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On the Convergence of Martingale Transforms

Luis BAEZ-DUARTE

1. Introduction

Let (2, # P) be a probability space and {#,},,, an increasing sequence of
g-algebras contained in # For a martingale {x,},» and a “multiplier sequence”
{U,}nz 1, Where each v,eL (%, _,), Burkholder has defined the transform of {x,}
as the martingale {y,} given by

Vo= 2 (X=X _y), 121,  x4=0.
k=1

and then has established [2, Theorem 1] the following

Theorem 1. If {x,} is L,-bounded, then {y,} converges almost everywhere in
the set where sup |v,| is finite.

Building from this result using a difficult technique developed in an earlier
paper [3], Burkholder arrived at some very interesting weak-type inequalities,
among them the following maximal theorem for martingale transforms [2, Theo-
rem 6]: If sup |v,| =1, then there is a universal constant M such that

M
P(sup |y,/> )< sup [, (1)
for all A>0.

Weak-type inequalities such as this are often the crucial fact needed in order
to prove almost everywhere convergence of a wide variety of processes, as is the
case in ergodic theory, and in the theory of orthogonal expansions. In [1] the
author gave a proof of Doob’s martingale convergence theorem based on the
relevant maximal inequality (for yet another approach see Isaac [6]). We have
been able to extend our method to cover the case of martingale transforms. So
in this paper we show how Theorem 1 can be deduced from the inequality (1).
Thus once more a maximal inequality turns out to be equivalent to pointwise
convergence. In view of this result one should like to see a direct proof of the
maximal inequality for martingale transforms completely independent of their
convergence a.e. In this respect we would like to remark that Gundy [5] has
identified a large class of inequalities including those of Burkholder, and proved
them with “elementary” martingale techniques (e.g. stopping times). His proof
however is based on a somewhat intricate decomposition theorem for L,-bounded
martingales which by itself implies Theorem 1.
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2. The Convergence Theorem

As remarked by Burkholder himself it is easy to see that it suffices to establish
Theorem 1 in the case where sup ||v,|,<1. For convenience we introduce the
following linear operators

Tm,n= ka(Ek_Ek—l), 1§m§n,
k=m

where E,=E(*|%), k=1, and E,=0. Setting T, ,=T, we have y,=T,x,, n=1,
is the Burkholder transform of {x,}. It is important to note that m <k <n implies
E. T, =T, E.=T, . From Theorems 3.1 and 2.1 of [1] one may assume without
loss of generality that the L;-bounded martingale {x,} is measure dominated, that
is, there is an integrable random variable x, and a finite signed measure v,
singular with respect to P, such that its restrictions to each %, are absolutely
continuous with density z,, and

X,=E,x,+z,, nzl,

{z,dP=v(E,), forall E,e4%,. )]
En

Clearly T,x,=T,x,+T,z, so the following two propositions accomplish the
proof of the theorem.

Proposition 1. If xeL,, sup |v,|<1, then T,x,, converges almost everywhere.

Proof. Here one could apply Banach’s principle ([4], Theorem 2, p. 332) to the
operators {T,}, however we prefer a direct argument. Set y,=E, X, and note that
X, — ¥ull; = O assuming without loss of generality that % is generated by the
{#)}. Now select a sequence of integers m; 1 oo, such that ) k [|x, — Y, [l1 < o0
Next observe that {y,— Y, }nzm, iS @ martingale indexed by n, and therefore (1)
gives {

P (1590 1T, yu= T Y| > ) SMK =y s

nZmy

Thus adding for k=1, 2, ... we get

ad 1
kZIP (sup |’I;|yn_kaymkl>7) <00.

nZmy

Now using the Borel-Cantelli lemma we conclude that for almost every o the

1 . .
events (sup T ye— T, y,,,k|gr) occur only for a finite number of k’s. That is,

nzmy

T, y.(w) is a Cauchy sequence P-a.e. But T, y,(w)=T, x, (w). q.e.d.

Proposition 2. Let v be a finite signed singular measure on & which dominates
a martingale {z,}, i.e., (2) is satisfied. If sup |v,|£1 then T, z, converges P-almost
everywhere. "
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Without loss of generality we assume that the algebra of sets £ = U > generates
Z. The next lemma was used without proof in [1]. n=1

Lemma. For every 6;>0, 6,>0 one can find a set E€& such that P(E)</dy,
and |v| (E)<d,.

Proof of the Lemma. Let N be a support of v, then from the theory of outer
measures we know there is a set Fe &, such that N F and P(F)<4é,. On the other

hand we have |v| (F)—|v| (N)=|v|(Q). Since F= [ Em, with E,eé&, find p large
m=1
enough so that |v| ( (JE ) >|v|(Q)—8,. Now set E= U E,. qed.

m=1 m=1

Proof of Proposition 2. Given a preassigned ¢>0, by repeated applications of
the lemma we arrive at a sequence of sets {E;} such that E,e%, , m, 1o, and

élP(Ek)«, )
Zk{v|(E)<OO (i1)

For n=m, one easily sees that the commutation relations of the T, , with con-
ditional expectations yield

(’I;Xn_ ka xmk) XE;i: mk,n(xn XEﬁ)

But, for each k, the sequence {x, Xg}, 5, iS 2 martingale indexed by n, so (1) gives

1
P (Sup I’I;txn_kaxmk|>—k_)

nzmy
SMksup | |x,|dP=MEkv|(E;),

nZmy ES

since E e %, for all n > my, and therefore f |x,| dP is the total variation of v restricted

to % over E;. Now adding for k=1, 2, ... we get taking account of (ii)

d 1
ZP(suplTx T X ) Xe> )<oo.
k=1 k

nmy

As in Proposition 1 resort is made to the Borel-Cantelli lemma to conclude that
for almost every w there is only a finite number of ks (depending on w) for which

1 . '
sup | T, x, — Ty, X | XE’c‘>7' Thus T, x,(w) is a Cauchy sequence for almost every

nZme

win () E, i.e, outside D(s)= ( ) E,, with P(D(g))<e according to (i). So T, x, ()
k=1 k=1
converges a.e. outside the null set () D (-i—) . q.ed.

rz1
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