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An L 1 Limit Theorem for Densities of Renewal Measures 

Robert H. Traxler 

A practical problem of recent interest is that of constructing tests for trend in 
renewal processes [1, 2]. In [2], we introduced time dependent renewal processes 
which are generalizations of time dependent Poisson processes [3]. For a class of 
such processes, it was shown that the problem of construction of tests for trend is 
asymptotically equivalent to an analogous problem for certain scale alternatives 
already studied by H/tjek [4]. 

Our proof relies on a n  L 1 limit theorem for densities of measures of a renewal 
theoretic type. The theorem in question, and several generalizations, is proved 
in the present paper. The technique of proof is, at least partially, imitated from 
Prohorov [5]. 

Notation. R is the real line. ~ is the Borel sets on R. 2 is Lebesgue measure on 
{R, M}. {f2, ~4, P} is a probability space that supports a sequence {2(,} of i.i.d. 
real random variables. Let S,---~ '  X k. On {R, N}, define probability measures Px 
and P~ as follows: 

For Be ~ ,  

Px(B) = P [Xj e B] 

and 

Denote Radon-Nikodym derivatives with respect to Lebesgue measure 

dex 
f = d;~ 

and 
~p~ 

p.=~:-j 

Let p(x)  = 1 if xE [0, 1] and zero otherwise. 

Theorem 1. As sume  E X a = 1 and ~ f d2 > O, then S [ P, - P l d2 ~ 0 as n ~ oo. 

Theorem 2. A s s u m e  

(1) g(x) is o f  bounded variat ion on [0, 1] 
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(2) the characteristic function @(t)= E e itxl has a derivative at t =0, qV(0)= i# 
and take # > O. 

(3) Sfd2 > O. 

Define measures on { R, J3} by 

1 " 

dG, 
Denote g, = ~ and set H,(B) = G,(B) - Sjj g, d2 for Be ~.  Set ~(x) = #-  1 g(x/#) for 

xe [0, #] and zero otherwise. Then, as n ~  ~ ,  ~ [g,-~] d2--*0 and 

sup{[H,,(B)[ 'Be~}-~O as n ~ .  

Corollary 1. Let F(x), q~(t), g(x) and ~, satisfy the requirement placed on them in 
Theorem 2. Let { V,(x)} be a sequence of uniformly bounded Borel functions on the 
line. Suppose { V,(x)} converges to V(x). Then 

" ~ Sk lim 1 ~ g  ( k ) E [  ,, ( ~ - ) ] - - ~ ( x ) V ( x ) d x .  
n- ,co n k = l  

Theorem 3. Suppose that F(x) has a non vanishing absolutely continuous com- 
ponent, that X >_ O, and that E X  = # is finite and not zero. Let T > 0 be a real number, 
let 

co n S k  T<S,+I}]  ' 

let pr(x) be the derivative of Pr(x), and let Qr(x) be the component of PT(x) that is 
singular with respect to Lebesgue measure. Let p(x) = 1 if xE [0, 1] and zero other- 
wise. Then lira Q r ( ~ ) = 0  and 

T ~  co 

1 

lira ~ [Pr(x)-p(x)] dx =0. 
T ~ c o  0 

Corollary 2. Suppose that F(x) has a non vanishing absolutely continuous 
component, that X ~ O ,  and that E X = #  is finite and not zero. For any positive 
real number T>0,  let Nr=n  if S , < T < S ,  for n> l, and N r = 0 / f  $1 > T. Let h(x) 
be a bounded Borel function on [0, 1]. Then 

lim E [ ~  = Ih(x) dx. 
T~co [_T k=l -T- o 

Two lemmas needed in the proof of Theorem 3 are: 

Lemma 1. Suppose g(x) is a function of bounded variation on [0, 1]. 
Let sup {Ig(x)l: x~[-0, 1]}=K and let T(g) denote the total variation of g on [0, 1]. 
Suppose qJ(t) is the characteristic function of a real random variable. Then for any 
n > 1 and any real t, 

lk~__lg (~_)O(t) k < 2K+ T(g) 
--Ii-~(t)l " 
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Proof If ~b(t)= 1, the right side of the inequality is infinite and the left side is 
less than nK. If ~b(t):# 1, then since IO(t)[ __< 1 

g +]g(1)l+ -g  
=_ k=l 

Ii-~,(01 
2 K  + :r(g) < 

= I 1 - 0 ( t ) l  " 

Lemma 2. Let ~(t) be the characteristic function of a real random variable. 
Suppose O(t) has a derivative at t=O, ~'(O)=ili. Let h(x) be a real function on the 
line. Suppose h(x) is bounded and almost everywhere continuous on [0, 1]. For 
each n > 1, let 

y.(t)= Z h ~b 
'~ k=i 

Then {y,(t)} converges to 7(t)=~ioeiU'Xh(x)dx uniformly for t in any bounded 
interval. 

Proof Since the function h(x) is Riemann integrable on [0, 1], ~,(t)= 
1 ( ! )  
n ~k= 1 h e iutk/" converges to 7(0 for all t. There exists a finite positive number K 

such that Ih(x)[ < K  for all xe [0, 1]. So 

O [ t \ k  icukl 
[V,(t)- ~,(t)l :nk=i< K ~ In) - e ~ - "  

Also 
itu[ k~l it,j itu I 

O(nt-)k--e~l_-- < o ( t ) - - e  " J=~ e "  I//(~) k-l'j ~k I~(~)--e n . 

Thereexistse>Osuchthat~p(O=l+i#+o(lt l) forl t l<e.So]O(t)-e~tU/"<o(~) 
for [t[ <en. Thus for any fixed t for n large enough 

It follows that for any t that {7.(0} converges to V(t). Let I be an arbitrary bounded 
interval on the line. Let ss I and te I and let b = sup {Ix I: xe I}. For any n__> 1, 

I~.(s)-Y.(t)l <-K ~ O -~' 
~ n k =  l 

< -  k - 0  
n k = l  
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Since 0(t) has a derivative at t=0,  given 5>0, no(b ) can be found such that for 
n > no(b), 

Kn O - O  < K # l s - t [ + ~  

for s, t e l  Choose ~ =e/(2K#), then Ipn(s)-~n(01 <5 for Is-t] <3 for n>=n o. That 
is {Yn(0: n>--no(b)} is equicontinuous on I and since {y~(t)} converges to ?(t) for 
all t, it follows the convergence is uniform on I. The proof is complete. 

Proof of Theorem 2. Theorem 2 is a generalization of Theorem 1. For the 
proof it is enough to take g(x)_>__ 0. We follow Prohorov [5] and prove the theorem 
using the language of distribution functions. Write F(x) = P x [ -  oo, x] and G,(x) = 
G~ [ -  0% x]. Then 

1 " 
G ,(X) =n k~__ 1 g ( ! ) F (n x) *k 

where F(.) *k is the k-fold convolution of F(-). 
Since ~fd2>0  we can find a finite positive number k so that StZ<_klfd2>O. 

Set u(x)=f(x) if f < k  and zero otherwise. Denote c~=~ud2, set Hi(x)= 
e-a ~t . . . .  l udx and write 

f(x) = o:H 1 (x) + (1 - e) H2(x ) . 

Let h~(t) and h2(t ) be the characteristic functions of H l(x) and H2(x ). Since u(x) 
is bounded and summable u(x)eL 2 and by Plancherel's theorem ~ [h~ (t)l 2 is finite. 
Now 

G,(x)= k ~'=1 g [eHl(xn)+(1-cOH2(nx)]*k" 

Set 

en(X)--! ~ g(!) (1--ook[H2(Xn)] *k, 
- - n k =  1 

let r,(x) be the derivative of R,(x), and let/~n(x) be the component of R~(x) that is 
singular with respect to Lebesgue measure. Then 

~ 1 n Rn(~176176176 g ( ~ )  ( 1 - ~ )  k 

from which it follows that {rn(x)} converges to zero in Lebesgue measure and 
lim /~,(oo) = 0. 

Let K = sup {g(x)' xe [0, 1]} which is finite by assumption. Consider 

Zk(t ) = [~ h t (t) + (1 - e) hE(t)] k - (1 - e)k h~ (t) 

= ~ (kljo':l(1-cOk-lh~(t) h~-'. 
/=1 

Then 

[Zk(t)'<= ~ (kl)~Z(1-~)k-~'hx(t)[~. 
/=1 
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F r o m  this inequali ty we see two things: First, since [h 1 (t)] ~ 1, [z~k(t)l ~ [h 1(01 for 
all t, f rom which it follows that  the characteristic function of S.(x) = G. (x ) -  R.(x) 
which we denote  a.(t) is in L2, that  is ]a.(t) leL 2. Second, since hl(t ) is the char- 
acteristic function of an absolutely cont inuous distr ibution function, given 
e > 0, there exists a positive constant  c < 1 such that ]h I (t)[ < c < 1 for all [t[ > e and so, 
for Itl>~, 

[h~(r)[ [hi(t)[ 
I Z k ( t ) j < - -  [ c~c+ l - c~ ]  k -  [ 1 - a ( 1 - c ) ]  k. 

c c 

F r o m  this inequali ty we get for It[ > e 

la.(t)l< Klhl(t)l ~, [1 -~ (1 -c ) ]k<  Kjha(t)l 
C/~/ k= l  l'l 0( C 

Since ~(x)e L2, by Plancherel 's  theorem 

~[s,,(x)-g,(x)] 2 d x = l  f ]a . ( t ) -7( t ) ]  2 dt 

where s.(x) is the derivative of S.(x) and 

7(t)=ie.X (x)d x ie.Xg dx 1.. = - - =  j e  " g ( x )  d x .  
0 ]2 o 

Since ~(t) has a derivative at t = 0  and ~b'(0)=i]2, lim [ 1 - ~ ( 0 ]  1" given 7, such 
[]2tl ' 

that  0 < q < � 8 9  say, we can find an e > 0  such that  for ]t[<~, I1-~( t ) t>(1- r / )1121 ]tl 
which implies [ 1 - ~b(t)[- z < 2 ]]2 t] - ~ for I tl < e. For  such an e > 0 write 

[ o- . ( t )-  y(t)l 2 dt = A. + B. 

where 

A. =~[,1>_~ . Io-.(t)- y(t)l 2 dt 

and 

B.=~ltl<~. ]6,(0-7(0[ 2 dt. 

We have 

A~< 2 ~I,I>=~ ~ ]a,,(t)l 2 d t + 2 ~ l , l ~  ~ 17(t)] 2 dt 

2K 2 
=n2a2c2<~ Slhi(t)lZ dt+2~l,l>=~.ly(r)12 dt, 

consequent ly  2irn A. = 0. Fur thermore ,  

B.<2Sr,I<~. Iy.(t)-T(t)l  2 dt+2Sl,l<~ . Ip.(t)[ 2 dt 

where p.(t) is the characterist ic function of R.(x). Let a > 0 be arbi t rary and write 

J'ltl<~n [7 . (0- ' l i t ) [  2 dt =D, ,+En  
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where 

Dn=Iit[<__ a [2.(t)- 7(t)l 2 dt 

and 

E~=~<t<~, lTn(t)-y(t)[ 2 dt. 

Then 

En--<2~< It l<~. [Yn (t)12 dt + 25~< I,l<~, IT( t)12 dt. 

By Lemma 1, 

2K + T(g) 
I7"(t)l< n 1 _ ~ ( t )  

where T(g) is the total variation ofg(x) on [0, 1]. We selected e > 0 so that 

[1-~b(t)[-1 <2  [#t[ -1 if [t[<e, 
s o  

[7.(t)l < 2 1 2 ~  (g)] for It l<~n. 

It follows that 

E.< C(a)- 8[2K+ T(g)]2 ~-251,1>. I~/(t)l 2 dt. 
/.z2a 

Since {2.(t)} converges to 7(0 uniformly for It[ < a it follows that !irn (D. + E.) < C(a). 

But lim C(a)= 0 and a was arbitrary;hence lim (D. + E. )=  0. 
a ~ o o  n ~ o o  

From 

O.(t)--n k~l g (1 - 0{)k i-h2 (t)-lk 

we have Ip.(t)l <=K/(n0{) and 

lim2~l,l<~ ~ [p.(t)l 2 dt<_ lim --=2eK 0 
n~oo - - n ~ m  0{2/2 " 

So we get 

! im I [s.(x)-~(x)[ 2 dx = 0 

which implies that {s.(x)} converges in Lebesgue measure to ~(x) and since we have 
already shown that {r.(x)} converges in Lebesgue measure to zero,, it follows that 
{g.(x)}, (g.(x) = r.(x) + s.(x)), converges in measure to ~(x). 

N o w  

G.(oo) =~ g.(x) dx+_R.(oo) 

= - - k ~ g  �9 n = 
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Since lim/~,(oo)=0, we have 
n~oo 

lira5 g,(x) dx = jo t g(x) dx = ~ ~(x) dx. 

It follows by a theorem of Vitali that 

!irn ~ I g,(x) - ~ (x)[ dx = 0. 

The theorem is proved. 

Proof of Theorem 3. We have 

n 

# co oo 

----T k~1 .~=k P[{Sk <--TxI c~ {S"G T<S"+'}] 
0o 

=~ EPESk<=Tx] if 0_<x_<l 
l k = l  

o3 

By the renewal theorem 

if x > l .  

lim Pr(x)=x if 0 < x <  1. Let {T~: i>  1} be an arbitrary 
T ~  

sequence of positive real numbers increasing to infinity. If x is a real number, 
let [x] be the largest integer that is not greater than x. Let N~= [Trig ] and let 
e i=  T//(/~N~); then l ime i = 1 and lira Ni= oo. 

i ~ c o  i~o0  

If 0 < x < 1, write 

PTi(X)  = P/ (X)  + Q I ( X )  

where 

Ni ,u 
P, (x )  = PES <=xr3 

1 Ni 
-cqNi k~l P[Sk < ~x~iNi] 

Qi(x)=~ ~ P[Sk <=XTi]. 
k = N i + l  

For  any real x and integer n > 1, write 

~ 1 n 

P~(x)= n ~lP[Sk <=! ~xn] 

and let p,(x) denote the density of P,(x). By Theorem 1, },(x) L1 p(x) where 
p(x) = 1 if xe [0, 1] and zero otherwise. Let {ft,} be a sequence of real numbers 
such that l imf i ,=  1. By a theorem of Lebesgue, },(fl, x) L,, p(x). Let pi(x) be the 

n-, ao 
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derivative of Pi(x); then pi(x)=DN,(ohx)Ito.lj(x). It follows that pi(x) L1 ,p(X) 
on [0, 1]. This result together with the renewal theorem implies that lim Qi(x)=0. 

i~oO 

Consequently, if pr,(x) denotes the derivative of Pr~(x), we have pr,(x) L1 , p(x) 
on [0, 1]; but the only restrictions on { T~} are T~ > 0 and T~T oo. So we have 

lim ~o i ] P T ( X )  - -  p(x)] d x  = O .  
r ~ o o '  

The theorem is proved. 
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