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1. Introduction 

Let B(t) be 1-dimensional Brownian motion. The law of the iterated logarithm 
asserts that 

IB(t)] 
lim sup )1/2 = 1. 

~t~ (2t loglog 

This result and many similar theorems are consequences of Strassen's version 
of the law of the iterated logarithm [6]. He shows that if 

B(xt) } 
(~(t)= f (x)=(2 t loglogt)i/2 

where x~[O, 1], then in the uniform topology, the set of limit points of <g(t) as 
tToo is the set K of functions f absolutely continuous on [0, 1] which satisfy 

f(O) =0  
1 

(f'(x)) 2 dx< 1. 
0 

More precisely, f e K  iff we can find functions gt(n)(x)e c~(t(n)) with t(n)l"~ such 
that g,t(n) converges to f. This implies that if �9 is a continuous functional on 
cg[O, 1], then 

lim sup q~ ( B(xt) 
tt co \(2t log~gt) t/2 ] =sup/~ ~(f) .  

Setting ~ ( f ) =  If(1)j, we obtain the classical law of the iterated logarithm. 

* Research  was suppor t ed  in par t  by N a t i o n a l  Science F o u n d a t i o n  gran t  MCS75-10376.  
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L6vy's modulus of continuity for Brownian motion asserts that 

[B(s+t)-B(s)[ 
limsup sup =1. 

t,o o<_s<_l-t (2tlogl/t) 1/z 

This theorem is closely related to the law of the iterated logarithm. While the 
law of the iterated logarithm involves the time intervals [-0, t], L6vy's modulus 
involves the intervals [s, s + t] with 0 < s < 1 -  t. Motivated by this similarity, we 
prove the following Strassen-type law for L6vy's modulus. If 

0 s__l-t} 
(2t log 1/01/2 " 

then, in the uniform topology, the set of limit points of c~(t) as t ]" oo is Strassen's 
limit class K. This result implies L6vy's modulus in the same way that Strassen's 
law implies the law of the iterated logarithm. 

We prove a stronger theorem which includes both Strassen's law and the 
previous result as special cases. Here is an important corollary, in which we 
consider the time intervals Is, s + t] with 0 <_ s <_ R(t). Let 

~'"  f~ .  , B(s+xt) -B(s)  O<_s<_g(t)}. 

If R(t) and h(t) satisfy monotonicity conditions, and if h(t) satisfies an integral 
test, then, in the uniform topology, the set of limit points of ga(t) as t{oo is 
Strassen's limit class K. 

Setting R(t)=O yields a form of Strassen's law for decreasing intervals. The 
result for L6vy's modulus is obtained by setting R(t)= 1 -  t. 

Using the preceding ideas, we give a test for upper and lower functions 
which includes both Kolmogorov's test and the Chung-ErdSs-Sirao test [3] as 
special cases. If R(t) and O(t) satisfy certain monotonicity and growth con- 
ditions, then 

according as 

converges or diverges. 
Finally, using the Komlos-Major-Tusnady theorem [5], we generalize 

Strassen's invariance principle. Let X1, X2, ... be i.i.d, random variables with 
mean 0 and variance a 2. Suppose that ]EXlt2~<oo, c~__>l. Let Z(n)=XI+. . .  
+ Xn, and define Z(t) for nonintegral t by linear interpolation. Let 

h(t)=~!~---1)logt if c~>1 
(log log t if c~ = 1 
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If 

cg(t)={f(x) = Z ( s + x t ) - Z ( s )  } 
a(2th(t))l/2 " s<t  ~ 

then, in the uniform topology, the set of limit points of cg(t) as tl"oo is K. 
In Sect. 2, we prove the generalization of Strassen's law. Section 3 gives 

several important examples, including the recent work of Chan, Cs6rg6, and 
R6v6sz [1]. Section 4 contains the generalization of Kolmogorov's test and the 
Chung-Erd6s-Sirao test, and Sect. 5 proves the invariance principle. 

These ideas will be extended to Gaussian processes in a future paper. 

2. A Generalization of Strassen's Law 

In this section we generalize Strassen's law. The proof uses many ideas due to 
Strassen [6], which are clearly explained in Freedman's book [4]. Several 
important applications are given in Sect. 3. 

Notation 

We will represent intervals as follows. With the interval [s, s + l] associate the 
point p=(s, 1). Let J and J ( t )  be arbitrary index sets. 

With each set of points ~={P~}i~j associate the following area. First, 
surround each point p~ = (sl, l~) with the rectangle 

R,.(Pi)= {(s, I): e-r < l/li < e ", I s -  si[ < llr }. 

Next, let A,.(~@) be the area of the union of these rectangles under the measure 
dsdl 
- - .  That is, 

12 dsdl 
S 12 

U Ri 

The law of the iterated logarithm states that 

IB(t)-B(O)I 
lim sup 

ttoo (2t loglogt) 1/2 
=1.  

For each t, Brownian motion over the time interval [0, t] is considered. Suppose 
that instead, several intervals are considered for each t. Let Nt = {(si,/i)}i~J(t) be 
the set of points representing these intervals. Again, surround each point p~ with 
the rectangle R,.(s~, l~). Let A,.(t) be the measure of the union of the rectangles up 
to time t. That is, 

dudl 
A, . ( t )  = 12 

U U Rr(p) 
u<_t peg~u 

We now generalize Strassen's law. 



166 C. Mueller 

Theorem 1. Suppose that 

(1) h(t) is increasing and lim h(t)= oo, 
~ o o  

~exp  ( -  a h(t)) dA 1 (t) converges for a > 1, and diverges for a < 1. 
0 

(2) 

Let 

~,, ~ ' . , ,  B ( s + x l ) - B ( s )  

(where x ~ [0, 1]). Then, in the uniform topology, the set of limit points of cr as 
t T co is the set offimctions g(x) absolutely continuous on [0, 1] satisfying g(0)=0 
and 

1 

(g'(x)) e dx < 1. 
0 

Proof. Let K be the above set of functions, and let I] ]1 denote the sup norm. Let 

f . .  B ( s + x l ) - B ( s )  
,Ax)= 1 / ~  

First, we will show that for almost all co, go(t) approaches K~ In other words, 
if K~ is the set of functions which have distance < ~ from K, 

P{Cg(t)~K~ i.o.} =0.  

This claim will be established through a series of lemmas. 

Lemma 1. I f  0 < e < 1, then 

Z -- 3/2  P{ sup I B ( a + A ) - . B ( a ) I > L } < ~ _ e  exp(-L2/16e).  
l_<a_<2 

- - e < A  <e  

Proof. Break up [0, 1] into intervals of length 1 1 1 ~ ,  where ~ < e < ~'-Z-i-" Then, 

P{ sup tB(a+a)-B(a)l>L} 
1 _ < a < 2  

--~<:A_<g 

< ( N + I ) P  I sup [B(A)I> 2 
ko<a=<2e 

1 [ 1 (L/2):] < ( N + l )  4 , =  e x p i .  2 
- V 2 u 2  e 2e / 

< ~-~/~ - ~  
_ 1 / 7  exp . 
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Lemma 2. Fix r. Let e=max(r ,  e 2~'- 1). Then, Jbr large M, the JbItowing estimate 
holds un!formty for all rectangles R~(p) 

P{ sup ![fr > M }  < Ce -3/2 exp(-MZ/21~ 
(s', t') ~-Rr(p) 

(s", l") e R~(p) 

Proof. Let (s', l') and (s', I") be in R~(p). Let p =(s, I). Then 

{iL,,,,-L%,,,[l 5 sup {~',v) IB(s')-B(s")I 
(s". ~") } / 4  [--7 

sup iB(s'+xl')-B(s"+xl')l 
x~[O, t1 + sup 

(s", t") 

+ sup ....... ( sup [B(s"+xl")-B(s")[) 
~s", l") 

=I+II+t l i .  

Note that I<II. Thus, 

P{ (r v)suP~R~v) I ! f '"v- fr  
(s", I") e R~(p) 

First, 
f M 

(s", l") 

By assumption []//i~/l "-  l f < e " -  1 _-<e. So, 

f M )  i t /2e  ex M2 P ~II I>~? <-4 /~__ ( - ~ )  
( ) -  t~2rc ~ P " 

Next, we evaluate P {2(tI)>M}" N~ that if x~[0,1] 

l(s' + xl')-(s"-xl")t ~,, 1 t. 1" 
? ...... * - T  

<2e(1. + ~ ) + e  2' 

=<4& 

Thus, using Lemma t, 

P 2 ( I t )>  =<P~ sup 1B(a+zl)-B(a)l> < C e - 3 / 2 e x p  -~T6 7 . 
| l-<-a~2 

- 4Z< ag< 4e 

Combining these two estimates, we get Lemma 2. 
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Now we will show that U(t) approaches K. In the quarterplane {(s,/): s>0 ,  
I>0} we construct a grid of rectangles Rn, m (n, me2~, n>0).  Let R,.,m be the 
rectangle with the following boundaries: 

em,'~l<e(m+l) ," 

nrem" < s < ( n +  l ) e  m''. 

We will write f ( x ) ~ g ( x )  if there exist constants C 1 and C 2 such that for all 
X, 

It is easy to check that if 

then, for r < 1, 

C 1 f ( x )  <= g(x)  <= C 2 f ( x ) .  

d s d l  
d # =  12 

r e~,,(e(m+ 1),._ era,) 
#(Rm,.)~ (e~,)2 

= r ( e ' - l )  

~,,~r 2 . 

Intuitively, we wish to choose times t 1 =< t 2 ~ . . .  such that the points ~( t )  first 
enter a new rectangle Rmk,n k (k > 0) of the grid at time t k. Formally, we will 
choose {tk} by induction. Note that since the integral 

oo 

exp ( - a h (t)) dA  1 (t) 
0 

converges, only finitely many rectangles have been entered up to any given time 
t. Let t0=0.  Let Rmo,, ~ be any rectangle. Suppose we have chosen t o < t  ~ <= ... <___t k 
and R . . . .  1, "" ,  R, ,k , ,  . Let 

tk+ 1 = i n f { t ~ t k :  ~ ( t )  dZRml,, 1 W ... wR~k,n~}.  

Choose Rm~ . . . . . . .  such that for any e>O, we can find t for which tk+ 1 < t < t k +  ~ 
+ e and 

~ ( t ) n R  . . . . . . . . .  =~r 

This is possible because for any T > 0, Q) ~( t )  is contained in a finite union of 
rectangles in {Rm,,}. ~__< r 

Next, let Ai.(t ) be the measure of the rectangles in {Rm,,} entered up to time t. 
For  r <  1, (s, l ) e R m , ,  implies that 

R m , , c R l ( s ,  1). 

Therefore 
A;(t)__< A~ (t). 
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If a > 1, then since e -~h(t) is decreasing, condition (2) of Theorem 1 implies that 

exp ( -  ah(tk) ) ~ ~ exp ( -  ah(t)) dA;(t) 
k = l  0 

converges. 

Let (Sk, lk) be the center of R . . . . .  . Fix m. For  n = 0 . . . . .  m let 

s,l) 

Define c(~) by linear interpolation between these points. Y(s ,1 )  

To finish the first part of the proof, it suffices to show that for all e >0,  
( f (m)  } 

I. P )  J(~'~) ~/(  for infinitely many k =0  
((h(tk))l/2 ~-'-~ 

II. For  e 2 m > 4, 

P ). i ~  > e for infinitely many k = 0 

~2 

III. Let 6 =max(r,  e 2 ' -  1). If ~ > 2  9 

f 
P sup >e  for infinitely many k~=O k(s,z) ~g . . . . .  (h(tk)) 1/2 

3 

These statements will be proved using the Borel-Cantelli lemmas. 

Proof of I. If A(k, 6) is the event that 

d (sk ,  [k) d ( sk , / k )  

- -  m > 1 +c5 (h(tk)) 1/2 
t l= l 

it suffices to show that for all c5>0, A(k, 6) occurs only finitely often. Now by 
standard probability estimates, 

P (A (k, c5)) = P ()/~ > 2 h (tk) (1 + c~)) 

< e x p ( -  (1 + 2 3) 2 h(tk) ) 

for h(tk) sufficiently large. This converges when summed over k, so by the Borel- 
Cantelli lemma, 

P {A (k, 3) for infinitely many k} = 0. 

Proof of II. Let A (k, m, e) be the event that 

sup 
O ~ n < _ m  
1 -  - 1 (h(tk)) 1/2 

----<ZI < ~  
m m 



170 C, Mueller 

It suffices to show that A(k,m,O occurs for only finitely many k. But, by 
Lemma 1, 

P(A(k ,m ,e ) )<~m / exp / e2mt \ 

~2rn 
This converges when summed over k, since --~--> 1. Therefore, by the Borel- 
Cantelli lemma, 

P{A(k, m, e) for infinitely many k} = 0. 

Proof of III. Let A (k, e) be the event that 

By Lemma 2, 

(,.o~R,~,,,~ (h(tk)) 1/2 

' / \ ~2 
P {A(k, g)} <~ C~ -3/2 exp [ -  ~7w, h(tk)]. 

\ z - o -  / 

g2 
This converges when summed over k, since ~ > 1 .  By the Borel-Cantelli 
lemmas, 

P {A (k, e) for infinitely many k} = O. 

To complete the proof of Theorem 1, we need to show that for almost every 
path and for all geK,  we can find a sequence t~7 oo and points (s'k, I'k)e~(t'~) such 
that 

(h((k)) l~) g 
l im =0. (,) 
n+oo 

For each k, choose t~ and ((s~, tj,) such that t k < t~ < t k + 1, and 

By the assumptions of Theorem 1, 

h(t~) ,1 as k/ 'oo.  
h(tk) 

This will be used in the reasoning which follows. 1 
Fix m. Let K(e,m) be the set of functions for which ~(g*(x))2dx<l-e and 

which are linear in the intervals n - l < x  n 0 
m m 

Now ~K(e,m) is dense in K, so it suffices to show that (,) holds for all 

geK(e,m). Fix geK(z,m). Let A(K) be the event that 

~'~ g <~- 
(h(tk)) 1/2 
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/ / \  
Strassen derived the following procedure. If g 1--} 

31,..., 3,, such that \m! 

and 

c.oose 

c~1+...+3m< 5 

m 

m ~ (a i+@ 2 = 0 < 1  
i = 1  

where (a _+3) 2 denotes max [(a +3) 2, (a-3)2] .  Let F/be the event that 

s'k, l'k) a(s 'k ,  rk) 

a i - 3 i < (h(tk))l/2 < ai + 3 i. 

m 

Let E =  ~ F  i. Clearly E ~ A ( k ) .  Also, by the independence of Brownian incre- 
ments, i= 1 

m 

e{E}-- 
i = 1  

But, by standard estimates, 

P {Fi} > e x p ( -  m(a i _+3) 2 h(tk) ). 
Therefore, 

P {A (k)} > P {E} > exp ( - 0 h (tk)). 

This diverges when summed over n. We wish to use the second Borel- 
Cantelli lemma, but the events A(k) are not independent. Instead, we use the 
following theorem of Chung and Erd6s [27 : 

Theorem 2. Let {A(k)} be a sequence of  events satisfying the following conditions. 

(i) ~ P { A ( k ) } = o o  
k = l  

(ii) For every pair of  positive integers h, n with n>h ,  there exist c(h) and 
H(n, h)> n such that for every m > H(n, h) we have 

P {A (m) l A(h) c, .... A(n) c } > c(h) P {A (m)} 

where A c denotes the complement of  A. 
(iii) There exist two absolute constants c 1 and c 2 with the following property: 

to each A(j) there corresponds a set of  events A(jl ) . . . .  ,A(js ) belonging to {A(k)} 
such that 

(a) ~ P { A ( j ) A ( j l ) } < c l P { A ( j ) }  and if k > j  but A(k) is not among the 
i = 1  

A(j~) (1 < i N s )  then 
(b) P{A( j )A(k ) }  <=c2P{A(j)}P{A(k)}.  
Then P{A(k)  i.o.} = 1. 
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In our case, (ii) is satisfied if r is large enough, and for H(n, h) sufficiently 
large, since then the interval involved in A(m) will either not intersect that of 
A(k), h<k<n, or will be much smaller or much larger. 

If r is large enough and if {A(jl), ...,A(js) } is the empty set then condition 
(iii) is also satisfied. 

Therefore P {A(n) i.o.} = 0. It remains to show that if A(n, m) is the event that 

(m) 
f(s~,t~)--f(s~,ln) 

m e  2 
then P{A(n, m) for infinitely many n} =0  provided --4~< 1. But this follows from 
assertion II of the earlier part of the proof. 

3. Examples 

This section gives several examples of Theorem 1. Only the first two exam- 
ples will be proved, since all of the proofs are similar. 

In the following, we use the uniform topology. Recall that K is the set of 
functions g(x) absolutely continuous on [0, 1] satisfying g(0)= 0 and 

1 
r  2 dt__< 1. 

0 

Example I. Strassen's law for L&y's modulus. Let 

~'" f~. , B(s+xt)-B(s) } 

Then the set of limit points of ~g(t) as t J,0 is the set K. 

Proof. Set u = 1/t. Then 

~(u)= {(s, l): l= 1/u, O<_s<_ 1-1}. 
N o w  

~) ~(v)={(s, 1): l<l<_l/u,O<s<l-l}. 
l<_v<_u 

It is easily checked that dAl(U ) is comparable to 

1 d s  
- d l !  ~-l:t/  =du. 

If h(u)=logu, then h(u) satisfies the conditions of Theorem 1. 

Example 2. Strassen's Law. Let 

qC(t) = { f (x )=  (2t log log 01/23" 

Then the set of limit points of ~(t) as t 1" oo is K. 
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Proof. ~ ( t ) =  {(0, t)}. 

Let S(t) be the region 

{(s, l): O<l<t, -l<_s<I}. 

It is easily seen that S(t) is close enough to the region [9 RI((0, t)) so that dAl(t ) 
is comparable to s__<t 

i ds =2 dr. 
dl ~-z=t t 

--1 

If h(t)=log log t, then h(t) satisfies the conditions of Theorem 1. 

Example 3. Intervals of Increasing Size. Suppose that R(t)T t is increasing, h(t) is 
increasing, and that 

R(t) 
o ~T- exp(-ah(t))dt 

diverges when a < 1 and converges when a > 1. If 

cg(t)={f(x)- B(s+xt)-B(s) 0 - ( ~  : <_s<_R(t)-t} 

then the set of limit points of cg(t) as t T oo is K. 

Example 4. Intervals of Decreasing Size. Suppose that R(t) is increasing or 
decreasing h(t) is increasing, and that 

R(t) 
o ~T- exp(-ah(t))dt 

diverges when a < 1 and converges when a > 1. If 

cg(t)={f(x) -B(s+xt)-B(s)(2th(1/t))t/2 �9 O<_s<R(t) -1}  

then the set of limit points of cg(t) as t ; 0  is K. 

Example 5. Moving Averages. This example was proved by Chan, Cs/Srg6, and 
Revesz [1]. It is an easy consequence of Theorem 1. Let a,, n/a, be nondecreas- 
ing functions of n. For 0_< x-< 1, let 

7,(x) = B(n- a, + xa,)- B(n- a,) 
ft, = (2a,(log n/a, + log log n)) 1/2. 

Then, as n'~c~ the set of limit points of {y,(x)/Bn} is K. 
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Example 6. Let 

f ~ ( x )  - - -  

B(t+x)-B(t)  
(2 tog t) 1/2 

Then the set of limit points of {f~(x)} as tToo is K. 

4. Kolmogorov's Test and the Chung-Erdiis-Sirao Test 

We will not use the language of Sect. 1 here; it would make Theorem 3 painfully 
complicated. 

Definition. Given a function R(t), let 

M(I, t) = sup {]B(s + I ) -  B(s)]: s~[0, R(t)]}. 

Suppose l=l(t) is a function of t. The law of the iterated logarithm states that if 
l(t)=t, R(t)=0, then 

M(l, t) 
lim sup .1~2 = 1. 

t,~ (2tloglogt) , 

l(t) =1, R(t)= 1 ---lt Levy's modulus states If that 

M(I, t) 
1~1i sup (2/t logt)l/2 - 1. 

We say that O(t) is in the upper class for l(t) if for almost every path there 
exists a constant T such that t > T implies 

~ t )  =< O(t). 

We say that t)(t) is in the lower class if for almost all paths such a constant does 
not exist. 

Theorem 3. Let R(t) be increasing or decreasing. Suppose that for all t, 

C 1 (R (t) + l(t)) < R (2 t) + I(2 t) < C 2 (g  (t) + l(t)) 

where C 1 and C 2 do not depend on t. That is, R(t)+l(t) is at most exponential. 
Suppose that O(t) is continuous and nondecreasing. Then 

(i) I f  l(t)=t, and if the integrand below is decreasing, then O(t) belongs to the 
upper or lower class according as the integral 

~ (-R(t~3(t' ~ff--J) exp(-�89 

converges or diverges. 
(ii) I f  l(t)= 1/t and if the integrand below is decreasing, then O(t) belongs to 

the upper or lower class according as the imegral 

~ (R(t)~?(t)+ ~J--(tt)~)exp(--~-oa(t))dt 

converges or diverges. 
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The two terms in the integral correspond to the Chung-Erd/Ss-Sirao test and 
to Kolmogorov's test, respectively. 

Corollary 1 (Kolmogorov's test). I f  R(t)=0 and I(t)=t, then O(t) is in the upper 
or lower class according as 

~ e x p ( - � 8 9  

converges or diverges. 

Corollary 2. Fix ~ > 0 and let l(t)= t. KoImogorov's test still applies if R (t)= c t 1 -~. 
This follows from part (i). 

Corollary 3 (Chung, Erd6s, Sirao [4]). I f  R(t)= 1-_1 and l(t)= 1 then ~(t) is in 
the upper or lower class according as 

03 (t) exp ( - �89 02 (t)) d t 

converges or diverges. 

We need the following lemma. 

Lemma 3. We may assume without loss of generality that 

�89 h(t)) 1/2 _<_ 0(t) =< 2(2 h(t)) 1/2 

[fiR(t) 1)logt] .  where h(t)=log ~ / ~ +  

This is proved in the same way as Lemma i of Chung, Erd6s, and Sirao [4]. 

Proof of Theorem 3. We will only prove case (ii), for simplicity. Case (i) is 
similar; instead of intervals of length m/2 p we would consider intervals of length 
m2 v, m<h(2P). Let 

~Tt(I, t) = sup {B(s + 1)-B(s): se [0, R(t)]}. 

By the symmetry of Brownian motion, it is enough to show that for almost 
every path, there exists a constant T such that t > T implies 

l(t) - = 
1. 

Recall that l ( t )=-  m case (ii). 
t 

Let E(p, k, m) be the event that 

(k+m  k=0, 2P R 

> ~ ' m = 1, . . . ,  h (2P) .  
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For large p, 

P {E (p, k, m)} 

Summing P{E(p,k,m)} over p = l , . . . , m =  L 3 .] . . . . . .  ' 

4)] 
EEEP{E(P,k,m)} 
p m k 

= 0 ( 1 ) ~  

h(2P) 2P (R (h~p))+--~]' h(2P)] 
=o(1)E p ~ 2(~) 

~ ( h ~ , ~ . i ~ + ~ )  
=0(1)~ ~(t) exp(-�89 

=O(1) ~ R(t)~s(t)+ exp(-�89 

The last step uses Lemma 3. 
First, assume that the sum converges. Let F(p, k, m) be the event that 

B [k + m \ k 

s u p  1 

k o .... [ 2 ~ ( R ( ~ ) + ~ ) ]  

m = 1, ..., h (2P). 

Now, by standard estimates, 
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P {F(p, k, m)} 

< P ~  sup [ B / k + m  \ (k+ml] 
- t2 -+U 2. I ,  

~ - ) - B  ( k ) ]  + sup 
O < s <  1 

(m~ */e 2 ( ~ 2 )  } 

<4p{B[k +m+l {k+m~ fk+m~ \ 2" )-B\ 2P ]+B\~I -B(k)+B(k) -B(~D ~-) 
co:  (2,)} 

=4P{B ( k + m + l  m 1/2 2 p 

By Lemma 3, we have, for large p and m 

P{F(p,k,m)} < 4 m 
(2re)l/2 t) (m2~22) exp ( - m ~  I)2 (m@2)) 

2 ~ 
~4P {E(p, k, m)} e (~+2 02 (~2)).  

So, i f [ ~ ] < m < h ( 2 P )  thenbyourassumptionsaboutO(t)andh(t), 

P {F(p, k, m)} < c P {E(p, k, m)}. 

Because the sum of the latter terms converges, so does the sum of P{F(p, k,m)}. 
Thus, by the Borel-Cantelli lemma 

P{F(p, k, m) i.o.} =0. 

Now if se[O,R (ll) ], choose p so that 

h(2~+l)<l<h(2P) " 
2p+1 2 p 

Choose k and m so that 

k - 1  k k+m + m + l  
2 p < s < ~ 7 < ~  <s+l<k 2 p 
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[h(2P)] 
Then, [ ~ - j  < r e < h ( 2  p) and so for p large enough, 

I ' 
B(s + l ) -  B(s) t ~ K -  + u ) - B - w 

ll/2 < sup 1 ll/2 
O - - < u  w ~ < - -  

- ' - 2 P  

_-< 0 q) 

with probability 1. This establishes Theorem 3 in the convergent case. 
Next suppose that the sum diverges. The hypotheses of Theorem 2 must be 

verified. This will show that 

P{E(p ,k ,m) i .o . }=l ,  

and the proof of Theorem 3 will be complete. This verification closely follows 
Chung, ErdSs, and Sirao [4], and will be omitted. 

5. An Invariance Principle 

Strassen's invariance principle [6] can be generalized in the spirit of Sect. 2, but 
the random variables involved must have moments of order larger than 2. The 
result follows easily from Theorem 1 and the results of Komlds, Major, and 
Tusnfidy [5]. 

Definition. If {X~} are random variables, let Z ( n ) = X  1 + ... + X ,  and define Z(t) 
for noninteger t by linear interpolation. 

Fix c~ > 1 and let 

h(t)=~!o:--1)l?gt if c~>l 
( log log t if ~ = 1' 

Theorem 4. Let {Xi} be i.i.d, with mean 0 and variance a 2. Suppose that 

EIXII2~< oo. 
Let 

f Z(s+xt)-Z(s) s<t~} 

Then the set of limit points of rE(t) as t T oo is K. 

Proof. For c~ = 1, the theorem follows from Strassen [6]. 

Suppose e > 1. Theorem 2 of Komlds, Major, and Tusnfidy and the remark 
on page 58 of their paper show that B(t) and Z(t) can be constructed on an 
appropriate probability space such that 

Z ( n ) / G - - B ( n )  = 
~ina (2nh(n))l/2 O. 
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Remark II in the proof of Theorem 1 shows that 

Clearly, 

B(O-B([t]) 
lim (2th(t))l/2 =0. 

z ( t ) - z ( [ t ] )  Ix,,I - 0  
lim a(2th(O)a/z < lim a(2nh(n))l/2 
t-+O0 n ~ o o  

by the moment conditions. 
These three results together with Theorem 1 imply Theorem 4. 
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