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On the Convergence of Martingale Transforms 

LuIs BAEz-DUARTE 

1. Introduction 

Let (f4 ~ , P ) b e  a probability space and {o~}.>__ o an increasing sequence of 
a-algebras contained in ~ For a martingale {x.}.> 1 and a "multiplier sequence" 
{v.}.>_l, where each v.eL~o(~_l), Burkholder has defined the transform of {x.} 
as the martingale {y.} given by 

yn= ~ V k ( X k - - X k _ l )  , n>=l, Xo=0. 
k=l 

and then has established [2, Theorem 1] the following 

Theorem 1. I f  {x.} is Ll-bounded, then {y.} converges almost everywhere in 
the set where sup lv.[ is finite. 

n 

Building from this result using a difficult technique developed in an earlier 
paper 1,3], Burkholder arrived at some very interesting weak-type inequalities, 
among them the following maximal theorem for martingale transforms [2, Theo- 
rem 6]: If sup Iv.l < 1, then there is a universal constant M such that 

M 
P(sup lY,] > 2 ) < ~ -  sup IIx, lll (1) 

for all 2 > 0. 

Weak-type inequalities such as this are often the crucial fact needed in order 
to prove almost everywhere convergence of a wide variety of processes, as is the 
case in ergodic theory, and in the theory of orthogonal expansions. In I-l] the 
author gave a proof of Doob's  martingale convergence theorem based on the 
relevant maximal inequality (for yet another approach see Isaac [6]). We have 
been able to extend our method to cover the case of martingale transforms. So 
in this paper we show how Theorem 1 can be deduced from the inequality (1). 
Thus once more a maximal inequality turns out to be equivalent to pointwise 
convergence. In view of this result one should like to see a direct proof of the 
maximal inequality for martingale transforms completely independent of their 
convergence a.e. In this respect we would like to remark that Gundy [5] has 
identified a large class of inequalities including those of Burkholder, and proved 
them with "elementary" martingale techniques (e.g. stopping times). His proof 
however is based on a somewhat intricate decomposition theorem for L 1-bounded 
martingales which by itself implies Theorem 1. 
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2. The Convergence Theorem 

As remarked by Burkholder himself it is easy to see that it suffices to establish 
Theorem 1 in the case where sup Ilv.ll| 1. For convenience we introduce the 
following linear operators 

Tin, n= ~ vk(Ek--Ek_x) , l <m<-n, 
k = m  

where Ek=E (. I~),  k >  1, and Eo =0. Setting T1, . = T, we have y, = T. x,, n>  1, 
is the Burkholder transform of {x.}. It is important to note that m < k < n implies 
E k T~,, = Tm.nE k = Tin, k . From Theorems 3.1 and 2.1 of [1] one may assume without 
loss of generality that the La-bounded martingale {x.} is measure dominated, that 
is, there is an integrable random variable xoo, and a finite signed measure v, 
singular with respect to P, such that its restrictions to each ~ are absolutely 
continuous with density z., and 

x . = E . x ~  + z., n > l ,  

~ z .dP--v(E.) ,  for all E , ~ . .  
En 

(2) 

Clearly T . x . =  T . x ~ +  T.z.  so the following two propositions accomplish the 
proof of the theorem. 

Proposition 1. I f  x~ eL1, sup lv.[ < 1, then T. x~ converges almost everywhere. 

Proof Here one could apply Banach's principle ([4], Theorem 2, p. 332) to the 
operators { T.}, however we prefer a direct argument. Set y. = E. x~,  and note that 
I lx~-y. lh  + 0  assuming without loss of generality that ~ is generated by the 
{~,}. Now select a sequence of integers mkT oo, such that ~ k [[x~o-Y,,,l[l< oo. 
Next observe that {y,-y,.~}.__>,,k is a martingale indexed by n, and therefore (1) 
gives 

e ( sup I T . y . -  Zm~Ym~l>+l < M k  Ilx| 
\ n > m k  K ] - -  

Thus adding for k = 1, 2,... we get 

1 t k~=lP(suplT, \.>>_,.~ <oo. 

Now using the Borel-Cantelli lemma we conclude that for almost every o9 the 
> 1  

events ( sup  IT.y,-T,.~ymk[=5?-) occur only for a finite number of k's. That is, 
\n>=mk r~ I 

T. yn(~O ) is a Cauchy sequence P-a.e. But T.y.(~o)= T.x~(co). q.e.d. 

Proposition 2. Let v be a finite signed singular measure on ~ which dominates 
a martingale {z.}, i.e., (2) is satisfied. I f  sup Iv.I _-__ 1 then T,z,  convergesP-almost 
everywhere. 
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Without loss of generality we assume that the algebra of sets g = ~ ~,  generates 
~ .  The next lemma was used without proof in [1]. .=2 

Lemma. For every 62>0, 62>0  one can find a set E ~  such that P(E)<62, 
and [v[ (EC) <~2 . 

Proof of the Lemma. Let N be a support of v, then from the theory of outer 
measures we know there is a set F ~ g .  such that N _  F and P(F)< 6~. On the other 

hand we have Ivl (F)---Ivl (N)=lvl (O). Since F =  ~) E,., with E. ,eg,  find p large 
p m=l  p 

en~ s~ that lvl (~=lEm) >lv[ (f2)-f2" N~ set E= U q.e.d. 

Proof of Proposition 2. Given a preassigned e > 0, by repeated applications of 
the lemma we arrive at a sequence of sets {Ek} such that E k e ~ ,  mkT ~,  and 

P (Ek) < e, (i) 
k=2 

k lvl(E~) < oo. (ii) 
k=l 

For n>mk one easily sees that the commutation relations of the T,.,. with con- 
ditional expectations yield 

(T. x . -  r.~ x.~) Z~ = T~,. (x. ZE0. 

But, for each k, the sequence {x, )~E~}n>=mk is a martingale indexed by n, so (1) gives 

P ( sup IT, x , -  T,,~ Xr~kI> k )  
\ n ~ m k  

<Mk sup ~ Ix,[ dP<=Mk Iv[ (E~), 
n>-mk E~ 

since E~ ~ ~,  for all n > ink, and therefore ~ Ix, ] dP is the total variation ofv restricted 

to ~ ,  over E~. Now adding for k - 1, 2,... we get taking account of (ii) 

~2 P p lT . x_T , ,  k 1 < ~ .  
= \ , = i n k  

As in Proposition 1 resort is made to the Borel-Cantelli lemma to conclude that 
for almost every co there is only a finite number of k's (depending on co) for which 

1 
sup IT. x , -  Tm~ x,,~]ZE~ > ~-" Thus T, x, (co) is a Cauchy sequence for almost every 

n >= t . k  

co in (]  E~, i.e., outside D (e)= [9 Ek, with P (D (e))< e according to (i). So T, x. (co) 

k>--1 outside the nullk->l 0 D ( 1 )  converges a.e. set , ,  . q.e. d. 
r>=l 
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