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Limits of Directed Projective Systems 
of Probability Spaces 

CAREL g .  NCHEFFER* 

Summary. The problem of limits of directed projective systems of probability spaces is treated 
from the categorical point of view, with certain equivalence classes of measurable measurepreserving 
mappings, or of regular conditional probabilities playing the role of morphisms. A.o. the existence 
of limits of such systems is established under the condition that the spaces carry compact generating 
pavings, without invoking conditions like Bochners' sequential maximality. There are some side 
results on liftings and general martingales. 

I. Introduction 

Projective systems of probability spaces were first introduced in the proba- 
bilistic literature by Bochner [1]. The importance of such projective systems in 
probability theory stems from the fact that the description of a stochastic process 
is in terms of a projective system (namely the projective systems of the finite- 
dimensional distributions of the process) on one hand and, on the other hand, 
from the problem of the structure of probability spaces (in particular, under 
what conditions is a probability space "completely determined" by the lattice 
of its finite partitions; this lattice being also a natural example of a projective 
system of probability spaces). 

The problem treated and partially solved by Bochner and later by Raoult [9], 
Metivier [7], Choksy [3] and the present author [10] can be described as follows. 
((~, 9X, p; f ;  I) is a directed projective system of probability spaces, where the f,. 
are measurable measurepreserving mappings (mmpm-'s) from ~2j into f2 i (cf. Sec- 
tion 2 for notations and precise definitions). 

Let A be the set-theoretical projective limit of the projective system (f2; f ;  I) 
of sets (cf. e.g. Bourbaki [2]) with canonical mappingsf~: A ~ f21. Then the prob- 
lem is to define a probability space structure on the set A in such a way that the 
f~ are measurable and measurepreserving. For a description of the various solu- 
tions of this problem we refer to the above mentioned references. Now, as is well 
known from the theory of separability of stochastic processes, there may be 
other and more useful "representations" of projective systems of probability 
spaces, a representation being any probability space (X, ~,/*) with coherent 
mmpm-'s 

&: X--* f2~. 

Thus, for example, the representation of Brownian motion on the space 
X =  C o [0, 1] of continuous functions on [0, 1], vanishing at 0, is much more 
informative than the representation on the space A =IR r~ 11, offered in this case 
by the Bochner (-Kolmogorov)theorem. 

* This research was supported in part by a grant from the National Research Council of Canada. 
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This then raises the question of a "best"  representation. That is, is there a 
criterion which can select out of all possible representations a best one and if 
such a Criterion exists, under what conditions does a projective system of prob- 
ability spaces admit such a "best"  representation. 

The answer to the first question is given by the general categorical concept 
of projective limit, which is a "best"  representation in the sense that every other 
representation factors through it in a unique way. 

Partial answers to the second question were given in [10] and will be the 
object of the present paper. However the above discussion raises also the question 
whether mmpm-'s are the most natural "morphisms" to consider in probability 
theory. In fact this is not so, as one is in general not interested in mmpm-'s as 
such, but in equivalence classes of mmpm-'s under one of the equivalence rela- 
tions "equal almost everywhere" and "originals of sets differ at most on a set 
of measure 0", denoted by ~ ,  resp. ~ .  

The second of these relations is well known in the theory of stochastic pro- 
cesses and we know that g ~ g ' ~  g ~ g', but not conversely. 

As we are dealing with projective systems with a completely arbitrary directed 
index set, it seems natural to consider, instead of mmpm-'s, equivalence classes 
of mmpm-'s under the equivalence relation ~ .  

Thus we prove (Corollary 1 to Theorem 4.2) that any projective system of 
probability spaces which admit compact, generating pavings, has a projective 
limit in the sense described above, with mmpm-'s replaced by ~-equivalence 
classes of mmpm-'s. The content of this theorem is in fact wider, as we prove, 
under the same conditions the existence of a projective limit in the larger cate- 
gory l iP of regular conditional probabilities. 

In Section 3 we give some results on projective limits without any conditions. 
It turns out that (Corollary i to Theorem 3.2) corresponding to any projective 
system of probability spaces there is a "representation space" (the existence of 
which is proved in Theorem 4.2), the L~-space of which is the projective limit of 
the L~176 of the objects of the projective system with the conditional expecta- 
tion operators as connecting morphisms. As might be expected results like this 
are closely connected with the theory of martingales along a partially ordered 
index set (Theorem 3.2). 

No attempt has been made to explore the relationship with the work of 
Mallory [6] who proves existence of representations of projective systems (not 
of projective limits) under slightly more general conditions (roughly speaking 
our hypothesis of the existence of a compact paving is in his work replaced by the 
existence of an No-compact paving). 

We intend to apply our results to the problem of the existence of regular 
conditional probabilities and to the representation of a stochastic process with 
an arbitrary time set in a later paper. 

2. Notation and Terminelogy; Prerequisites 

(i) Notation for Projective and Inductive Systems 
If I is a directed set, we write 

Oi= {(i,j)eI • Ili<j}. 
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If C is a category, X and Yare objects in C, IX, Y]c will denote the set of 
morphisms from X into Y. 

If C is a category, 1 a directed set, then (X; f ;  1) will denote either a projective 
system, i. e. 

X is a function i ~ X  i from I into the class of objects of C; 

f is a function (i,j)~--~fi, s from D I into U [Xs, X~]c, such that 
(i,j) eDx 

V(i,j)EDI, fi, j~[Xj, Xi]c; V(i,j)6DI, V(j,k)~Dt, fi ,  k~-f i ,  j f j ,  k , 

or an inductive system, that is 

X is a function i ~-, Xi from I into the class of objects of C; 

f i s  a function (i,j)~-~f~,j from D~ into U [X~,Xj]c, such that 
( i , j )~Dr 

V(i,j)6Ol, fi, j6[Xi,XjJc; V(i,j)GDI, V(j,k)6DI, fi, k=fj, kL,j. 

(ii) Regular Conditional Probabilities and Desintegration of Regular Probabilities 

Suppose that X=(Y2 x, 9.I x, Px) and Y=(fJY, 91Y, Pr) are probability spaces. 
A regular conditional probability (rcp) from X into Y will be a function 

P: f2 x ~3p-+ [-0, 1 ] 

where ~3 e is a sub a-algebra of 9/r which is pr-equivalent to 92 r (that is, 
VB~gXr, 3 B o ~  e ~y(B z, Bo)=0]) , such that 

a) P(., B) is 9/x-measurable for every Beg[ r. 

b) P(x, .) is a probability on ~p for every xe(2 x. 
c) VB6~3p, ~ P(., B) dpx=pr(B). 
We shall say that two rcp-'s P and P' from X into Y are equivalent if 

VB~$p, VB'e$  e, [py(B zx B')=0 ~ P(., B)=P ' ( . ,  B')px-a.e.]. 

Rcp-'s can be composed in the usual way and one shows easily that this composi- 
tion respects equivalence. Hence there is a unique composition of equivalence 
classes. We shall call an equivalence class ofrcp-'s from X into Yan RP-morphism 
from X into Yand the set of all RP-morphisms from X into Ywill be denoted by 
[X, Y]m,. The RP-morphism from X into X containing the rcp I x defined by 
lx(x,A)=Za(X), will be denoted by 1 x as well. It obviously plays the role of 
unit, that is 

lxqo=~0 and 0 1 x =  0 

whenever the compositions are defined. 

If f2r is a locally compact Hausdorff space, 9,1y the set of Borel subsets of ~2y 
and if py is a regular probability on f2y, we shall reserve a special name for those 
rcp-'s P from X into Ywith the additional properly that P(x, .) is, for every x s O x, 
a regular probability on g2r. These rcp-'s will be called desintegrations of PY with 
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respect to X. If f: ~2 x --, f2 r is a mmpm, then f induces a rcp, 

f . :  X ~  Y 

as follows 

f ,  (x, A) = ~A (f(x)) .  

Denote by f *  the RP-morphism containing f , .  Then two m m p m - ' s f a n d  g from 
f~x into ~2y induce the same RP-morphism iff 

V B ~ I r ,  p x ( f - l B z x g - l B ) = O ,  

that is, in the notation of Section 1, i f f f~g .  

Thus the set IX, Y]F of all RP-morphisms induced by mmpm-'s is canonically 
isomorphic with the set of equivalence classes of mmpm-'s under the equivalence 
relation ~ .  

(iii) Probability Algebras 

If X=( f2  x, 92 x,px)  is a complete probability space, we denote by 9I x the 
o--ideal of null sets and by ~I x the (complete) Boolean algebra 9.Ix/9l x. A ~ 
will denote the canonical mapping from 9.i x onto ~x ;  Px is the measure on ~[x 
induced by Px. Then (92x, Px) is what we call a probability algebra, i.e. a Boolean 
algebra with a strictly positive normalized measure (i.e. finitely additive real- 
valued function). If we make the class of probability algebras into a category, 
B say, by admitting as morphisms measurepreserving homomorphisms, we have 
the following result on inductive limits 

Lemma 2.1. Every inductive system (X; (p; I) in B, has an inductive limit 
9i: Xi--+limBXj in B. 

Moreover, if the (pi, j are a-homomorphisms, then the qo~ are a-homomorphisms 
as well. 

Proof. Straightforward verification shows that the set-theoretic inductive limit, 
endowed with the obvious probability algebra structure has the desired properties. 

(iv) Lifting and Desintegration of Regular Probabilities 

We shall use the lifting theorem in the following form. If X = (0 x, 9.Ix, Px) is 
a complete probability space, there is a lifting a ~ ( a )  of ~x  into 9.i x. That is, 
a ~ ( a )  is a Boolean algebra homomorphism which is a right inverse to A ~ A, 
i.e. 

V a 6 ~  x, ( a )  ~ =a.  

Let 931 x be the image of ~[x under this lifting. Then we can extend this lifting to a 
lifting of U~ as follows. Let f~--, f  be the canonical map from &~ onto 
L ~~ (X). Then define, for f ~  5f ~ (X) 

(lf)(co)= sup {x~lRlco$ ( f - t  ( -o% x)~}}. 
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Then one checks easily that (cf. Fillmore [-4] for details) 

( I f ) - l ( - ~ , r )  = U ( f - l ( _ ~ , q ) ~ } .  
q < r  

q rational 

Thus there is, for every reIR, feU~ a sequence (An),~ ~ in 9J~ x such that 

A,~( l f ) - l (  - ~ ,  r). 
We have 

Lemma 2.2. Let (0, 9.1, p) be a complete probability space. (X, p) is a compact 
Hausdorff space with a regular probability measure I~; Nx is the class of Borel 
subsets of X. Furthermore suppose that 

E: U~ L~(f2, gA, p) 

is a positive linear map with E 1 = l, which preserves measure, i.e. ~ (E f )  dp = ~ f d#. 
Then there is a desintegration 

(D F---> 7"C co 

of# into regular probability measures 1to, , with respect to E, that is 

VfeL~(X,#) ,  Ef=(o9~+~fdz~) p-a.e. 

(7~o~),o~ a is unique up to equivalence ofrcp-'s (cf. (ii)). 

Proof. Consider, for compact K = X ,  the function O(.,  K)eSr ~)  defined 

by O (., K)= I E )~K 

where I is the lifting described above. Then the properties of I and E imply that O 
satisfies 

(a) 0 < O (o), K)  < 1 ; O (co, 0) = 0; O (o9, X )  = 1. 

(b) K ~ K ' = O  ~ 0(o9, K w K ' )=  0(o9, K ) +  O(o9, K'). 

(c) K c K ' ~  O(w, K)=< @(o9, K'). 

It follows, by standard arguments of the theory of regular measures that then, 
for every ogef2, 

B ~ 7t~,(B) = inf sup O (09, K) 
Ue~  K ~ ( U )  

is a regular probability measure on X 

(here q/(B)= { U = X  I U open; B c  U}, 

C~(B)={KcXIK compact; KcB}) .  

We shall prove now that, for compact K c X 

~z.(K) = 0 (., K) p-a. e. 

Put, for compact D ~ K ,  nelN 

A"o={og~s D)>O(og, K ) + l } .  
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Then, clearly 

AK={C~176 = U ~ U A; .  
n = l  U ~ I I ( K )  O e ~ ( U )  

K = D  

Now, as O(. ,  K ) = E z K  p-a.e., we have, for UeqZ(K), De c~(U), 

# (U)>I2(D)=~zDd#=~O( . ,D)dp= ~ + ~ >=#(K)+ I P(A"D). 
A B  (A~))  c YI 

Hence 
p (A;) =< n (# (U)-/~ (K)). 

Now the sets A~ are of the form (l f ) -  1(_ 0% r) (indeed take f =  0 (., K ) -  0 (., D) 
\ 

and r =  - 1 ) ,  hence there is an increasing sequence (bk)k~ in ~ such that 

A~---- l im T (bk). 

Let a~ be the supremum in ~I of the sequence (bk)k r N" Then we have, for every 
keN,  b kN a~, hence by the positivity of the lifting (b k) c (a~)  for all keN.  There- 
fore 

Also clearly 

hence 

p ((@)) = ~ (a~) = sup ~ (b k) = l im T p ((bk)) = P (A~D), 

~n - -  n A D - a D . 

Next keep Ueqt(K) and n e N  fixed. Then the set 

{A"olDeCg(U), K c D }  

is an increasing filter, therefore {anoJD e ~(U), K ~ D} is an increasing filter in ~. 
Let by be the supremum of this filter in ~ .  Then we have, for all D c cg(U), K c D, 
a~ < by, therefore ( a ~ ) c  (by) ,  and then by the previous result A~ ~ (by) ,  hence 

B~v = 0 A ; c ( b ~ ) .  
D e cg(U) 

K c D .  

On the other hand 

n ~ n _ _  p ((by))  - p (b v) - sup {~ (a•)] D e cg(g), K c D} 

--sup {p (A"D)IDe cg(g), K ~ D } < n ( # ( g ) -  ~(K)). 
Hence 

p* (B~) =< p ((b~)) =< n (/~ (U)-/~ (K)). 

Now, use the regularity of/~ to choose, given an e > 0, a sequence (U,)n~ ~ c  ~#(K) 
such that 

, p ( U , ) - # ( K ) < n  2 "-1" 

5 Z.  W a h r s c h e i n l i c h k e i t s t h e o r i e  verw.  Geb . ,  Bd. 13 
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Then we have, clearly 

Thus 

AKC ~] B~ . 

n ~ l  n=l 

As e is arbitrary this proves that 

p* (A~) = 0 

and as (~, 9.1, p) is complete it follows that 

AK~9,1 and p(AK)=0. 
Therefore 

n.(K)=O(.,K) p-a.e. 

Thus the class .~- of Borelsets F o X  for which n.(F) is ~I-measurable and for 
which n.(F)= E ZF p-a. e., contains all compact sets. As ~ is moreover clearly a 
o--field, it follows that Y = Mx. Hence 

n.(B)=EzB p-a.e. 

for every Borelset B c X. Hence 

Ef=.[n.(dx) f(x) p-a.e. 

for every step function f e L  | (X, p). As the set of all f for which this equation 
holds, is obviously a closed subspace of L~(X, tO it follows that this set must be 
all of L ~ (X, #). This concludes the proof of the lemma. 

As we have, for B ~ x ,  E XB< 1, it follows that 

Now define, for A ~ ~I 

(A, B) = ~ (E Z~) dp < p (A). 
A 

(pA= (') K.  
K compact 

O (A, K) = p (A) 

Then we have 

Corollary. V co ~ f2 supp n,~ c ("] qo A .  
AEg.I 

o E ( ~ )  

Proof. Let AE~I and consider no~(( p A)C). As (p A) c is open, we have 

.~((~ A) c)-- sup o (o), K). 
K E cg((~o A) c ) 

Now K e ~r A) c) implies K c~ q) A = $3, hence there is a K' compact with K c~ K' = 
and O(A,K')=p(A). Therefore O ( A , K ) - 0 .  This implies EZ~:=0 p-a.e, on A. 
Thus, for every r > 0 

~/___ (e ZK)-I(- o0, r)- 
hence 

Vr>0 ,  (A)  c ((E ZK)- I ( -  ~ ,  r )~) .  
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Therefore, as O (., K) > 0, 

Hence 

Therefore, finally 

o r  

oE<4> ~ o(co, K):0. 

~<4> ~ ~((e A)0:0. 

(v) Representation of Boolean Homomorphisms as F-Morphisms 
We consider the following particular case of the conditions for Lemma 2.2. 

Let again (f2, 9.1, p) be a probability space; X is a compact Hausdorff space with 
a regular probability measure #; e: ~ N x  is a measurepreserving Boolean 
homomorphism. Then e induces an E: L ~ (X, #) ~ L ~ (~2, 91, p) satisfying the con- 
ditions of Lemma2.2, as follows. ForfsL~(X, #) the function A ~  ~fd# from 

eA 

9i into 1R is clearly a bounded countably additive measure on 91 (countably additive 
as A, $ ~ in 91 implies # (eA,).L 0 by the fact that e is measurepreserving) which is 
absolutely continuous with respect to p. It follows, by the Radon-Nikodym theo- 
rem, that there is a unique Ef~L~176 91, p) such that 

VA~91 S f d#= ~ (Ef) dp. 
~A A 

One verifies easily that this E satisfies the conditions of Lemma 2.2. Thus there is 
a family ( ~ ) ~  of regular probability measures on X such that 

VAe91, VBe~x#(~4c-~B)= ~p(de))~z~(B). 
A 

The function (p in the corollary now takes the following form 

cp A = inf {K c X IK compact, # (K ~ e A) = # (e 4)}. 

This implies easily (e A) ~ c q0 A ~ e 4. 

We are interested in conditions ensuring that e is induced by a mmpm g: X ~ f 2  
(that is e A = g - l A  #-a.e. for every Ae91). 

We introduce the following terminology (cf. e.g. Meyer [8]). A paving ~ of a 
probability space (f2, 91, p) is a collection of measurable subsets of f2 with ~)eff. 
A paving ff is compact if every subset ~ of ff with the finite intersection property 
(i.e. for which ~o c ~, ~o finite, implies (") S=t= 9), has non-empty intersection; 

S ~ o  

it is generating if the o--field generated by ff is p-equivalent to 91; it will have 
"approximate complements" if we have 

VCe~, p(C)+sup{p(D)]D6~, C ~ D = ~ } = I .  

Observe that, if a paving ff has one or more of these properties, then the collec- 
tion if' obtained by closing ~ with respect to finite unions and intersections is a 
paving which retains all the properties of ft. We shall say that if' is a sublattice 
of 91 with the appropriate adverbs. 
5* 
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Observe that the lattice of compact subsets of a locally compact Hausdorff 
space with a regular probability measure, has all the above mentioned properties. 

With these conventions we have 

Lemma 2.3. Suppose that (f2, 9.1, p) is a complete probability space which admits 
a generating compact sublattice E ~  9_I; (X, #) is a compact Hausdorff space with 
a regular probability measure #; e is a measure preserving lattice homomorphism 
from ~ = { C e ~l ] C e E} into Nx , with e ~ = ~ ; ~ x  is the completion of ~ x with respect 
to #. Then, if E has approximate complements, there is a ~x-mmpm g: X--~ f2, 
such that 

V CeE,  g - l  C=e C #-a.e. 
and 

VCeE, ~ c g - l C .  

The F-morphism g*: (X, ~x ,  #)--+ (~, 9.1, p) induced by g is unique. 

Proof. Consider, for x e X ,  the subset d~= {CeEIxee ~} of E. As g is a lattice, 
as e is measurepreserving it follows from our assumption that dx has the finite 
intersection property. Hence, by the compactness of E, D~= n c + ~ .  Choose, 
for every x e X ,  a g xeD~. c~a~ 

Then the function 
g: X--~(2 

satisfies, 
VCeE, g - l C = e C  #-a.e. 

Indeed, x e e C  ~ g x e C  by definition. Thus e C c g  -1 C. Moreover, as E has 
approximate complements, we have 

#(e C)+ sup {#(e/))[Dee, C n D =~)} = 1. 

Hence there is a nullset N c X such that 

xq~e C u  N ~ 3 D e E [ C n D = O ,  xee / ) ]  ~ g x•C. 

Thus e ~ c g - 1  C ~ e  C u N ,  which proves the assertion. The facts that g is meas- 
urable and measurepreserving and that g* is unique are now proved in a straight- 
forward way and we omit further details. 

Observe that, if E is a generating sublattice, a measurepreserving lattice homo- 
morphism e: ~ ~ ~x induces a measurepreserving homomorphism ~: ~l---, ~x  
with VCeE, e C=~ C #-a.e., as follows, e can be algebraically extended to the 
field ~l o generated by E. As E generates ~ mod p, it follows that ql o is dense in 9.'1 
(in the metric p(~ ,~)=p(AzxB)) .  5: qlo--+N x, defined by ?C=(e  C)~, being 
measurepreserving, is uniformly continuous with respect to this metric and to 
the metric p' (A,/~) = # (A zx B) in ~x. Hence ? has a unique extension (also denoted 
by ~) to qI, and this extension still preserves measure. Now let b ~ (b) be a 
lifting of ~x and define 

~: gI--+ N x 
by 

This ~ then clearly has the desired properties. 
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With this definition we have 

Corollary 1. The correspondence ~ v-~ g* of Lemma 2.3 is functorial in the follow- 
ing sense. If(O, ~ ,  p), ~, e and (f2', 9X', p'), ~', e' both satisfy the requirements of the 
lemma, whilst there is, moreover, a mmpm h: (2---~ f2' such that 

V C ~ ' ,  e' C=~(h-x  C) - #-a.e., 

then the mmpm-'s g and g' associated with ~ and e' respectively, satisfy 

g' * = (h o g)* = h* g*. 

Proof We know that 

V C e ~ ,  g - t  C = e C  #-a. e. 

This clearly implies VA ~gA, g 1A=~A #-a.e. Hence we have, for every C ~ ' ,  

#-a.e., (ho g)-X C=g-~(h -1  C)=~(h_~ C)~ =e '  C =(g ' ) - i  C. 

Thus, by the uniqueness assertion of the lemma 

g'* =(hog)*=h* g*. 

CorolLary 2. If(f2, 9.i, p), ~, e satisfy the conditions of Lemma 2.3, then there is a 
desintegration co ~-~ 7zo~ o f#  with respect to the induced map g, for which 

supp (rc,o) ~ g -  1 co 

if the following conditions are satisfied. 

a) e C  is, for every C ~ ,  closed in X, 

b) there is a lifting a F-~ ( a > of ff_I such that go = { C ~ ~ l C ~ ( C ) } separates s 

Proof According to the remarks made in the beginning of this paragraph 
induces a desintegration (~z~,) for which 

VA~gJ, ( sA)~  

Thus we have, using the lifting of the statement of the corollary, according to 
the corollary to Lemma 2.2 and to Lemma 2.3 for coef2 

A e ~ l  C e q :  C e ~  C ~ E  

(-~ g-1 C c  ~'~ g-1 G.=g-lco. 
C e l s  C61g o 

3. Representation Spaces for Arbitrary F-Projective Systems 

Let (O, 9.I,p; f * ;  I) be a directed F-projective system (we shall consistently 
i ' , use this notation, which implies that we are actually g ven mmpm- sf~ s such that 

the F-morphisms f~,*s constitute the projective system). Denote, for (i,j)~D~, by 
oPt, s: ~i-~9-ls the Boolean homomorphism induced by f~,s- Then (~[,}; q~; I) is 
clearly an inductive system in B. Denote its inductive limit (cf. Section 2) by 
~0~: ( ~ , } ~ ) ~  (~1, ~z). Then, by Lemma 2.1, 9.1 is the set-theoretic inductive limit 
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of the ~i  and the q0~ are measurepreserving ~r-homomorphislns. We shall say that 
a compact Hausdorff space X with a regular probability measure p is a representa- 
tion space for the projective system if the following conditions are satisfied (Nx is 
the a-field of Borel subsets of X). 

1. There is a subalgebra 9.1 o of 92, which is dense in 92 (in the metric d(A, B)= 
zc(A,xB) and an injective homomorphism A~-~/I from 92o into Nx which is 
measurepreserving (i. e. p (/1)= rc (A))). We denote the image of this homomorphism 
by 9.i 0 . 

2. For every pair (K, U) of subsets of X, where K is compact and U is open, 
such that K c U, there is an A E92 o such that 

K c A c U .  

As rc is strictly positive, we have as an immediate consequence of 2 that every 
open set has positive measure and that, hence supp (p)= X. Moreover, 2 implies 
clearly that 9~ o generates Nx mod p. 

For the moment we leave out the question of the existence of such representa- 
tion spaces, merely stating here that one verifies easily that the well known Stone 
space representation of (92, ~z) satisfies 1 and 2. However we shall establish the 
existence of representation spaces in Section 4 (Theorem 4.2). 

Meanwhile we have 

Lemma 3.1. Suppose that (vi)i~ I is a collection of measures, i.e. v i is a measure 
on (f2i, 921) such that 

(i) the v~ are non-negative and uniformly bounded with respect to the p~, i.e. 

3 M > 0 ,  V i i i ,  VA~92 i, v i (A)~Mpi(A) .  

(ii) V(i,j)~DI, VA~92~, vi(f~)IA)<v~(A). 

Then there is a unique regular measure v on X such that we have for every i~I  
and every A ~92 i, such that q)i.4~9.I o 

and 
V B e N x ,  O<v(B)<Mp(B) .  

Proof. Condition (i) shows that v~ ~ Pi, hence vi can be defined unambiguously 
on ~t i by 

~i(/i)= v~(A). 

Now define v: A o ~ I R +  as follows. For A=,:p~Ai~92o, A~ffdl, put 

v ( / i )  = j A,). 

This limit exists, as the generalized sequence on the right hand side is decreasing 
and non-negative by hypothesis; it is moreover independent of the choice of the 
representative Ai of A, by the definition of 92. Indeed, suppose that A = p~ A~ = 
q)jA~. Then there is an index keI ,  such that k>i,  k > j  and 

(Di, k A i =  q)j, k A j  �9 
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Consequently 

lira ~z ( ~ 0 ~  A 3 = l i ra  = lira ~, ((Pk, ~ ~0~,k Ai)  = Iim ~ (~Ok,~ ~Oj, k A j) 
z>i ' l>k  1->k 

=l im ~l((pj, z Aj)= {i>__m Yl(@j, l Aft. 
l>-k = 

Moreover v so defined is obviously monotonic, finitely additive and subadditive 
on ~o- Furthermore, by definition and our assumption 

g A e ~ o ,  v(A)<__Mp(A). 

Finally, !et A e 9] o be arbitrary. Choose, using the regularity of p, K c A compact 
and U ~  A open in such a way that 

p ( g ) - p ( K ) < e / M .  

Then we have for every Be ~o with K c B c U, p (A zx B)< elM, hence 

Iv(A)- v(B)l < v(A zx B)<e. 

Therefore v has, by Th.4.4.5 of Bourbaki, Intdgration, a unique extension to a 
regular measure on X, which then has clearly the required properties. 

Next we introduce the (mixed) conditional expectation operators 

U'J: L*(Oj, Nj, pj)--~ L~176 93i~, Pi) 
defined by 

V h e L ~ (g2j, 9.I j, p) [~ g U' j h dpi = ~ (go f~, j) h dpj] VgELI(O~, 9.1~, P3, 

or equivalently 

V Aeg.Ii, VheL~(Oj, gJij, pj)[ Ei'Jh dpi= (. hdpj]. 
A f i . ) A  

(Observe that the last equation implies that E i' j depends only on the equivalence 
class offl, j.) Then, obviously 

i < j < k  ~ Ei 'J=Ei 'JoE j" k. 

Moreover each U' j is the adjoint of the composition operator U' J: L 1 (O~, 9.1~, Pi) --' 
LI(Y2j, 9.ij, pj) (defined by U'Jg=gof~,j) and left inverse to the restriction of U 'j 
to U ~ i.e. 

E i, J o F i, J]L ~ ((2i, 93ii, P i ) =  1L~ (o~, ~ ,  pO" 

Furthermore, as is well known, the U 'j are linear, positive, normcontracting 
operators of norm 1, and can be extended uniquely to L ~ (f2j, 9.Ij, pj). 

Theorem 3.1. Let (X, p) be a representation space for the F-projective system 
(f2, 9.1, p; f * ;  I). Then there is, for every ieI  a positive linear contraction 

U: L~(X,p)--~ L~(Y21, Ni,pi) 

with E i 1 = 1 and such that 

Y ieI ,  VAeg.I i, VheL~(X,p)[cpiAe9.Io~ ~(Eih)dpi = ,! hdp]. 
A (q, )^ 
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E i satisfies moreover 
i) i<=j ~ U = U ' J o E  j. 

ii) E i induces a desintegration of  p, i.e. there is a family (Tri(co, . ) ) ~ ,  of  regular 
probability measures on X,  such that 

a) VheL~ Eih=~h(x)~h( . ,dx ) .  

b) V B e ~  x, E"Jzrj( . ,B)=~h(. ,B).  

Proof. Observe that, as 9I o is dense in 91, the homomorphism A ~ A from 91o 
into ~x  can clearly be extended to a measurepreserving "almost homomorphism", 
again denoted A ~ A from 91 into ~x  (i. e. p (,4) = re(A); (A/x B) ̂  = A c~/~ #-a. e.; 
(A v B) ̂  = A w/~ p-a. e.; and A' ̂  = A ̂ c /~-a. e.). This almost homomorphism in 
turn induces measurepreserving almost homomorphisms A ~ A from 91i into ~x ,  
for every i~I. Consider then, for fixed i~I, heL~176 p) the function 

A~-* ~ hdp .  
A 

This is obviously a bounded signed measure on 91~ which is absolutely continuous 
with respect to p~, hence there is a unique Uh~L~ 91~, p~) such that 

(E i h) dpi = ~ h dp. 
A A 

The fact that U so defined is linear, positive, normcontracting, has norm 1 and 
that E~I = 1, is proved in the usual straightforward way. We omit the details. 

If i< j  and heL~ p), consider (Ei'JoE~)(h). We have, for Ae91i 

IEi 'J(EJh)dpi = ~ (EJh)dpj = I hdp  
A f i . )A  (f i . /A) v 

= S h dp = ~ (E i h) dPi. 
A A 

Hence 
Ei, Jo E J =  E i. 

The existence of the desintegration (~zi(co, .)),o~e, of p follows now directly from 
our Lemma 2.2, whilst property b) of this desintegration is an immediate conse- 
quence of the fact that, according to this lemma, rq (., B) = E i )~ pi-a. e. This con- 
cludes the proof of the theorem. 

Now we want to prove a minimality property of representation spaces. For 
this we shall need the concept of martingale with respect to an F-projective 
system. We shall say that a family (gi)i~i is an (f2, 91, p; f * ;  I)-martingale if 

(i) V i~I,  g~Ll(f2i, 91~, Pi). 
(ii) i < j  ~ E" J gj = g~. 

We shall denote the collection of all (~2, 91, p; f * ;  /)-martingales b y  
M(f2, 91, p; f * ;  I). It is in an obvious way a linear space. The coordinate functions 
from M (~2, 91, p; f * ;  I) into L ~ (f2 i, 91i, P~) will be denoted by g ~-~ g~. The subspace of 
M(t?, 91,p; f * ;  I) consisting of all (f2, 91,p; f *  ; /)-martingales g which are ter- 
minally uniformly integrable, i.e. for which 

Ve>O, 3io~I ,  3R>O, Vi->~o[ ~ ]giJ,dp,<~], 
{lgd >/l} 
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will be denoted by Ll(O, 91, p ; f * ;  I). The subspace of Ll(f2,91,p;f*; I) con- 
sisting of all uniformly bounded (9, 91, p; f *  ; /)-martingales will be denoted by 
L+(O, 91, p ; f * ;  I). That is geL~(O, 91,p;f*; I) is in L~( fL91 ,p; f* ; I )  iff the 
sequence (IrgiEI | of norms is bounded. 

We have 

Lemma3.2. a) An (fa, 91, p ; f * ;  I)-martingaIe g is terminally uniformly inte- 
grable iff 

(i) sup Hgil]l < oo (uniform boundedness). 
i s l  

(ii) Ve>0, 3 3>0,  3 ioeI, Vi>__io, VA~91i[pi(A)<3 ~ ~ Igil dp,<~] (terminal 
uniform absolute continuity). A 

b) g~-+ sup IIg~lla = IIIgllla 
i e I  

defines a norm on L1(s 91.1, p; f * ;  I); L 1 (s 91.1, p; f * ; I )  is a Banach space under 
this norm. 

c) g ~  sup Ilgill + = l l l g l l l+  
i e I  

defines a norm on L~~ 91, p; f * ;  I). This space is a Banach space under this norm. 

d) Under coordinatewise ordering (i. e. g< h *> V i6I, gi < hi) L* (9, 91, p; f * ; I )  
and 12~ 91, p; f * ;  I) are complete Banach lattices; L 1 is even an L-space (in the 
sense of Kakutani). 

e) L ~ (s 91, p; f* ;  I) is dense in L* (9, 91, p; f* ;  I). 

Proof All these statements are either included in or are direct consequences 
of results in Krickeberg and Pauc [5], in particular, Cor. to Prop. 1.4.3 (p. 466), 
Prop. 2.5.t (p. 494), Th. 5 (p. 499) and Th. 6 (p. 500). 

Observe now that there is a canonical map 

E: Ll(X,p)--~ Lt(O, 91, p; f * ;  I) 
defined by 

(Eg)i=Eig (ieI). 

Indeed, by Theorem 3.1, E g is an (f2, 91, p; f * ;  /)-martingale and it is terminally 
uniformly integrable as 

sup ][Eigll, =< Hglll 
i e I  

and 
I [E'g] dpi< IN  i ]g] dpi= S Igl dp. 

A A A 

Thus the absolute continuity of the integral ~ ]g] dp proves the terminal uniform 
absolute continuity of E g. 8 

Furthermore E is clearly positive and linear. Also the restriction of E to 
L+(X, p) maps into L+(O, 91, p; f * ;  1). 

Moreover 

Theorem 3.2. E is an (L-space) isomorphism from L ~ ( X,  p) onto L ~ ( f2, 9i, p; f *  ; I). 
The restriction E~ of E to U~ p) is a Banach lattice isomorphism from L+(X, p) 
onto L~(O, 91, p; f * ;  I). 
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Proof. Observe that it is, by Lemma 3.2e, sufficient to prove that E and E~ 
are isometries and that E~o is bijective. Moreover in order to prove that E and 
E~ preserve L ~- and L~-norm respectively it is sufficient to prove that E preserves 
both norms for ~[o-measurable stepfunctions. Thus, let g ~/2 (X, p) be an 9]o-meas- 
urable stepfunction, 

n 

g = 2 ~l )~AI 
l = l  

where elelR and Ale~o ,  disjoint. Then there is an i e I  and B 1 . . . .  , B, egl  i disjoint, 
such that 

A, = ((Pi/~)^ (l = 1 . . . . .  n). 

Then we have, i f j  > i  

hence 

and 

Thus 

n 

EJ g = ~ at Z f,,) B, 
I=1 

IlgJgll~ = ~ I~tl Pj(L,)~Bz) = ~ ]cql P(Az)= Ilgll~ 
/=1  Z=l 

I[EJglk ~ = max Ic~zl = hlgll 
l= l, ..., n oo" 

Illgglll~=llglbl and IIIEglll~o=llg[l~o. 

Therefore it remains to prove that E~ is bijective. E~ is clearly injective, for 
E~og=E~h implies, by definition of E and E i, that we have for every A~9.] o 

S g d p = ~ h d p .  
A A 

Hence h -- g p-a. e. In order to prove that E~o is surjective remark that it is sufficient 
to find a pre-image for a positive uniformly bounded martingale, because of 
Lemma 3.2d. Thus let g be a positive element of L~(f2, 96, p; f * ;  I). Consider 
then, for ieI,  the measure 

A P ,  v iA= ~. gidpi �9 
A 

These measures are coherent, i.e. 

v iA= ~gidpi = ~(U'jgj)dpi = ~ gjdpj=-vj(f~) 1A) 
A A y i . J a  

and uniformly bounded with respect to the Pi, indeed 

O_<_v i A=< Ilgitl ~ Pi(A)<= IIIg[ll~ pi(A) . 

Therefore there is, by Lemma 3.1, a unique regular measure v on X such that 

V B ~ x ,  O<vB<[llgllloop(B) 
and 

V i i i ,  V A e g 2 [ i [ f P i A ~ g 2 [ o  :=> v ( f P i A ) ^ = v i A ] .  
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This clearly implies that v ~ p  and that VieI ,  gAegJi i vJ~=viA (cf. the notation 
on p. 72). Let h be the Radon-Nikodym derivative of v with respect to p and con- 
sider the functions hi=E i h. We have, for AEgI~ 

h i dpi = ~ (E i h) dp, = S h dp = v Jl = v i A = ~ gi d P i "  
A A A A 

Hence h~=g~ pi-a.e, and thus g=Eh.  Therefore E~ is surjective. This concludes 
the proof of the theorem. 

Corollary 1. 1. I f  Y is a Banach space and if there is, for every ie I  a continuous 
linear map Gi: Y---~ L ~ (f2 i, ~d i, Pi) such that 

i<=j~ Gi=Ei'JoGj, 
and 

sup [[Gil[ = M <  oe 
i ~ I  

then there is a unique continuous linear 

G: g ~  L ~ (X, p) 
such that 

Gi=EioG and [IGII=<M. 

2. I f  Y is moreover a Banach lattice and the G~ are positive then G is positive. 

3. Thus U: L~(X, p ) ~  L~ 9.I i, Pl) is the projective limit of(L~(f2, 9.I, p); E; 1) 
in the category of Banach spaces with contractions and also in the category of 
Banach lattices with positive contractions. 

Proof 1. Consider, for ye  Y,, the sequence (G~ Y)i~i. By our assumptions this 
is a uniformly bounded (f2, 9.1, p; f *  ; /)-martingale, hence there is, by the theo- 
rem, a unique GyeL~ p) such that 

E i (G y) = G i y 

G is then clearly linear and moreover, again by the theorem 

Ilay[I ~ = Ill(a~ y)i~zl]l~ =sup IIG~yIL~ __<sup lla~l[" Ilyll = M .  Ilyll �9 
i e I  i e I  

2. If y e Y  is positive then, by assumption G~y>=O for every i~1 and hence, 
by Theorem 3.2 Gy>O. Hence G is positive. 

3. This is merely a restatement of 1. and 2. 

Corollary 2. Suppose that Y is a compact Hausdorff space with a regular prob- 
ability measure q, such that there is, for every i~I a desintegration co~-~oi(co, .) 
of q in regular probability measures q)i (o9,.) on Y (i. e q (.) = ~ p~ (do) q)i (co,.)), which 
is coherent, that is 

i<=j~ VB~My, qoi(.,B)=Ei, jcpj(.,B). 

Then there is a unique (up to equivalence) desintegration x~-* qo(x, .) of q over X,  
such that 

V i i i ,  VB~Ny, (pi( . ,B)=~ni( . ,dx)q)(x,B) Pi-a.e. 

Proof This is a direct consequence of Lemma 2.2 and the previous corollary. 
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4. Representation by Mappings 

We show first that a representation space (X,p) for an F-projective system 
(~2, 91, p; f * ;  I) which admits coherent mmpm-'s 

fi: X ~ O i  

such that the E i (or alternatively the nf) are induced by the fi (i. e. E * is the con- 
ditional expectation operator induced by f~) must be an RP-projective limit of 
(0, 91, p; f * ;  I). 

Theorem 4.1. Suppose that the F-projective system ((2, 91, p; f * ;  I) is Such that 
there is a representation space (X, p) and mmpm-'s 

fi: X--" f2i 

such that the positive contractions E ~ are induced by the f i ,  i.e. 

V h ~ L 1(f2 i, 91i, P3, V g ~ L ~ (X, p), ~ h (E i g) dpi = ~ (ho fi) g dp. 

Then {f/*: (X, ~ x ,  P)--' (f2i, 91i, Pi)} is both an RP- and an F-projective limit of  
(t2, 9I, p; f * ;  I). In particular the fi* are then coherent. 

Proof. We have to show that, for any complete probability space (A, 23, q) 
with RP-morphisms 

Oi: (A, 23, q)-* ((2 i, 91i, Pl) 
which are coherent, i.e. 

V (i,j)6D1, Qi=fi.j Qj 

there is a unique RP-morphism Q: (A, 23, q) -~ (X, ~x,  P) such that 

V iEI, Qi=fi* Q 

and that, moreover, if the Qi are actually F-morphisms, then Q is an F-morphism 
as well. 

Observe first that we have for every iEI and A~91~ 

f i - l A - -  A p-a.e. 

Indeed, by definition of U and because the f~ induce E i, we have for every 
g~L~ 

S g d p = ~ ( U g )  dp~=Y(Xa~ y gdp  
A A f i - l A  

and this implies clearly p(.4 zxf~-lA)= 0. From this it follows easily that the f~* 
are coherent. 

Let us assume then that the Q~ are given. Select for every i~I a rcp a~Qi .  
The coherence condition states, in terms of the a~ 

V(i,j)~DI, VA6911, a i ( . ,A )=a j ( . , f i~ lA)  q-a. e. 
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Consider, for B ~ 3  the measures 

~i(B, . )=  ~ q(d2) ai(2, ,) 
B 

on 9.1 i. As ~i(A, A)=pi(A), because a i is a rcp, we have clearly 

V B ~ ,  ~i( B, .)<=Pi 

and, by the coherence condition 

V(i,j)6Dr, ~i(. ,A)=~j(. , f~lA).  

Hence there is, by Lemma 3.1, for every B ~ 3 ,  a unique regular measure tp(B, .) 
on X such that 

Vii i ,  VA69Xi, ~(.,  A)= ffi(., A) 

V B ~ x ,  ~(.,B)<p(B). 

~t follows that ~ (C , . )~p ,  thus, by what we proved already 

Vi~I, VA~9.Ii, ~(.,fi-lA)=t~i(.,A). 

Also ~(. ,  B) is then a measure on ~3 for every B~9~ 0 . As this is, moreover, trivially 
true for all nullsets B~Mx and as ~o generates ~x  mod p, a well known argument 
then shows that ~(. ,  B) is a measure on ~3 for every Borelset BoX.  

Now we can construct a positive linear contraction 

G: L~(X,p)~ L~(A, ~B,q) 

as follows. Consider, for g~L~(X, p), the bounded signed measure 

B ~ (. g (x) ~ (B, dx). 

This measure is clearly absolutely continuous with respect to q (as ~i (B, A)=< q (B), 
hence ~ (B,.)<q(B)). Hence there is a unique G g6L~176 ~, q) such that 

VBe~,  Sg(x)~b(B, dx)= ~(Gg)dq 
B 

G is clearly a positive linear contraction. Also, obviously, G 1 = 1, and moreover 
G is "integralpreserving", as 

(G g) dq = S g (x) ~, (A, dx) = (. g dp. 

Thus Lemma2.2 can be applied and we find a desintegration (a(2, .))~A of p 
such that 

Vg~L~(X,p), Og=(. a(.,dx)g(x). 

Now, consider the composition f i .  a: (A, ~, q)---, (g2 i, oAi, Pi). We have, for 2~A 
and A 6 9/i 

( f / .  a)(2, A)= ~ a(2, dx)f . .  (x; A)=~ a(2, dx)(ZA of/)(x)= G(ZA of/) (2). 
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Hence ( f i .  a)(., A) satisfies 

VBa~, ~(fi.a)(.,A)dq=~(zAof~)(x)O(B, dx)=t~(B,f~-lA)=Oi(B,A) 
B 

= ~a,(.,A)dq. 
B 

Hence 
(fl. a)(., A)=ai(., A) 

or  

f i* Q = Qi,  

if Q is the RP-morphism containing the rcp a. 

q-a. e. 

Next we prove uniqueness. Thus suppose that Q' also satisfies 

Vii i ,  fi*Q'=Qi 

and let a' be a rcp in Q'. Then we have 

Vii i ,  VA~9.Ii, a(.,fi-lA)=a'(.,f~-aA) q-a.e. 

This implies, as a and a' are both measurepreserving and as 

f i - l A  = ~  p-a.e., 
that 

V A t ' o ,  a(.,A)=a'(.,A) q-a.e. 

As 9.2 o generates ~x  mod p, this implies 

VA~C~x, a(. ,  A)=a ' ( . ,  A) q-a.e. 
or  

Q=Q'. 

It remains to prove that Q is an F-morphism if Qi is an F-morphism for every 
i~I. Choose mmpm-'s ui: A-*O i such that u*=Qi and a rcpa  in Q. Then we 
have 

s O-- O --u* d i  z; .~--~. .r  i , 

hence 
V i i i ,  k/AG9~ i, a(.,fi-lA)=zAoui q-a.e. 

This implies easily (again using that f~-lA = A p-a. e.) that 

V B ~  x ess range a(. ,  B)~ {0, 1}. 

Let bv~ (b)  be a lifting of~5 and consider, for B ~  x 

B = ( ( 2 ~ A l a 0 ,  B)= 1) ~) .  

As a(2, .) is a regular probability measure on X and because ess range a(. ,  B)= 
{0, 1}, it follows that a: r ~ ~3 is a Boolean homomorphism, with the a-ideal 
of Borel nullsets as kernel. Therefore a(.,B)=z~B q-a.e., hence 

q(~B)= ~ dq= ~ a(.,B)dq=~a(.,B)dq=p(B), 
o~B ctB 
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thus ~ is measurepreserving as well. Define now, for compact K c X 

~.K= ~ ~U. 
Ue~(K) 

Then, obviously 7 K c ~ K ,  and the regularity of p implies easily 

q(~K)=q(~K).  

Consider then, for ;~eA, the set 

d~= { K c X I K  compact, 2e~K}.  

da is clearly an ultrafilter in the collection of compact subsets of X (if K c X is 
compact and 2 6"2 K, there is an open U c X, such that K c U and 2 r c~ U. Hence 
)~ec~UccSUC). Hence the intersection of all elements of d~ consists of exactly 
one point, h 2 say. The function 

h: A--*X 

so defined satisfies clearly, for compact K c X 

h - t K = ~ K .  

Thus, for compact K 

h-l  K=c~K q-a.e. 

Then it follows along well known lines that 

g B e ~ x ,  h- t  B = e B  q-a.e. 

(using the fact that c~, although not a a-homomorphism, has the property that 

~) eB,=c~ B, q-a.e., because it is measurepreserving). Hence h is measurable 
n=l n=l 
and measurepreserving. Finally we have for every B e N x ,  outside some nullset 
N c A ,  

h 2 e B  ' -* rr(2, B ) -  1. .r ,t ~ h B <=> 2 e o~ B r 
Hence 

V B e N x ,  a ( . , B ) = h . ( . , B )  q-a.e. 
or  

Q=h*. 

This concludes the proof of the theorem. 

We proceed now by establishing the existence of representation spaces. 

Theorem 4.2. Let (f2, 9.I, p; f * ;  I) be an F-projective system. 9.1 is the inductive 
limit Boolean algebra with measure re, described in the beginning of Section 3. Then, 
corresponding to any dense subalgebra 9.1 o of 91 there is a representation space 
(X,p)for (f2, 91, p; f * ;  I). 

Proof. Let X be the Stone space of the Boolean algebra 91 o . A ~ A will be the 
canonical map from 910 into the power set of X, i.e. 

A={uEXIAeu}. 
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Define, for A E 96 0 
p(/4)= zr(A). 

It is well known that p can then be extended to a regular probability measure on 
the compact Hausdorff space X, for which ~o  is a basis of clopen sets. Then 
(X, p) is clearly a representation space. 

Corollary l. I f  the F-projective system admits a system (~i)i~i of generating 
compact sublattices, which have approximate complements, then it has an RP and 
F-projective limit. 

Proof This is a direct consequence of Lemma2.3, Theorems4.1 and 4.2. 
Indeed, let 9.10 be any dense subalgebra of 9.1 such that q~i c~gAo for every i~I 
and every Ceffi ,  and let (X, p) be the representation space, the existence of which 
follows from Theorem 4.2. Then, for each i~I, (f2i, ~i,Pi), El, q)i satisfy the re- 
quirements of Lemma 2.3. Hence there is a mmpm f/: X--~ f2z such that V C ~ i ,  
fi -1C=r i C a.e. This easily implies that the f~ induce the E i and hence that 
Theorem 4.1 is applicable. 

Corollary 2. Let (0, 9.1, p; f;  I) be an F-projective system. Suppose that the f2 i 
are locally compact Hausdorff spaces, and that the Pi are regular measures. Then, 
there is an RP- and F-projective limit 

{f~*: (x, ~:,, p)-* (o~, 9X~, pi)}. 

Proof One checks without difficulty that (~)i~,, where ffi is the lattice of 
compact subsets of f2~, satisfies the requirements of Corollary 1. 
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