processes in D o [0, 1] with Interchangeable Increments 
a) linear Gaussian drift 
b) Brownian bridge 
c) centered Poisson shower of sampling limiting processes 

4. Processes in D O (R + ) with Interchangeable Increments 
a) linear Gaussian drift 
b) additive process 
c) centered Poisson shower of additive processes 

5. Bounded Random Measures under Convolution 
a) infinitely divisible probability distribution 
b) random deletion 
c) Gaussian magnification 
d) common Gaussian magnification and translation 
e) centered Poisson shower of bounded measures 

Precise statements of these results will be found in Theorems 2.1, 2.2, 3.3, 3.4 
and 4.3 below. 

2. Interchangeable Random Variables 

Here and in w 4 we shall use some matrix notation. Thus A' means the trans- 
pose of A. Vectors and sequences are interpreted as columns rather than rows 
(though they are often written as rows for typographical convenience), and in 
particular u'x denotes the inner product of u and x while u'Fu is the quadratic 
form with coefficient matrix F. For brevity we write 1= (1, 1,...) and gl (xl, x2, . . . )  
=(g~(xl), g~(x2) . . . .  ) .  

Theorem 2.1. For fixed neN, the relation 

xd=a I + S  Gr+ S {V~ ~(dzt)-n-* lr g, 1 A(drr)} (2.1) 
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defines a unique 1 correspondence between the distributions of all infinitely divisible 
random vectors X in R" with interchangeable components and the set of all four- 
tuples (a, s, r, A) such that aeR,  seR+ and - ( n -  1) -1 < r <  1, while A is a measure 
on the set {roe 9l (R) \  {n 60}: ~ R = n} satisfying ~ ~ g2 A(dTr)< oe. The terms on 
the right of (2.1) are assumed to be independent and such that G r is Gaussian in 
R" with means O, variances 1 and mutual covariances r, while ~ is a Poisson process 
on 91(R) with intensity A. The last term in (2.1) denotes an a.s. convergent centered 
Poisson shower of sampling vectors V s. 

Proof Suppose that X is infinitely divisible with interchangeable increments. 
The former property is known to imply that 

log E e iu'x= i u' ~ - � 8 9  u' F u+ ~ {e iu'x- 1 - i  u' gl(x)} 2(dx) (2.2) 

for some eeR", some non-negative definite matrix F and some 2eg~(R"\{0})  
satisfying 

I g(x' x) 2(dx)< oe. (2.3) 

For any permutation operator T on R" we get by (2.2) and the interchangeability 
property of X 

log E ei"'X=log E ei"'rX=log E e i(T'u)'X 

= i(T' u)' c~-�89 (T' u)' r r '  u+ I { e"r'")'x- 1 - i ( T '  u)' gl (x)} 2(dx) 

=i u' r ~ - � 8 9  u' r F r '  u+ ~ {e ~"'rx- 1 - i  u' g~(rx)} 2(dx) 

=iu '  T ~ - � 8 9  TFT'  u+ ~ { e i " ' X - l - i u '  gl(x)} 2 T'(dx),  

and since c~, F and 2 are unique in (2.2), it follows that 

T~=~,  T F T ' = F ,  2 T ' = 2 .  (2.4) 

Since T was arbitrary, we get for c~ and F 

ct=a 1, ~iij~S 2 (~ij'~-S 2 r(1--6ij ) (2.5) 

for some aeR, s~R+ and r e [ - 1 ,  1]. With this choice of elements, F is non- 
negative iff r > - ( n - 1 )  -1. (To see this, calculate the minimum of u'Fu subject 
to the restriction u' u = 1.) 

To determine the form of 2 when 2 * 0, let ,~o be defined by 

20 (dx)=g(x '  x) 2(dx), xeR",  (2.6) 

and conclude from (2.3) and (2.4) that 2o is bounded and satisfies 2o T '=2o 
for any permutation T. Thus 2o agrees after a normalization with the distribution 
of a random vector with interchangeable components, and it follows from w 1 that 

20 = S PVg-aAo(drO (2.7) 

for some bounded measure Ao on the set {~e91(R): ~ R = n } .  By (2.6), 2o {0}=0 
and hence Ao{n 6o}=0, so we may define a measure A on {rce91(R)\ {n6o}: 

1 Except that r is arbitrary when s = 0 or n = 1. 
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foR=n} by 

A(dTr) = (g (7c 2 R)) -1Ao(drO, rce91(R). (2.8) 

Since Ao is bounded and ~ g2 < n g(n 2 R), we obtain 5 rc g2 A (drc) < oo. Further- 
more, we get by (2.6)-(2.8) for x E R n \  {0} 

2 (dx) = (g (X' X))-I *)~0 (dx)  ~-- f (g (x' x))- i  e Vn- l(dx) A0 (dg) 

= j P V; -1 (dx) (g (re 2 R))-i  Ao (dr0 = S p V=-I (dx) A (d ~). 

Inserting this and the relation a = a 1 into (2.2) yields 

log EeiU'X=iau ' 1 -~u '  Fu+ ~ E{eiu 'V~-l- iu '  gi(V=)} A(d~) 

= i a u ' l - � 8 9  l n g l u ' l } A ( d ~  ). (2.9) 

In view of (2.5), the first two terms in (2.9) give rise to the first two terms in 
(2.1). As for the integral, let us first suppose that A is bounded, say with AN(R)= 

c>0,  and put Y= ~ V~ {(drc). Writing 4=  ~, c~=s and using the fact [2, 6] that v 
j=i 

is Poissonian with mean c while, for given v, the rcj may be chosen independent 
with common distribution c - i  A, we get 

E eiu'r= EE {E(ei"'r,0,v} = EE {j=i f i  E(eiu'V~J[zcJ)[V} =E {c-l~ E e~'v~ A (d~)}~ 

= exp { - c [ 1 - c-  i ~ E e i ~' v~ A (drc)] } = exp { ~ E (e i"' v~ _ 1) A (d re)}, 

in agreement with (2.9). 
In the case of general A, it follows from the continuity theorem for charac- 

teristic functions that the integral in (2.1), taken over sets M~ c 9l (R) with AM~ < oe 
and MnT91(R), converges in distribution to a random vector with characteristic 
function given by the integral in (2.9), and the convergence is even a.s. since 
the successive differences are independent. If {M~} is another sequence, the 
integral in (2.1) taken over the symmetric differences M, AM" converges in 
probability to zero, which proves that the limiting random vector is a.s. unique. 
The extension to uncountable families {Mr, teR+} is easy, since ~ has only 
finitely many atoms in sets where A is bounded while the measure rc glA(dzc) 
is absolutely continuous w.r.t.A. This completes the proof of (2.1) subject to 
the stated restrictions on (a, s, r, A). 

Reversing the above arguments, it is seen that any (a, s, r, A) subject to these 
restrictions can be used to define some X satisfying (2.1). The infinite divisibility 
of X follows from that of G, and ~, while the interchangeability of components 
is due to the symmetry of 1, G~ and V~. Finally, the uniqueness of (a, s, r, A) follows 
from that of (~, F, 2) in (2.2). [] 

For the next theorem, we let N(0, 1) denote the normalized Gaussian dis- 
tribution on R and recall the definition of PZ~ u in (1.2). 

Theorem 2.2. The relation 

X ~=(a+cT) l + sG+ U,,+ ~ {Y/~(d#)-#g,  1A (d#)} (2.10) 
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defines a unique correspondence between the distributions of all infinitely divisible 
sequences X of interchangeable random variables and the set of all five-tulpes 
(a, c, s, m, A) such that aER, c, seR+ and me~Jl(R') with mg2<oo,  while A is a 
measure on the set {pegJI(R)\  {6o}: / IR= 1} satisfying ~#g2A(dp)< oo. The terms 
on the right of (2.10) are assumed to be independent and such that 7 is N(O, 1), while 
G and Um are sample sequences based on N(O, 1) and P(Zm(1)) -1 respectively and 
is a Poisson process on !Ol(R) with intensity A. The last term in (2.10) denotes an a.s. 
convergent centered Poisson shower of sampling sequences Y,. 

Proof Suppose that X is infinitely divisible with interchangeable elements. 
By [7], (2.2) remains true for any u e R  ~176 with finitely many non-zero elements, 
with a e R  ~176 and non-negative F and with 2 satisfying 

~g2(xj)2(dx)<oo,  j e N .  (2.11) 

Again, (2.4) must hold for any permutation T, and this implies (2.5) for some 
aeR,  seR+ and re[0,  1]. Substituting (C2"J-S 2, C 2) for (s 2, s2r), the first two terms 
in (2.2) are seen to give rise to the first two terms in (2.10). 

We now use the pointwise ergodic theorem in [1], p. 675, to conclude from 
(2.4) and (2.11) that 

1 ~ g2(xj)--some h(x), x e R  ~176 a.e. 2. (2.12) 
n j = l  

By Fatou's lemma, it follows from (2.4), (2.11) and (2.12) that 

2h~<liminf~ 1 " - E- ~ g 2 ( x j ) 2 ( d x ) = ~  g2 (x~)2 (dx )<~ '  
n~co I~ j = l  

so we may define a bounded measure 2o on R ~ by 

2o(dx)=h(x)2(dx) ,  x e R  ~176 (2.13) 

From (2.4) and (2.12) it is seen that 2o is invariant under permutations, so by w 1 
there exists some bounded measure Ao on the set {#eO)I(R): ktR = 1} satisfying 

20 = ~ P Y~-' Ao (d#). (2.14) 

Since h > 0  a.e. 20, it follows from Theorem 6.1 in [4] that V:l:6o a.e. Ao, and so 
we may define a measure A on {#egJI(R)\  {3o} : #R- -  1} by 

A(d~)=(#g2)- l  Ao(d#), #egJt(R). (2.15) 

Using (2.13)-(2.15) and the law of large numbers, we get for x e R  ~176 with h(x)>0 

)~(dx)=(h(x))-l )~~ ~ H j~--1 g2(xJ) PYu-l(dx)A~ 

= ~ PYs ~ PY/,-l(dx)A(d#).  

Thus 
{e iu'x - 1 - i u' gl (x)}). (dx) = ~ E {e i"'r. _ 1 - i u' gl ( Y,)} A (d#) 

{h(x)>O} 
= I { E(eiu'r" -- 1 ) -  i # g  1 u' 1} A (d#) ,  
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and arguing as in the preceding proof, it is seen that this term gives rise to the 
shower integral in (2.10). The relation ~ # g2A (dp.)< oo follows from (2.15) and the 
boundedness of A0. 

We next conclude from (2.4), (2.11) and (2.12) that the measure 21 on R ~ 
defined by 

21(dy)= S g2(xl)l~h(x)=o,(x2,x3,...)~ay~(X)2(dx ), y ~ R  ~ 

is bounded and invariant under permutations, and hence that 21 = ~ P y - z  A1 (d#) 
for some measure A 1 on 9J/(R). But since h = 0  a.e. 21 by (2.12), it follows by 
Theorem 6.1 in [4] that/~= ~o a.e. A1, and so y = 0  a.e. 21. Thus the restriction of 2 
to the set {x: h(x)=0} is supported by the set of sequences in R ~ with exactly one 
non-zero element. Defining megJl(R') by 

m(dz)=2{x:  h(x)=O, x l ~ d z  }, zER',  

and using the symmetry implied by (2.4) and (2.12), we thus obtain 

{e ~"'~ - 1 - iu 'g l (x )}  2(dx) = ~ ~ {e ~"J~- 1 - iujgl(z)} m(dz). 
{h (x) = O) j = 1 

Comparing with (1.2), it is seen that this term gives rise to the third term in (2.10). 
Since mg2<oo by (2.11), this completes the proof of (2.10) subject to the stated 
restrictions on (a, c, s, m, A). The remainder of the proof is the same as for Theo- 
rem 2.1. 

3. Processes with Interchangeable Increments 

The main results of this section are based on two lemmas of some independent 
interest. 

Lemma3.1. Let X1, X2 . . . .  be independent random processes in Do[0, 1] 
(or Do(R+) ) with interchangeable increments and canonical random elements 
(~j, a}, fit) (or (aj, a 2, 2/)),jeN. Then the series X =  ~ X; is a.s. uniformly convergent 
(on bounded intervals) iff a= Z e~, a2= Z a 2 and fl= Zfl~ (or 2 = Z 2 j )  are a.s. con- 
vergent with flZR < oo (or 2g2<00 ) a.s. In this case, X is a process in Do[0, 1] 
(or Do(R+) ) with interchangeable increments and canonical random element 
(ct, a 2, fl) (or (~, a 2, 2) respectively). 

Proof Let us first consider the case of processes in Do [0, 1]. If all but finitely 
many processes X i vanish identically, it is obvious that X is a process in Do [0, 1] 
with interchangeable increments, and that its canonical random element (e', #2, fl,) 
satisfies 0 ( = 2 ~  j and f l '=2fl;d The r e l a t i o n  O"2-----ZO-~ follows in case of non- 
random o-; from the fact that B = M - M ( 1 ) L  where B is a Brownian bridge and M a 
Brownian motion on [0, 1], and then in general by conditioning on {a j}. 

Turning to the case of infinitely many non-zero processes, suppose that 
C~=20r  a 2 = Z O  -2 and f l=Zf lJ  are a.s. convergent and such that flZR<oo a.s. 
From Theorem 2.3 in [3-] it is seen that ~ X ;  converges in distribution w.r.t, the 
Skorohod J1 topology, and since the terms are independent, it follows from [5] 
that the convergence is even a.s. uniform. The limit X is clearly a process in 



316 O. Kallenberg 

Do [0, 1] with interchangeable increments. To see that its canonical random 
element (a', a '2, if) equals (a, 0.2, fl), conclude from the first part of the proof that 
the processes Xs = X-~ ,~=1Xj  have interchangeable increments with canonical 
random elements 

n n n 

( ,  ,2o,, ( ,  Z ,2 228,_2/3 ) a n ,  0.n , P n )  = a - -  ~zj ,  f f  - -  0. , j 
\ j = l  j = l  j = l  / 

t .....~ ! Since X', 0 a.s., it follows by [3] that (a,, ,2 a , ,  /3~2R)~0 in distribution. On the 
other hand, this random vector has the a.s. limit (c(-~,  #2 _a2,  (/3,-/3)2R) ' so the 
latter must be a.s. zero. 

Conversely, a.s. convergence of ~ X j  entails by I-3] convergence in distribution 
of ~ j  and ~(0.2fio+/32), for the latter sum w.r.t, the weak topology, and again 
the convergence must be a.s., for the latter sum because the terms are non-negative. 
But a.s. convergence is clearly impossible unless 0.2 < ~ and/32 R < ~ a.s. 

For processes in Do (R+), the same arguments go through, except for the proof 
of the finite additivity of (~, 0.2, 2). For additive processes, however, the additivity 
is seen from the form of the characteristic functions (cf. (1.2)), and so it follows in 
general by conditioning on the canonical random elements. 

Lemma 3.2. Let X be a process in D O [0, 17 or Do(R+) with interchangeable in- 
crements. Then X and its canonical random element (c~, 0.2,/3) or (~, 0 "2, 2) respectively 
are simultaneously infinitely divisible. 

Proof The arguments for Do[0, 1] and Do(R+) being similar, we may e.g. 
assume that X is a process in Do [0, 1]. If (~, 0.2,/3) is infinitely divisible, there exist 
for every fixed neN some i.i.d, random elements (ai, a 2, /3~), j =  1, ..., n, in 
R x R+ x 91(R') whose sum is distributed like (~, 0.2,/3). Letting Xx . . . .  , X, be in- 
dependent processes in Do 1-0, 1] with interchangeable increments having these 
triples as canonical random elements, it is seen from Lemma 3.1 that ~ X j  has 
interchangeable increments and that its canonical random element equals 
2j(O~j ' 0.2 /3 j )d(a  ' 0.2, /3), SO 2 X j ~ X .  Since n was arbitrary, this proves that X is 
infinitely divisible. 

Conversely, suppose that X is infinitely divisible. Then there exist for every 
fixed h e n  some i.i.d, processes X1, ..., X, on [0, 1] whose sum has the same finite 
dimensional distributions as X. Since the increments of X are jointly infinitely 
divisible, their joint characteristic functions can have no zeros, and so the cor- 
responding characteristic functions for X1,. . . ,  X, are unique. This is easily seen 
to imply that the Xj have interchangeable increments, and by [3-1 we may then 
assume the X i to lie in Do 1-0, 1]. The proof may now be completed as above. 

Theorem 3.3. The relation 

X d ( a + c y ) L + s B +  ~ {(aL+0.B'+a'~)d~(a, 0.2,/3)-g~(a)LdA(ct, 0.2, 8)} (3.1) 

defines a unique correspondence between the distributions of aH infinitely divisible 
random processes X in Do 1-0, 1] with interchangeable increments and the set of all 
four-tuples (a, c, s, A) such that aER and c, seR+, while A is a measure on the set 
{(a, a 2, fl)eR x R+ x Tt (R')'-. {0}: fl2R< ~ }  satisfying 

g (a2 + a2 +/32 R) dA (~, a 2, fl) < ~ .  (3.2) 
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The terms on the right of (3.1) are assumed to be independent and such that 7 is 
N(0, 1), while B is a Brownian bridge and ~ is a Poisson process on R • R+ x gt(R') 
with intensity A. The last term in (3.1) denotes an a.s. uniformly convergent centered 
Poisson shower of sampling limiting processes ~L + 0- B + Ja. 

Proof Let X be an infinitely divisible process in Do [0, 1] with interchangeable 
increments, and note that its canonical random element (~, ~2, fi) is infinitely 
divisible by Lemma 3.2. We intend to show that this implies the existence of 
numbers a~R and c, s~R+, and of some measure A defined on the set {(7, 0 "2, /~)t~ 
R x R+ • 91(R' ) \  {0}: fl2R< oQ} and satisfying (3.2), such that 

log [: eiU~-V#2-#f ~-iua--�89 cZ--vs2 + ~ {e i . . . . .  2 ~ f  _ _  1 - iugl(~)}  dA(~, 0-2, fi) 

(3.3) 

holds for any u~R and v~R+, and for any measurable function f:  R '~R+ satis- 
fying f ( x )=  O(x 2) at x = 0. To prove this, consider the representation of E e-~2_&- 
for v~R+ and f :  R ' ~ R +  such that f (x) /x  2 is simple ([73, pp. 150, 159). By analytic 
continuation and dominated convergence, this representation remains valid for 
purely imaginary v and f and by a comparison with the general representation of 
Ee iu~-v~-~I in this case ([7], p. 153), it is seen that (3.3) must hold for some 
(a, c, s, A) satisfying the stated conditions. Note in particular that fi can have no 
constant component since it is infinitely divisible as a point process [2, 6, 7], and 
furthermore, that only ~ can contribute to the Gaussian component, that centering 
in the Poisson integral is only required for the a-component and that the constant 
component of 62 must be non-negative. By analytic continuation and dominated 
convergence, (3.3) remains valid for v e R+ and arbitrary measurable f :  R ' ~ R +  
satisfying f (x )  = O(x 2) at x = 0. 

By arguments in the proof of Theorem 2.1, (3.3) is equivalent to 

(~, ~2, fi) d (a+cT, s 2, 0)+ y {(~, 0-2, fi)d~(c~, 0-2, fl)_ (gt (c~), 0, O)dA(a, 0-2, fl)}, 

(3.4) 

where y is N(O, 1) while ~ is a Poisson process on R • R + • 9~ (R') which is independ- 
ent of ~, with intensity A. As usual, the integral is to be interpreted as an a.s. con- 
vergent Poisson shower. If A is bounded, it follows by Lemma 3.1 that the right- 
hand side of (3.4) is the canonical random element of the process on the right side 
of (3.1). For general A, we may apply Lemma 3.1 to any countable partition of the 
domain of integration into sets with finite A-measure. 

Conversely, any (a, c, s, A) with the stated properties can be used to construct 
a process X satisfying (3.1). The uniqueness assertion follows from the uniqueness 
in (3.3) and the fact that (~, ~2,/~) is a.s. uniquely determined by X. 

Theorem 3.4. The relation 

X ~ ( a + c T ) L  + s M  + Zm+ ~ {(~L +~M'  + Z'~)d~(~, o, 2)-gl(~)LdA(~,  ~, 2)} 

(3.5) 

defines a unique correspondence between the distributions of all infinitely divisible 
processes X in D O (R +) with interchangeable increments and the set of all five-tuples 
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(a, c, s, m, A) such that a e R ,  c, s s R +  and mEgJ~(R') with mg2<<z) , while A is a 
measure on the set {(~, a 2, 2)~R x R+ x 9J~(R')\  {0}: 2g2 < oo} satisfying S g( ~t2 + 
tTE-~-2g2)dA(tz, o-2,2)<o(). The terms on the right o f  (3.5) are assumed to be in- 
dependent and such that 7 is N(O, 1), while M is a Brownian motion, Z m is an additive 
process based on (0, O, m) and ~ is a Poisson process on R x R+ • 9J~(R') with inten- 
sity A. The last term in (3.5) denotes a centered Poisson shower o f  additive processes 
~L + a M  + Z x which is a.s. uniformly convergent on every bounded interval. 

Proo f  Assuming X to be an infinitely divisible process in Do(R+) with inter- 
changeable increments and canonical random element (~, 6 2, 2) and arguing as in 
the preceding proof, it is seen that there exists some (a, c, s, m, A) with the stated 
properties satisfying 

log E e i"~- v~2_ ~f = i u a - �89 u 2 c 2 - v s 2 - m f  

+ ~ {ei, . . . .  ~ - zf  _ 1 - i u gl (a)} dA (or, a 2 , 2) (3.6) 

for u s R  and v s R + ,  and for any bounded measurable function f :  R ' ~ R +  satis- 
fying f ( x ) = O ( x  z) at x=0 .  Note in particular that ,~, unlike/~ in the preceding 
proof, may have a constant component m. Again, (3.6) is seen to be equivalent to 
a shower representation 

(~, 62  ,~)d (a--I- C ~, s 2, m) 

+ ~ {(~, a 2, 2)d~ (a, a 2, 2) - (g l  (a), 0, O)dA(~, a 2, 2)}, (3.7) 

where 7 is N(0, 1) while ~ is a Poisson process on R x R+ • 911 (R') with intensity A, 
and by Lemma 3.1, (3.7) is in turn equivalent to (3.5). The proof may now be 
completed as for Theorem 3.3. 

4. Random Measures under Convolution 

The semigroup of distributions of interchangeable variable sequences is equivalent 
in the following sense to that of normalized random measures under convolution. 

Lemma 4.1. Let  X1, X2 ,  ... be independent sequences o f  interchangeable random 
variables with canonical random measures #1, #2, . . . .  Then the series X = ~ X j  is 
a.s. convergent iff the convolution product p = I-I#j is a.s. weakly convergent, and in 
this case, X has interchangeable elements and canonical random measure #. 

We shall say that a random measure q on R is infinitely divisible w.r.t, con- 
volution if there exist for every fixed n e N  some i.i.d, random measures ~/a . . . . .  ~/, 
on R such that t /d  ql *"" * ~/," 

Lemma 4.2. Let  X be a sequence of  interchangeable random variables with 
canonical random measure #. Then X and # are simultaneously infinitely divisible, 
the latter w.r.t, convolution. 

The last two lemmas may be proved in the same way as Lemmas 3.1 and 3.2 
above. Using these results, it is easy to restate the representation in Theorem 2.2 
as one for normalized infinitely divisible random measures. We shall treat the 
more general case of bounded random measures. Let p . . . . .  denote the distribution 
of the value at 1 of an additive process based on (a, s 2, m). 
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Theorem 4.3, The relation 

d Op e q+r~+b? rc~, * [~a . . . .  * 1-I {/2~(dv) * e-gl(l~ (4.1) 

defines a unique correspondence between the distributions of those bounded random 
measures r 1 ~:0 on R which are infinitely divisible w.r.t, convolution, and the set of all 
nine-tuples (p, q, a, b, c, r, s, m, A) such that pe(O, 1], q, a, bER, c, r, sER+ and 
m E 9Jl (R') with m g2 < 00, while A is a measure on the set {~ ~ 9~ (R), ,  {6 o}:#R e (0, oe)} 
satisfying 

{~gz /#  R) + gz (log ~R)} a (d#) < oo. (4.2) 

The random elements Op, (, ? and ~ in (4.1) are independent and such that Op equals 1 
and 0 with probabilities p and 1 - p  respectively, while ( and 7 are N(O, 1) and ~ is a 
Poisson process on 9JI(R) with intensity A. The last factor in (4.1) denotes an a.s. 
weakly convergent centered Poisson shower of bounded measures. 

More explicitly, the last factor in (4.1) equals for bounded A and r = 6~1 +. . -  + ruv 

/~1 * ' ' "  * #v :l: e-J 'gl  (log #R) A(du) r _  ~ (ugl/~tR)A(d#), 

and is obtained in general as the a.s. weak limit of such expressions calculated for 
increasing subsets of 9~(R). Note that the random measure ~/ in (4.1) satisfies 
qR = 1 a.s. iff p = 1 and q-- r = b =0  while A is confined to the set {/~E M ( R ) \  {rio}: 
#R = 1 }, and that in this case (4.2) reduces to ~ ~g2 A (d#)< zip. 

Proof. Suppose that r/is a bounded random measure on R which is infinitely 
divisible w.r.t, convolution. Then there exist for every fixed n~N some i.i.d, random 
measures ~/1, ..., ~/n such that q o__ ql * ' "*  q,, and it is easily verified that ql, ..., ~/, 
remain i.i.d, conditionally on {~h*'"*~/,4:0}. Since n was arbitrary, it follows 
that the conditional distribution of ~/, given q 4:0, is also infinitely divisible, and 
we get ~/~ 0pq' where p-- P {q 4=0} while 17' is infinitely divisible and independent 
of 0p. We may thus assume from now on that ~/4:0 a.s. 

Since for bounded measures on R, #=/11 �9 #2 iff #R=(#1R ) (/~2 R) and # / # R =  
(/.tl/#1 R) * (f12/~2R), it is seen that 11 and (qR, r//qR) are simultaneously infinitely 
divisible, the latter w.r.t, multiplication and convolution. For given ~/, we put 
Y--log r/R and let X be a sampling sequence based on ~?/~IR. Mixing w.r.t, r/yields 
a sequence (Y,, X) of random variables (to be interpreted as a column indexed by 
Z+ and with Y as element number 0) such that the elements of X are interchange- 
able with caponical random measure q/qR, and such that T ( Y , x ) d ( y , , x )  for 
every permutation T on R ~ leaving the first element unchanged. 

As in Lemma 4.2, it is seen that (Y, X) is infinitely divisible, and so (2.2) holds 
for some g, F and 2 with X replaced by (Y, X). Moreover, (2.11) holds with Z+ in 
place of N while (2.4) is true for any T as above. In particular, we get g = (q, a 1) for 
some q, aeR,  so the first term in (2.2) gives rise to the factor eq#o,o.o in (4.1). From 
(2.4) it is further seen that 

Foj=S2Joj+SoSlro(1 - to1) ,  j e Z + ,  

Fjk=S2rjk+S2q( 1 --gig)' j, k e N ,  
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for some So, sl ER+ and to, q E [-- 1, 1], and elementary calculations show that F 
is non-negative definite iff q > r  g (provided so, s~ 4=0; if sl 4=0 but so=0, we have 
instead fi E [-0, 1]; the final case s 1 = 0 is trivial). Letting y, (, (1, (2 . . . .  be a sampling 
sequence based on N(0, 1), it is seen that the sum (r(, s(1, s(2 . . . .  )+(bT, c7, c7 . . . .  ) 
has covariance matrix F iff 

s2=r2 + b  2, $2=32 + c  2, ro=bc[,(s2 +c2)(r2 +b2)] -1 , r 1 =C2($2-1-C2) -1, 

and these relations are easily seen to define a unique mapping between the class 
of all matrixes F with the above properties and the set of all four-tuples (r, s, b, c) 
such that r, s, ceR+ while beR. Since the two Gaussian sequences above cor- 
respond to the random measures er~#o,~,o and eb~3~ (in the same way as (Y, X) 
corresponds to t/), it follows by an obvious extension of Lemma 4.1 that the second 
term in (2.2) gives rise to the factor e~+b~3,~ �9 #o,,,o in (4.1). 

We next define the bounded measure 2o on R ~~ by 

2o(dx)=g2(Xo)2(dx), x eR  ~176 

and note that 20 T ' =  2o for all permutations T acting on (x 1, x 2 . . . .  ). By an obvious 
extension of Theorem 1.1 in [-3], there exists some bounded measure Ao on the set 
{#egX(R): #Re(0, 1)w (1, ~)} such that 

20 = ~ P (log #R, Yu/uR) -~ Ao (d#), 

and putting 

A (d#) = (g2 (log #R))- x Ao (d#), #R 4 1, 

we obtain for x~R ~176 with xo 4:0 

2 (dx) = (g2 (Xo))-i 20 (dx) = (g2 (Xo))-i j" p (log #R, Yu/u.)-i (dx) A 0 (d#) 

= y P (log #R, L/uR)- 1(dx) (g2 (log/1 R))-i Ao (d#) 

= ~ P(log#R, Yu/t,R)-l(dx)A(d#). 
(uR*l} 

Thus 

{ei"'X- l - i u '  ga(x)} 2(dx) 
{xo * 0} 

= ~ [z {eiu'(loguR, Y~/.a) 1 - iu ' (gl ( log #R), gl(Yu/,,))} A(d#) 
{#.*1} 

= ~ {E [,e i"'~176 1] -- iu'(gl (log #R), 1 #g,/#R)} A (d#). 
{uR*i} 

But this is seen to be the characteristic function of the a.s. convergent shower 
integral 

{(log #R, Y~/..) ~ (d#) -  (g~(log #R), 1 #ga/#R)A(d#)}, 
{# .* i}  

where ~ is a Poisson process on 9X (R) with intensity A, and by the extended version 
of Lemma 4.1, the corresponding random measure equals 

~[ {#r (d.), e-  g' ~log u-)a~d.) 6 _ ~.gl/um a~du)} �9 
{uR*i} 
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The remaining term in (2.2), 

{eiU'X-l-iu' gl(x)} 2(dx), 
{xo = O} 

may be treated as in the proof of Theorem 2.2, and this completes the proof of (4.1). 
The remainder of the proof is standard. 
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Note Added in Proof The random measure case of Theorems 3.3 and 3.4 is treated by partially 
different methods in [8], w 9. 


