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An L, Limit Theorem for Densities of Renewal Measures

Robert H. Traxler

A practical problem of recent interest is that of constructing tests for trend in
renewal processes [1, 2]. In [2], we introduced time dependent renewal processes
which are generalizations of time dependent Poisson processes [3]. For a class of
such processes, it was shown that the problem of construction of tests for trend is
asymptotically equivalent to an analogous problem for certain scale alternatives
already studied by Hajek [4].

Our proof relies on an L, limit theorem for densities of measures of a renewal
theoretic type. The theorem in question, and several generalizations, is proved
in the present paper. The technique of proof is, at least partially, imitated from
Prohorov [5].

Notation. R is the real line. 4 is the Borel sets on R. / is Lebesgue measure on
{R, #}. {Q, o, P} is a probability space that supports a sequence {X,} of iid.
real random variables. Let S, =7 X,. On {R, %}, define probability measures K,
and P, as follows:

For Be 4,

K(B)=P[X,e B]

and

RB)=, 5P [en]

Denote Radon-Nikodym derivatives with respect to Lebesgue measure

dB,
f—ﬁ
and
dp,
=0

Let p(x)=1if xe [0, 1] and zero otherwise.

Theorem 1. Assume EX, =1 and {fdA>0, then {|p,—p|d/.—0 as n— oo.
Theorem 2. Assume
(1) g(x) is of bounded variation on [0, 1]
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(2) the characteristic function ®(t)=Ee"** has a derivative at t=0, &' (0)=
and take yu>0.

(3) [fdr>0.
Define measures on {R, B} by

12 k8
G(B)=, Y ¢ (—;l)P [—nkeB] for Be .

dG
din d4 for Be . Set §(x)=pu"! g(x/u) for
xe [0, p] and zero otherwise. Then, as n— o, [ |g,—&| d.—0 and

sup{|H,(B)|: Be #} -0 as n— 0.

Denote g,=

Corollary 1. Let F(x), ®(t), g(x) and § satisfy the requirement placed on them in
Theorem 2. Let {V,(x)} be a sequence of uniformly bounded Borel functions on the
line. Suppose {V.(x)} converges to V(x). Then

lim—Y g ( k )E [V (%)]=jg(x) V(x) dx.

meoo g
Theorem 3. Suppose that F(x) has a non vanishing absolutely continuous com-

ponent, that X =0, and that EX =y is finite and not zero. Let T >0 be a real number,
let

TS P[{ C <x}m{s <T<sn+1}]

n 1k=1
let pp(x) be the derivative of Bp(x), and let Q1(x) be the component of B.(x) that is
singular with respect to Lebesgue measure. Let p(x)=1 if xe [0, 1] and zero other-
wise. Then Tlim Q1(0)=0and

1
Lim [1pr(x)—p(x)] dx=0.
©0

Corollary 2. Suppose that F(x) has a non vanishing absolutely continuous
component, that X 20, and that EX =y is finite and not zero. For any positive
real number T >0, let Ny=n if S,ST<S, for n21, and Ny =0 if S, > T Let h(x)
be a bounded Borel function on [0, 1. Then

TILHSOE[ zh( >]=§h(x)dx

Two lemmas needed in the proof of Theorem 3 are:

Lemma 1. Suppose g(x) is a function of bounded variation on [0, 1].
Let sup {|g(x)|: xe[0, 11} =K and let T(g) denote the total variation of g on [0, 1].
Suppose Y(t) is the characteristic function of a real random variable. Then for any
n=1and any real t,

( LG

2K +T(g)
= =y
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Proof. If y(t)=1, the right side of the inequality is infinite and the left side is
less than nK. If y(¢)= 1, then since |y (t)| <1

Tl )uer =] e 2 > a5 oy
e E b
Cerg YO
=gl

Lemma 2. Let i(t) be the characteristic function of a real random variable.
Suppose Y(t) has a derivative at t=0, ¥'(0)=ip. Let h(x) be a real function on the
line. Suppose h(x) is bounded and almost everywhere continuous on [0,1]. For
eachnz=1, let

n(t)=—f;é w(C)u ).

Then {y,(1)} converges to y(t)= [} ¢*** h(x)dx uniformly for t in any bounded
interval.

Proof. Since the function h(x) is Riemann integrable on [0, 1], §,())=
- Yi_ih <~) itk converges to y(¢) for all t. There exists a finite positive number K

such that |h(x)| <K for all xe [0, 1]. So

K 2 t k ituk
OREAUELD) ¢(-) e .
Al Tl
SO
PNk itk " g kil itujl// k—1—j
o) =¥ ()| T ) e
n n far

(-
e

There exists ¢ >0 such that ¥(¢)=1+iu+o(|t]) for {t|<e So
for |t| <en. Thus for any fixed ¢ for n large enough

foolt)
Pl

It follows that for any ¢ that {y,(t)} converges to y(¢). Let I be an arbitrary bounded
interval on the line. Let se I and te I and let b=sup {|x|: xe I}. For any n>1,

~ k
n(0-7,015 % no (

k=1

[7a(8) = 7,(0)] é;{? ( )k (%)k
g%g }lﬂ ;)
=)+ (9)
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Since (r) has a derivative at t=0, given £>0, ny(b) can be found such that for
ngno(b),

s t
VG- ()

n n
fors, tel. Choose d=¢/(2 Ky), then |y, (s)—y,(t)| <& for |s—t] < for n=n,. That

is {y,(t): n=ny(b)} is equicontinuous on I and since {y,(t)} converges to y(t) for
all ¢, it follows the convergence is uniform on 1. The proof is complete.

Kn gK,uls—tH—%

Proof of Theorem 2. Theorem 2 is a generalization of Theorem 1. For the
proof it is enough to take g(x)=0. We follow Prohorov [5] and prove the theorem
using the language of distribution functions. Write F(x)=F,[ —co, x] and G, (x)=
G,[— o0, x]. Then

Gn(x)—f Z g( )F(nx

where F(-)** is the k-fold convolution of F(°).

Since [fdA>0 we can find a finite positive number k so that [, fdA>0.
Set u(x)=f(x) if f<k and zero otherwise. Denote a={udl, set H,(x)=
07 1,y tdx and write

F(x)=aH, (x)+ (1 —a) H,(x).

Let h, (t) and h,(r) be the characteristic functions of H,(x) and H,(x). Since u(x)
is bounded and summable u(x)eL, and by Plancherel’s theorem ||k, (£)|? is finite.
Now

G,,()C)z%k‘;1 g (%) [oH, (xn)+ (1 —a) Hy(nx)]**.
Set )
R,()=" z g( ) =T e,

let r,(x) be the derivative of R,(x), and let R, (x) be the component of R,(x) that is
singular with respect to Lebesgue measure. Then

Ry(o0)=Jn ) dx + R o) ¥ g (1) (1=
=1

from which it follows that {r(x)} converges to zero in Lebesgue measure and
11m R, (00)=0.

Let K=sup {g(x): xe [0, 1]} which is finite by assumption. Consider
Z(0)="Tochy () +(L—2) by (] = (1 — ) H5(2)
k
-y (’l‘)al(1—a)k~'h§(z) W,
=1

Then

k
RYUES> ( ) {1 -ty ()
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From this inequality we see two things: First, since |4, (t)| £ 1, |2, ()| < |h, (¢)] for
all 1, from which it follows that the characteristic function of S,(x)=G (x)—R (%)
which we denote o,(f) is in L,, that is |g,(t)leL,. Second, since h, (t) is the char-
acteristic function of an absolutely continuous distribution function, given
&> (0, there exists a positive constant ¢ < 1 such that |, ()| <c < 1forall |¢] >¢ and so,

for |t|>e,
501 <" ey 1 Oy gy
From this inequality we get for |t|>¢
Kmu " Kin @l
0, @IS= 0 ¥ -l - s = A7

Since g(x)e L,, by Plancherel’s theorem
. 1
JI5.09— 30 dx=— [ lo, (0 -7 dt

where s,(x) is the derivative of S (x) and

tx ~ B (x\dx 1,
V(t)=je"xg(x)dx=§e‘ xg(i)_:‘;‘el uxg(x) dx.
0 woR o

Since @(7) has a derivative at t=0 and &'(0)=ip, lirrol
t—

1— ()|
|t}

=1; given #, such

that 0<# <3 say, we can find an £>0 such that for [t|<e, |1 —®(t)]>(1—#) lp] 1]
which implies |1 — &(r)| ! <2 |ut| = for |t| <& For such an & >0 write

He,—y@®))* dt=A,+B,
where
A=z el — (01 dt
and
Bn:j‘ltl<snIan(t)—y(t”zdt-
We have
A"§2j‘ll|§snlo-n(t)]2 dt+2j]z|ggn|'}7(t)lzd[
2K?
§n2 5 2j|h (t)|2dt+2§|t|>sn (D) dt,

consequently lim 4, =0. Furthermore,

n—w

Bnézﬁtl<8n |yn(t)_y(t)|2 dt+2j[t]<an |pn(t)|2 dt

where p,(1) is the characteristic function of R, (x). Let a> 0 be arbitrary and write

Sl <on 17— 3@ dt=D,+E,
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where

Dnz_ntléa I’Yn(t)_'Y(t)lZ dt
and

En=§a<l<£n I’})n(t)_'y(t)|2 dt‘
Then

By =2 oo Pl 42 i con O d2.
By Lemma 1,

2K+T
s 2K 1@

n

()

where T'(g) is the total variation of g(x) on [0, 1]. We selected £>0 so that
=@t <2ut|™t  if Jt]<e,

SO
2[2K+T
IV,,(t)Ié—[~+—(g—)J for |t|<en.
Il 1]
It follows that
8[2K+ T(2)]?
Enéc(a)=—[—‘2ﬂ+2jlt|>al'y(t)|2 dt

ua
Since {y,(t)} converges to y(t) uniformly for |t| <a it follows that lim (D, + E ) < C(a).
But lim C(a)=0 and a was arbitrary; hence lim (D, + E,)=0.

a-— o

From

1 & [k
pl=, Y2 (§) 01— Dhst0T

we have |p, ()| £ K/(na) and

K
Hm 2 i,y o [0, dE< lim 2‘;” =0.

n— oo = o0

So we get
lim { |s,(x)—g(x)|* dx=0

which implies that {s,(x)} converges in Lebesgue measure to g(x) and since we have
already shown that {r,(x)} converges in Lebesgue measure to zero, it follows that
{g,()}, (g.(x)=r,(x)+5,(x)), converges in measure to g(x).

Now
G,(0)=[g,(x) dx+R (o0)

sl

L]
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Since lim R, (c0)=0, we have

lim | g,(x) dx=§ g(x)dx=[g(x) dx.
It follows by a theorem of Vitali that
lim | |g, () ~2(9)| dx=0.

The theorem is proved.
Proof of Theorem 3. We have

ﬂ(x)%i S PUS,STx) A {8,5T<S, ]
=1 k=1

iP[{S,é Tx} 0 (S, ST<S,,1}]

e T M8

P[S,<Tx] if 0<x<1
1

I

=~ Ni= Hlt

=
I
—

18

P[S,<T] if x=1.

By the renewal theorem Tlim B(x)=x f 0=x<1. Let {T;:i=1} be an arbitrary

sequence of positive real numbers increasing to infinity. If x is a real number,
let {x] be the largest integer that is not greater than x. Let Ny=[T;/u] and let
a,= T,/(uN,); then 11moc =1 and lim N,= oo. ’

Ifosx<1, erte o
B (x)=F(x)+Q,(x)
where
Z P[S,=xT]
lk M
zdiNi kzlP[SkéuxcxlNl]

For any real x and integer n= 1, write
~ 12
B(x)=— P[5,<pxn]
L)
and let p,(x) denote the density of P(x). By Theorem 1, ﬁn(x)—pr(x) where

p(x)=1 if xe [0, 1] and zero otherwise. Let {f,} be a sequence of real numbers
such that lim §,=1. By a theorem of Lebesgue, p,(8,x) N p(x). Let p,(x) be the
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derivative of F(x); then p;(x)=py(0;X) I 1;(x). It follows that pi(x)i> p(x)
on [0, 1]. This result together with the renewal theorem implies that lim Q,(x)=0.

Consequently, if p; (x) denotes the derivative of B (x), we have pTi(x)L p(x)
on [0, 17; but the only restrictions on {T;} are T,=0 and T;{ co. So we have

Jim 3 p(x) — p(x)] dx=0.
The theorem is proved.
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