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Comultiplicative Functionals and the Birthing 
of a Markov Process 

R. K. Getoor*  

1. Introduction 

It has been known for many  years that a multiplicative functional, re, may be used 
to kill a Markov process. A special case of this construction is when m is given 
by a terminal time T as m t -- 1E0 , r)(t). More recently Meyer, Smythe, and Walsh I-8] 
introduced the notion of a coterminal time and showed how a coterminal time 
may be used to "b i r th"  a Markov  process. In view of this it is natural to ask if there 
is a p r o c e s s -  naturally called a comultiplicative func t iona l -  which has the same 
relationship to coterminal times as a multiplicative functional has to terminal 
times. 

After some preliminaries in Section 2 we introduce the notion of a comultipli- 
cative functional in Section 3, Definition (3.1). In Sections 3 and 5 we show that 
there is a complete duality between comultiplicative functionals and an appro- 
priate class of multiplicative functionals. In the case of coterminal times this re- 
duces to the duality with terminal times given in [8]. In Section 4 we show how a 
comultiplicative functional may be used to birth a Markov process in a manner 
that is dual to that by which a multiplicative functional is used to kill a process. 
Sections 4 and 5 are independent of each other and may be read in either order. 

What  we develop here might be called an "algebraic"  theory since we assume 
the exceptional sets in our definitions are empty. In light of the recent work of 
Walsh 1-9] and Meyer [7] this causes no problems in dealing with multiplicative 
functionals. However, the a-algebras that we use are motivated by the results of 
Meyer [7]. Obviously there are dual perfection properties for comultiplicative 
functionals, but we do not discuss this here. I hope to return to it in a future publi- 
cation. The duality developed in Sections 3 and 5 does not involve a Markov  
process. It may be viewed as a chapter in the duality between shift (Is birth better?) 
operators (0t) and killing operators (kt) developed by various authors in recent 
years. See, especially, Azema [1]. The Markov  process, itself, enters only in Sec- 
tion 4. 

In 1-8] Meyer, Smythe, and Walsh also showed that a cooptional time may be 
used to kill a process. There is an analogous result here for cooptional functionals - 
that is, a functional n satisfying only condition (3.1)(i) of Definition (3.1). How- 
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ever, as in [8], this killing with a cooptional functional is much simpler than birth- 
ing with a comultiplicative functional, and we leave the construction as an exercise 
for the interested reader. 

2. Notation 

We begin by describing the set-up that we shall use throughout this paper. Let 
E~ = E  u {A} be a separable metric space and let W be the space of all right con- 
tinuous paths co from IR+= [0, oo) to E~ that admit A as a cemetery. That is, 
co: IR+--.EA is right continuous and co(t)=A for all t>=s if co(s)=A. As usual, 
((co) = inf{t: co(t)= A} denotes the lifetime of co, and by right continuity co(((co)) = A 
if ((co) < oe. By convention the infimum of the empty set is + ~ ,  and we extend 
each co to IR + w{oo} by co(oo)=A. We let [d] denote the path that is identically 
equal A. Thus ~(co)=0 if and only if co= [A]. For each t e n  + we define the shift 
operator 0 t and the killing operator k~ on W as follows: 

0, co(s) = co(s + t), (2.1) 

k~ co(s) = co(s) if s < t 

= A if s > t. (2.2) 

Observe that koco= [A] and that O~k~co=[A] for all co. Note also the following 
identities valid for s, tEN+:  

(i) 0, 0s = 0, +s, 

(ii) k~k s = k~ ̂ ~; t ^ s =min(t ,  s), (2.3) 

(iii) O~kt+s=k~O I. 

We now fix a subset ~2 of W that is closed under the action of 0 t and k t for each 
t~]R +. We let X~: ~2~En be the coordinate maps, X~(co)=co(t) and define the 
canonical o--algebras ~~ s<=t), ~~ where each X~ is re- 
garded as a map from ~2 to (EA, ga). Hereo~A (resp. g) is the a-algebra of Borel subsets 
of E~ (resp. E). Also let g~' and g* be the universal completions ofg  d and & Define 
~ *  and ~ *  to be the universal completions of ~ o  and ~ o  respectively. It is easy 
to see that k t is ~ o ] ~ o  and also ~ * 1 ~ *  measurable. Moreover, if H ~  ~ (resp. 
H 6~*) ,  then H ~  ~ (resp. ~ * )  if and only if H o k ~ = H  for all s> t .  Finally one 
easily checks that 

~ o  o.~* O s > , k : l  ~ *. (2.4) 5"~+ = (~s>,k~-i ~ ~  = 

We shall use this notation consistently in the sequel. However, we shall have 
to impose additional assumptions on the separable metric space E~ in Section 4. 
The need for introducing the a-algebras ~-* and ~ *  is best understood by looking 
at the "perfection" properties of multiplicative functionals described on pp. 181-185 
of Meyer [7]. Notice that we have not, as yet, introduced any probabilities on ~2. 

3. Comultiplicative Functionals 

(3.1) Definition. A n  ~ *  measurable process n = (n~) t > o is a comultiplicative func-  
tional, abbreviated c o m f  provided t ~ n~ is left continuous on (0, Go), n o = 0, 0 <-<_ n t <= 1 
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for all t e n  +, and n satisfies: 

(i) n, oOs=n,+,; t > 0 ,  s > 0 .  

(ii) nt=n, oksG ; O < t < s  

(iii) n, o k s = 1 ; t > s. 

It is assumed that  the properties in Definition (3.1) hold identically in a). 
Note  that  the normal iza t ion  n o = 0 implies that  (3.1)(ii) holds for 0___ t < s, and that  
(3.1)(ii) implies that  t + n ,  is increasing. Consequent ly  n has right limits on IR +. 
Of course, (3.1)(i) is just the statement that  the left cont inuous process n is coopt io-  
nal. See [1]. Note  that  if t, s e n  +, then n,^s=ntoksG.  

Recall from M e y e r - S m y t h e - W a l s h  [8], that  a positive r andom variable L 
on (f2, ~ * )  is a coterminal time provided:  

(i) L o O , = ( L - t )  +, t>=O, 

(ii) Lok, = L  on {L < t}, 

(iii) Lo k, < t, t > 0 .  

It is immediate  that  a positive r andom variable L on (f2, o~*) is a coterminal  
time if and only if the process n, = l{z ' oo)(t) is a comf. Thus a comf  is " the  process 
vers ion" of  a coterminal  time. 

We collect some elementary properties of a comf  in the following" 

(3.2) Proposition. Let  n be a comf Then: 

(i) n, ok~=n, okfl~sok ~ if  O<_t<<_s<<_r. 

(ii) I f  t<=s, then n r < n r o k , < G o k ,  for all r. 

(iii) ~, = inf s > o n, ~ ks = lims~ ~ n, o k s defines a comf satisfying n, < ~ and n t o k s = 
~toks; t, s e n  +. 

Proof  Compos ing  (3.1)(ii) with k, yields (i). Fix t<s .  If  r>s ,  then (3.1)(iii) 
implies G<=Goks, while the same inequality follows if r < s  from (3.1)(ii). Re- 
placing s by t in this inequality and compos ing  with ks gives n, o k, <= n, o k t if t _<_ s. 
Thus  for each fixed t >= 0, s--+ n, o k s is decreasing and so 

fi, = inf n, o k s = lim n, o k s > n,. 
S > 0  S ~ O 0  

Clearly ~o = 0  and g is ~-* measurable. If  t>O, then 

h, o 0 s = lim n, o k~ o 0 s = lim n t o 0, o k~ _ s = lim n, + ~ o k,, _, = h, + s, 

and so ~ satisfies (3.1)(i). It is immediate  that  ~,oks=n, oks, and so ~ satisfies 
(3.1) (iii). Compos ing  (3.1)(ii) with kr, letting r--+ 0% and using the above fact we 
see that  ~ satisfies (3.1)(ii). Finally if t < s, ~, = n, o k s ~s shows that  t--+ ~, is left con- 
t inuous on (0, s), and since s > 0 is arbitrary,  g is left continuous.  This completes 
the p roof  of (3.2). 

(3.3) Definition. The coral, ~, defined in (3.2) is called the exact regularization of  n. 
a comf n, is exact i fn=fz,  that is, if n, = l i m s . ~ n ,  oksfor each t > 0 .  

We are going to construct  a multiplicative functional (m f )  from a given comf. 
However ,  let us first be precise about  what  we shall mean by a m f  in this paper. 
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(3.4) Definition. An ~ * measurable process m = (m,)~>=o is a multiplicative functional 
provided t ---, m~ is right continuous on IR +, O< m t < l for all t6lR +, and m satisfies: 

(i) m, is 4 "  measurable. 

(ii) mt+s=mtm~oOt; t, s e N + .  

(iii) m,( [A] )=l  for all t>O. 

It  is assumed tha t  the above  proper t ies  hold identically in co. Clearly (3.4)(ii) 
implies that  t ~ m, is decreasing on IR+. ' Also observe that  (3.4)(i) is equivalent  to 
m, o k s = m~ for s > t. If  t > ~(co), 0, co = [A] and so (3.4)(ii) and (3.4)(iii) imply that  
mt(co)=m~(o,)(co ) if t>~(co). Recall  that  a mf, m, is exact if lims~omt_soO~=m~ for 
each t > 0 ,  and tha t  if m is exact, then s--,mt_~oOs is right cont inuous  on [0, t). 
Here  and in the sequel lim~; r stands for lira . . . . . . .  with a similar convent ion  for 
l im~ r. If  m*=(m*)  is a mf, then it is well known  that  m~=lim~lom*~oO ~ if t > 0  
and m o = lim~+ 0 mt defines an exact m f  called the exact regularization of m* and 
that  mr>m*. Moreover ,  m~(co)=m*(co) for all t~lR + if m~(co)=l ;  in part icular,  
mr(co ) = m*(co) if m*(co)> 0. See, for example,  [9]. However ,  the si tuat ion described 
here is much  simpler since we are dealing with ordinary  limits rather  than  essential 
limits. 

We now fix a comf, n, and proceed to construct  an associated m f  Firstly de- 
fine for t > 0 

m~ = lim n~ o k t = n o + o k~. 
s$O 

Since t ~ n~o k t is decreasing for each fixed s according to (3.2)(ii), it follows tha t  
t ~ m~ is decreasing on (0, oo). Therefore  we m a y  define for t > 0  

m* = m~+ = lim n o + o k,. (3.5) 
uSt 

Clearly t--.  m* is right cont inuous  and decreasing on IR + with 0__< m* < 1. More-  
over m* is 4 "  measurab le  because it is clearly ~ *  measurab le  and m* o k~= m* 
if s>t .  F r o m  (3.2)(i) we have nrok~=ntoksn~ok t for O<r<_t<s.  Lett ing r$0 and 
then taking right limits in t we find 

m~s =nt+ok~mt* , O < t < s .  (3.6) 

Let n*( t , s )=nt+ok  ~ if O < t < s  and note that  s-~n*( t , s )  is decreasing on (t, oo). 
Tak ing  right limits on s in (3.6) yields 

m*~=n*(t ,s+)m*, O<t<_s (3.7) 

where, of course, n* (t, s + ) =  l im, ~ n* (t, u) is defined for all s > t. Next  observe that  

m, e o 0  =no+  ok oO =no+ oO ok,+~=n~+ ok~+ =n*(v, u + v), 

and taking right limits on u we see tha t  m* o 0~ = n* (v, (u+  v )+)  for all u, v > 0. 
Combin ing  this with (3.7) gives 

* - , , , *  oO m* O<_t<_s. (3.8) ms - - . , ~ s - t  ~ t " ~  

Since k , [ A ] = [ A ] ,  (3.1)(iii) implies that  n t ( [ A ] ) = l  for all t > 0 .  This and (3.5) 
show that  m*( [ A] )=  1 for all t > 0 .  Consequent ly  m * =  (m~*)~> o is a m f  as defined 
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in (3.4). Final ly define m to be exact regularizat ion of m*, that  is, 

m~ = l i m  m * s o O , ,  t > 0  
s$O 

m 0 = lim mr. (3.9) 
t$o 

Let us express m directly in terms of n. F r o m  (3.9), for t > 0 we have 

m , = l i m m * _ ~ o O s = l i m  lim me o 0 s = l i m  lim no+ ok,  oO s 
s$ O s~ O u.L(t-s) s.L O u l ( t - s )  

= l i m  lim ns+Ok,+~=l im lim ns+ ok , .  
s$O uS( t -s )  s$O uSZ 

But using the fact that  s ~ n s is increasing this readily yields 

m~ = l i m  lim n~ok~, t > O .  (3.10) 
s$O uSt 

A compar i son  of (3.10) and (3.5) is of interest. 

We summar ize  what  we have proved  so far and collect some addi t ional  facts 
abou t  m in the following: 

(3.11) Theorem. Le t  m=(mt )  be defined by (3.10) i f  t > 0  and too=l i ra ,  lore ~. 
Then m is an exac t  multiplicative funct ional  satisfying: 

(i) mto k~ > m, for  each t > O. 

(ii) For  each t > 0 ,  lim mt_soOsok t is either zero or one. 
sSt 

(iii) I f  n is exact ,  then m~  =no+  where, o f  course, rn~ = lira m~. 
t~o~ 

Proof. In view of the above  const ruct ion we need only establish propert ies  
(i), (ii), and (iii). Since koO = [A] for all ~o and mo([A]) = 1, we need only prove  (i) 
for t > 0. But then f rom (3.10), m t o k t = n o + o k t = mr*. On the other hand  u --, ns o k, 
is decreasing and so (3.10) implies m~ < m e ,  establishing (i). If  0 < s < t, then f rom 
(3.10) 

m~ sO0~=lim lim n~ok, oOs=l im lim n~oO~ok,+~ 
r,L O u l ( t - s )  r$ O u,HZ-s) 

= lira l im n,. +s ~ k~, 
r,~O v,~t 

and so 

m~ soOsok~=ns+okt;  O < s < t .  (3.12) 

Lett ing sTt , this gives l im m~_soO~okt=ntok ~. But compos ing  (3.1)(ii) with k s 
s'~t 

and letting t T s shows that  n t o k t is either zero or one for each t > O, p rov ing  (ii). 
Final ly  m~ = lim lira lira nsO k,, and since the limits on t and s are really infima, 

t~oo s,~O u~t 

they m a y  be in terchanged to obta in  

moo = lim lim lim n s o k u = lim lim n~ o k w" 
s~O z~oe u!,t s$ O u~oo 

The last equali ty follows since u ~ n s o k  ~ is decreasing. If n is exact, n s O k u ~ n  ~ 
as u--,oQ, and so m~o=no+ proving (iii). 

The following corol lary  will be used in the next section. 
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(3.13) Corollary. Let n be exact. Then n~+ =m~oOtfor each t>O and nt+-ns+ = 
m~ooOt(1 -mt_soO~) for O< s <t.  

Proof The first statement is an immediate consequence of (3.11)(iii). For the 
second observe that m~=mt_~mo~oOt_ ~, and hence mo~oO~=mt_~oOsm~oO t. 

(3.14) Remark. Ifn is a comf, then it is readily verified that 

R=sup{t :  nt=0} =inf{t:  n,>0} 

defines a coterminal time. 

4. Birthing a Markov Process 

In this section we shall show how to use a comf to birth a Markov process in a 
manner that is dual to that by which a mfis used to kill a Markov process. See for, 
example, Section III-3 of [2]. Also the reader should compare our result with that 
given for coterminal times in [8]. 

Throughout this section we assume that E~ is a U-space, that is, it is homeo- 
morphic to a universally measurable subspace of a compact metric space F. 
In addition we assume that for each initial (probability) measure # on (Ea, NA) 
there exists a probability measure P" on (~2, ~ * )  such that the coordinate maps 
(X~) form a right process as defined in [4] under P". As usual we write o~u for the 
Pu completion of o~0 (this also equals the P" completion of o~*) and ~ for the 
a-algebra generated by o~ ~ (equivalently o~*) and all P" null subsets in ~ " .  
Our hypotheses imply that the family (o~") is right continuous for each/~ and 
~0 c A *  co~.u for each t>_0. As usual we write (Pt) and (U ") for the semigroup ~*t+ t+  t 
and resolvent of this right process and recall that one of the basic assumptions is 
that t ~ f ( X t )  is almost surely right continuous i f f  i s e-excessive for the semigroup 
(Pt). We refer the reader to [4] for the basic properties of right processes. 

We now fix for the remainder of this section an exact comf, n, and let m be the 
exact mfconstructed from n in Section 3. We write (Q~) and (V') for the semigroup 
and resolvent generated by m, that is, for t e IR + and e > 0 

Q,f(x)=E~'[f(Xt)m,]; V~f(x)=E ~' ~ e-~tf(Xt)mtdt (4.t) 

for f e b g *  (the bounded universally measurable functions on E). We adopt the 
familiar convention that any functionfdefined on E is extended to E~ byf(A)= 0. 
Recall that Xoo (e))= A for all o~ e f2. It is standard to check that under our assump- 
tions (Qt) is a semigroup of subMarkov kernels on (E, g*) and that (V ") is its 
resolvent. Let 

S = i n f  {t: m t =0}. (4.2) 

Since m is exact it is well known and easy to check that almost surely t ~ V'f(Xt) 
is right continuous and has left limits fo r f ebd  ~ In addition, if h is e-m-excessive, 
that is, e-excessive relative to the semigroup (Qt), then almost surely t ~ h(Xt) 
is right continuous and has left limits on [0, S). Actually slightly more is true: 
Almost surely t ~mth(Xt)  is right continuous and has left limits on IR +. See [2] 
for these facts. 
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Recall from (3.11) that no+ =moo and define 

g(x)=EX(moo)=EX(no+); xEE. (4.3) 

Of course, g(A)= 0. Clearly 0 < g < 1, and the following calculation shows that g 
is m-excessive: 

Q,g(x)=EX{g(X~)mt}=EX{moooO, m~; t <~}=EX{moo; t <~}Tg(x) 

as t+0 for x6E. Let E,, = {x6E: W[m o = 1] = 1} be the set of permanent points for 
m and let Eg= {x6E: g(x)>0}. Then E m and Eg are universally measurable and 
Egc E m c E. (Actually E,, and Eg a r e  nearly Ray Borel (see [4], but we shall not 
need this fact.) Finally define 

R = sup {t: n~ = 0} =inf{t:  n, > 0}. (4.4) 

As remarked in (3,14), R is a coterminal time. Since no+ =moo, if g(x)>0,  then 
W(R = 0 ) > 0  and W(S= oo) >0. 

We now come to the first fact that we shall need. 

(4.5) Proposition. Let f be e-m-excessive and define h(x)=f(x)/g(x) if XeEg and 
h(x) = 0  if g(x)= O. Then t ~ h(Xt) is almost surely right continuous on the interval 
(R, co). 

Proof It suffices to show for each rational r that almost surely on {R < r}, 
t ~ h(Xt) is right continuous on (r, oo). If R < r, then by (3.11), moo o 0, = n o + o 0r= 
nr+ >0,  and so So Or= oo. Since f is a-m-excessive, this implies that almost surely 
on {R<r},  t~f(Xt)oO ~ is right continuous on ~ + ,  or equivalently, t~f(Xt)  
is right continuous on [r, a2). But g is m-excessive and so to complete the proof 
of (4.5) it suffices to show that almost surely on {R < r}, t ~ g(X~) never vanishes 
on (r, oo). Let T=inf{ t :  g(Xt)=0}. Then T is an (~t u) stopping time for each/2 
since g is well measurable (see [4]). Since moo o 0~ > 0 on {R < r} the desired result 
will follow if we show W[A] = 0  for all # where 

A={m~oO~>O, r+ ToO~<oo}. 

Now u~moooO,=n,+ is increasing and r < r +  ToO,= T~. Therefore 

{moo o 0~>0} c {m~ooOr>O } = {moo o 0rO0~ >0  } . 

Also almost surely on {R < r}, g(Xr. ) = 0 because of the right continuity of t ~g(Xt) 
on [r, oo). As a result 

PU(A) <= E" {px(r) [moo o O r > 0, g(Xr) = 0, r < oo ] }. 

But for each x in E, 

W[moooOr>O,g(Xr)=O, T< oo] 
=E~{px(r)[m~ > 0 ] ;  Ex(r)(moo)=O, T <  oo} =0 ,  

completing the proof of (4.5). 

We now define the "condit ioned" semigroup 

Kt(x, dy)= Qgt(x, dy)= [g(x)]- i  Q,(x, dy) g(y); xeEg 
= e~ (dy); g(x) = 0. (4.6) 
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It is well known and easy to check that {Kt},~ o is a subMarkov semigroup and 
that K,(x , . )  is carried by Eg if xeEg. Since t ~ m , g ( X , )  is almost surely right 
continuous, it is clear that t ~ K S ( x  ) is right continuous wheneverf is  a bounded 
continuous function on E. Moreover the resolvent (W~)~> 0 of (Kt) is given by 

W~(x, dy)= [g(X)'] -1  V~ dy)g(y); xeEg 

=O~-laA(dy); g(x)=0.  (4.7) 

Observe that (4.5) implies that t--, W~f(XJ is almost surely right continuous on 
(R, co) i f fe  bg*. Also the inequalities Qt g < g and e V ~ g < g imply that Qt (fg) = gK , f  
and V~(fg)=g W'f .  

We shall say that a numerical process Y= Y~((~) defined on IR + x f2 is ( ~ * )  
welt measurable provided it is measurable with respect to the a-algebra on lR+x f2 
generated by all bounded ~ +  |  measurable processes that are adapted to 
( ~ * )  and which are right continuous and have left limits. Here N+ is the a- 
algebra of Borel subsets of N +. The next proposition contains the basic calcula- 
tion that we shall need. 

(4.8) Proposition. Fix g on E. Let f be a bounded continuous function on E and let 
Y be a bounded ( ~ * )  well measurable process. Then 

E" Sf(X~ +2+ 4) Y~ + ~ dn(2) = E ~ S K,f(Xs+ 4) Y~ + z dn(2) (4.9) 

for each t >__ 0 and s > O. Here we have written n(2)for nzfor typographical convenience. 

Proof. It suffices to prove (4.9) when Y is bounded, right continuous, and (~t*) 
adapted, and so in the remainder of the proof these properties are assumed to 
hold for Y. Fix s > 0. Then both sides of (4.9) are right continuous in t and so it 
suffices to show that they have the same Laplace transform. Let q)(t) denote the 
left hand side of (4.9). For notational convenience write n+(u)=nu+ for u > 0  
and (j, k) for the dyadic rational j/2k; j = 0 ,  "- ,  k = l , 2 ,  .--. Also let A n(j ,k)= 
n+[O',k)]-n + [ ( j - l ,  k)]. Since 2~f(X~+s+~)Y~+~ is right continuous we may 
write 

(p(t)= E" S f (X, +~+,z) Y~+,~ dn()O 

=EU{f(X,+~) Ysn+(O)} + lim ~ E"{f(X,+~+u,g)) Y~+(j,k)dn(j, k)}. 
k~co j > l  

Let A(J) denote thej- th  term in this summation and let 

M(J, k) = 1 - m(1 ' k)o 0(j_ l, k)" 

Then from (3.13), A nO', k) = moo o 0u, k)M(j, k), while 

moo~ = m s ~ 1 7 6 1 7 6  . 

Because ~ +~ *  ~ for each r >0,  if we use the Markov property first at the instant 
t + s + (j, k) and then at s + (j, k) we find 

A (j)  = E u {fg ( X  t +~ + (j, k)) Y~ + (j, k) ms o 00. ' k) me ~ O~ + (i, k) M ( j ,  k)}  

= E u { Q,fg(X~ + (i, k)) Y~ + U, k)ms o Ou, k)M (j, k)}. 
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Substituting Q J g = g K f  into this expression, using the Markov property at 
s + (j, k) once again, and then reversing the above steps one finds 

A(J)= EU { K,f(X~ +(j,k)) Ys+(j,g)mo~ oOs +(j,k)msoO(j,k)m (j, k)} 

= Eu {K,f(X~ +(;, k)) Y~ + (;, k) A nO, k)}. 

A similar but simpler argument shows that 

E~{f(Xt+s) Y~n+(0)} =EU {K,f(X~) Ysn+(0)}. 

Therefore the Laplace transform of the left hand side of (4.9) may be written 

Eu{W~f(X~) Ysn+(O)} + lira ~ Eu{W~'f(X~+(j,k)) Y~+(j,k)Anfj, k)}. (4.10) 
k~oo j~l 

On the other hand the Laplace transform of the right hand side of (4.9) is 

E u ~ W~'f(Xs+~) Y~+zdn(2)=E" ~ W~'f(X,+z) Y~+z ltR, ~)(2) dn(2), 

where R is defined in (4.4). Since s>0,  2 ~  W~f(Xs+;.) is almost surely right 
continuous on [R, oo) by the comment below (4.7). Consequently this last expres- 
sion may be written 

E~'{W~f(X~) Y~n+(0); R = 0 }  

+ lim ~, E"{ Waf(Xs+(j,k)) Ys+(j,k) I[R, oo)[(j, k)]  A n(j ,  k)}.  
k ~ o  j_->l 

But n+(0)=0 if R > 0 and An(j, k)=0  if (j, k)< R. Therefore this last expression 
which is the Laplace transform of the right hand side of (4.9) becomes 

E'{W~f(Xs) Ysn+(O)} 

+l im ~, Eu{W~f(X~+(~,k)) Ys+(~,k)An(j, k)}. (4.11) 
k~oo j_->l 

Comparing (4.10) and (4.11) establishes (4.8). 

(4.12) Remark. Exactly the same argument shows that (4.9) holds whenever Y 
is bounded and well measurable relative to the system (f2, ~u ,  ~ ,  W) which 
satisfies the "usual hypotheses" of the general theory of processes. See [3]. 

We now are ready to show how to use n to birth a Markov process. Define 
~ =  [0, oe] x g2 and write &=0~, co), 2e[0,  oo], r for the generic point in ~). 
Let ~ = ~ |  where ~ now denotes the a-algebra of Borel subsets of ~ , + =  
[0, oo]. Define X,(cS)=J(,((2, co))=Xt+~(co ) for t>0.  Then each )(,: ~ E ~  and 
t---, J~,(cS) is right continuous on IR +, has A as a cemetery, and J(t(oe, co)=A for 
all t. If 0~(5=0t(2, co)=(2, 0~co) and ffid)=(2, k~+~co), then it is easy to check that 
J~to0s=J(,+~ and Xtoks=X~ for t<s while 2~ok~=[A] for t>s. For each t~lR + 
define a a-algebra ~t on ~ as follows: f" is ~t measurable if and only if it is 
measurable and there exists an ( 4 * )  well measurable process Y such that f'((5) = 
f'(2, co)= Y~+~.(co) for 2mlR +. It is immediate that (~),_>0 is an increasing family 
of sub-a-algebras of@, and since 2~(co) = X~ + z(co) it is clear that each 2~ is ~ measur- 
able. The family (~,) need not be right continuous but this causes no problems. 
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Finally for each ll on En we define a probability/3, on (~, ~) as follows 

~u(f,) = E u ~R+ f'(2, ") dn(2) + E u { Y(oe,-) [1 - n(oo)]}, (4.13) 

for f ' eb  ~.  

(4.14) Theorem. For each # on Ea, the process (~, ##, ~t+, Xt, Pu)t>o is a strong 
Markov process with transition semigroup (K~). The restriction t > 0  is essential. 

Proof Fix # on En. We begin by showing that (~, ~t, 2~, Pu)z > o is a simple 
Markov process. To this end fix s > 0  and t___0, and let Y e b ~ .  By definition there 
exists Y =(Y,) well measurable with respect to (~,*) such that Y(2, co)= Y~+z(co). 
L e t f b e  a bounded continuous function on El Then f(A)=0.  Consequently from 
(4.13) and (4.8) we have 

~u [.f(s +~) f'] = E u f f (X ,  +~+ 4) Y~+ ~ dn(2) 

= E u ~ K,f(X~+z) Y~+adn(2)=EU[K,f(2~) f'], 

and so (~, ~,, X,, P"/, > o is a Markov process with transition semigroup (K,). 
It is a standard fact in the theory of Markov processes that to complete the 

proof of (4.14), it suffices to show that t--* W' f (2 t )  is Pu almost surely right con- 
tinuous on (0, oo) for each bounded cont inuousf  on E. See I-8.11 of [2]. To this 
end le t fe  bg* and h = W~f. Then as remarked below (4.7), t ~h(X~) is almost surely 
right continuous on (R, oo). Let ir ~ [0, oo] x fJ be the set of(5 such that t--.h(2,(do)) 
is not right continuous on (0, o o). Since 2,[(oo, co)]=A, /~c lR + x O. By de- 
finition h(2t(co))=h(Xt+z(co)) and so (2, co)e/"~ if and only if t--.h(Xt(co)) is not 
right continuous on (4, oo). Let f 'be  the indicator of/~. It is a standard fact that for 
each 2, co--* Y(2, co) is o~* measurable. (See, for example, the argument in [6].) 
Moreover, it is evident that 2 --* Y(2, co) is decreasing for each co. Also if (4,) is a 
sequence that decreases to 2 with 2, > 2 for each n and if f'(2,, co)=0 for all n, 
then Y(2, co)=0. Consequently 2-* Y(2, co) is right continuous for each co, and so 
f is ~ measurable. Hence 

P . r  = E.  ~ ?(~, . )  d n(2) = e "  IE~, co) ? (2 , . )  d n (4). 

But if A is the set of o 's  such that t ~ h(X~((l))) is not right continuous on (R(co), oe), 
and if 2 > R(co), then Y(2, co)< ltR(,,) ' oo)(2) la(co) and so P"(/~)<PU(A)=0. This 
completes the proof of Theorem (4.14). 

(4.15) Remark. Of course, the argument in the last paragraph of the proof of 
(4.14) shows that if h is e-excessive for the semigroup (K~), then t--* h(Xt) is almost 
surely right continuous on (0, oe). 

We close this section by sketching very briefly another method for con- 
structing the birthed process corresponding to n. This method is analogous to 
to that used by Meyer in [5] to kill a process. Let q(d2)=e-~d2 on P,+. Let 
~ = I R  + xfJ  and ~=3~  + |  Define P~ on ~ by ~ = q x P " .  Let (5 =(2, co) and 
put Xt(d))=Xt(co). Next define 

L(d)) = L(2, co) = sup {t: - log nt(co) > 2}, 
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and _~, = X t + L' Then one easily checks that  

/~" [f(:g,)] = E" ~ f ( X ,  + z) dn(~).  

N o w  making use of (4.8) one can show that  (.~,,/5")t > 0 is a Markov  process with 
transit ion semigroup (Kt) provided one excercises a bit of care in defining the 
appropr ia te  a-algebras. Moreove r  if one defines 0,(2, co)= (2, 0 t co) and 

~:,(2, co) = ([2 + log n,(co)] +, k~ co), 

then L becomes a coterminal  time in the sense of [-8], and one can use the results 
o f  [81 to conclude that  (Xt, P")t> 0 is a strong Markov  process with transit ion 
semigroup (K,). However ,  to carry this p rogram through entails some difficulties 
and we prefer the approach  given here. 

5. Duality 

In order  to complete  the circle of ideas begun in Section 3 we are going to show 
in this section how to construct  a comf, n, from a mf, m, in such a way that  applying 
the construct ion in Section 3 to n gives the original m, at least ifm is exact. However ,  
in view of Theorem (3.11) we can only hope to accomplish this if the m we start 
with satisfies (3.11)(i) and (3.11) (ii). Before coming to the construct ion we 
list some elementary consequences of Definition (3.4). If m is a mf, then moo = lim m, 
and moo =mtmoooO ~ for each t_>0. Also recall that  m t = r n  ~ if t_>_~. '~oo 

(5.1) Proposition. L e t  m be a mf. Then 

(i) moook~=rn toks=msoks  f o r  0__<s<t; 

(ii) t ~ m o o o O  t is increasing on IR +. 

Proof.  Since O t k t m =  [A], we have 

m~o o k~ = m t o k t moo o 0 t o k~ = rn t o kt ,  

and composing with ks, s < t ,  gives m ~ o k s = m o o o k ~ = r G o k  ~ proving (i). Also 
moo o 0~ = m, o 0 s moo o 0 K +s < moo o 0, +~, proving (ii). 

It will be convenient  to introduce the nota t ion  

re(s, t] =m,_soOs ,  O<=s<t.  (5.2) 

Then  t ~ r n ( s , t ]  is right cont inuous  and decreasing on (s, oo), while s - * m ( s , t ]  
is increasing on [0, t) and even right cont inuous  if m is exact. It is immediate  from 
(3.4)(ii) that  for O < r < s < t  

m(r, t] =m(r ,  s] re(s, t] .  (5.3) 

Define m ( t - ,  t] =l im  m(s,  t] when t>0 .  Then proper ty  (3.11)(ii) may  be written 
s~t 

m ( t - , t ] o k , = O  or 1, (5.4) 

(5.5) Proposition. L e t  m be a n ~  Then m satisf ies (5.4) i f  and only i f  f o r  each t > 0  
ei ther  m~ o k~ = m~ _ ot" m~ o k, = 0. I f  rn~ _ = m~, then m satisfies (5.4). 
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P r o o f  Letting sT t  in mt=m~m(s ,  t] gives m , = m , _ m ( t - ,  t] when t > 0 .  But 
m s o k~ = m~ if s < t and so m~_ o k t = m t - .  Therefore if t > 0 

m, o k, = m,_ m(t  - ,  t]o k~, (5.6) 

and hence (5.4) implies that  either m t o k t = mr_ or m~ o k~ = 0. Conversely if we define 
m*(s, t )=  lim,~t re(s, u] = re(s, t -  ] for 0 < s < t, then letting s'~ t in (5.3) gives re(r, t] = 
m* (r, t) r e ( t - ,  t]. It is evident that  m* (r, t) o k~ = m* (r, t), and so 

re(r, t] ok, = m* (r, t) r e ( t - ,  t] ok,. (5.7) 

N o w  r--,re(r, t I o k t is increasing on (0, t) and if it vanishes on this interval, then 
certainly r e ( t - ,  t ] o k t = 0 .  If  on the other hand  for some r o < t  , re(r, t ] o k , > 0  for 
r o < r < t, then 

0<re ( r ,  t ]ok  t=mt_, .oOrok~=m~_rokt_roO ~. 

But by hypothesis for each u > 0, either m u o k u = m, _ or zero, and so for r 0 < r < t 

m(r, t] o k t = m(~_ r)- o O r = m* (r, t). 

Substituting this expression for m*(r,t) into (5.7) and letting rT t  shows that  
r e ( t - ,  t]o k t is either zero or one. This establishes the first assertion in (5.5). 

For  the second note that  ~o k~ = ~/x t. Using this one easily checks that  m~_ = m~ 
implies that  m, o k~ = m~_ for each t > 0, complet ing the p roof  of  (5.5). 

A positive Y *  measurable  r a n d o m  variable T is called a terminal time if it 
satisfies: 

(i) { r < t } ~ *  fo r e a c h  t_>0 t - -  

(ii) t + r o 0 ~ = t o n  { T > t } ,  

(iii) T ( [ A ] ) =  oe. 

It is not  difficult to see that  (i) is equivalent to 

(i') T < t implies To k t = T. 

If T is a terminal time, then one checks readily that  m t = lro ' r)(t) is a inf. Note  that  
condit ion (5.4) is automatical ly  satisfied in this case since m only takes the two 
values zero or one. 

In view of (5.1)(i) proper ty  (3.11)(i) may  be written 

m ~ o k t = m ~ o k , > m ~ ;  t>O.  (5.8) 

If m, = 1to ' r)(t) with T a terminal time, then (5.8) is equivalent to 

(iv) t < T implies To k t = o0. 

But (iv) is a condit ion imposed on a terminal time in  [8]. Here we prefer not  to 
make (iv) part  of the definition of a terminal time; rather we shall impose (iv), 
or equivalently (5.8) as needed. 

We now f i x  a mf, m, that satisfies both (5.4) and (5.8). We are going to construct  
a comf, n, from m by a procedure  that  is dual to that  used in Section 3 but is slightly 
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more  complicated. Define 

(a) n [ = l i m m ( t , s ] = m ~ o O , ;  t>O 
s ~ c o  

(b) n* = lira n~ = n~_ ; t > 0. (5.9) 
sSt 

In view of (5.1)(ii) both  n e and n* are increasing, and n* is left cont inuous  on (0, oe). 
Also it is clear that  n~ o Os=n,*+s for t, s > 0 ,  and consequently n*oOs=n*+, for 
t > 0 ,  s > 0 .  Since O,k/o=[A] if s<t ,  we have n , e o k s = l  for s< t  and n*oks=l  
for s < t. Using (5.3) we see that  

~ =m(t,s] ns ~, o<__t<s. (5.10) 

Compos ing  with ks and using n~ o k S = 1 gives nt ~ o k S = re(t, s] o ks, 0 < t < s. Taking 
left limits on-s in (5.10) yields n~ =m*(t,s)n*, O < t < s  where m*(t, s ) = m ( t , s - ]  
was defined in the p roof  of (5.5). Compos ing  this last equality with k S and compar-  
ing with the previous expression for n~ok S we find m(t ,s]oks=m*(t ,s)n*ok S 
when 0 < t < s. N o w  taking left limits on t we obtain 

m ( t - , s ] o k s = m * ( t - , s ) n * o k s ,  O<t<=s, (5.11) 

where, of course, m * ( t - ,  s )=  lim m* (u, s). Next  taking left limits first on s and then 
uSt 

on t in (5.10) we obtain 

n * = m * ( t - , s ) n * ,  O < r < s .  (5.12) 

Compos ing  this with k s and using (5.11) we see that  n * o k s = m ( t - , s ] o k  S. Let 
T s. Since t ~ m(t - ,  s] and t --* re(t, s] have the same limit as t T s we find 

* o k s = m ( s - ,  s]oks, s>O.  (5.13) /~s 

F r o m  (5.12), n* o k S =m *  ( t - ,  s)n* o k s. By (5.13) and (5.4), n* o k S is either 0 or 1. 
If n*soks=l, then n*oks=m*( t - , s ) ,  O<t<s ,  and substituting this into (5.12) 
yields 

n* =n*ok~n*, O<t<=s. (5.14) 

On the other hand  if n* o k S = O, then n* o k S = 0 for t < s, and so in order to establish 
(5.14) in this case it suffices to show that  n* =0 .  But n*oks=O for O<t<=s implies 
nt~oks=O for O<t<s.  F r o m  (5.9)(a) and (5.8) for t<s,  

O=nffoks=moooOtoks=moooks_toOt>ms toot. 

In  other words m(~,s ]=0,  and so by (5.10), n f f = 0  for 0 < t < s .  Consequent ly  
n* = 0 for 0 < t < s, which establishes (5.14). Therefore, in view of the remarks below 
(5.9), if we define n~ =0 ,  then n* =(n*)t>=o is a comf. 

Finally we define n to be the exact regularization of n* as in (3.3), that  is, 

n~= in fn*oks=l imn*oks ,  t>O. (5.15) 
s > O  s ~  

By an a rgument  dual to the p roof  of (3.10) one obtains for t > 0 

n~ = lim lim m S_ ~ o 0~ o k S = lim m ( t - ,  s] o k S . (5.16) 
s ~  u ' f t  s ~ c o  
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N o w  (5.8) implies that  t ~ m t o k z is decreasing and so rn s_ , o 0, o k s = m s_ ,, o k s_ , o 0, 
decreases as s increases. Therefore 

no+ = lim lim r e ( t - ,  s] ok s = lim lim re(t, s] ok s. (5.17) 
s ~  t$O s--*oo t,[O 

If  m is exact the limit on t in (5.17) is just  msok s and so no+ =!ina rnsok r By (5.8), 

msoks>rn ~ and therefore no+>__mo~. But (5.4) and (5.5) imply that msoks<ms_ 

for all s > 0 ,  and  so no+ <moo. Therefore no+ =moo. 

We now summarize  what  we have proved. 

(5.18) Theorem. Let  m be a m f  satisfying (5.4) and (5.8). Then n t defined by (5.16) 
for  t > 0 and n o = 0 defines an exact  comf  I f  m is exact,  then n o + = moo. 

Finally suppose we begin with a comf, n, and apply (3.11) to obtain an exact 
mf, m, satisfying (5.4) and (5.8). Next  apply (5.18) to m to obtain an exact comf, 
~. Using (5.16) and (3.12) one m a y  write for t > 0  

nt = lim lim m ~ _  u ~ 0u o k s 
s ~ c o  u T t  

= lim lim n u + o k s = lim n~ o ks, 
S~(~3 U~t S~o0 

and so h is the exact regularization of n. In  particular, if n is exact, then h = n. 
Conversely suppose m is a mf satisfying (5.4) and (5.8). Apply  (5.18) to obtain 

an exact comf, n, and then apply (3.11) to n to obtain an exact mf, ~. We claim that  
is the exact regularization of m. If t > 0, (3.10) and (5.17) imply 

~ > lim n o + o k. = lim lim lim re(v, s] o k .  

>_ lim m ~  o k . _ >  lira m~ = m~ 
- -  u i t  - -  u , t t  

where we have used (5.8). Thus ~t > mt for all t. If rh is the exact regularization of m, 
it follows from this that  ~ > th. For  the reverse inequality note that  (5.4) and (5.5) 
imply rn, o k~ < rn~_ for all t > 0. Since n is the exact regularization of n* defined in 
(5.9), n~oks=n*ok  , ,  and it was shown below (5.12) that  n * o k s = m ( t - , s ] o k  s. 

Combining  these remarks with (3.10) we obtain 

~, = lira lira r e ( s - ,  u] o ku < lira lim re(s, u] o k ,  
s , [ O  u,Lt s ,LO uJ, t 

- lim lim rn~_ ~ o ku_ s ~ Os 
s ~ O  uJ . t  

< l i m l i m  m(, s~ o0~=l im m~_soOs=fn~ 
- -  sJ, O u,Lt - " -  s~0 

for t > 0. Consequent ly  ~ = rh proving the claim at the beginning of this paragraph.  
We now have stablished a complete duality between exact comrs  and exact 

m f s  satisfying (5.4) and (5.8). 
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