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Summary. This paper is about the behavior of solutions to large systems of 
linear algebraic and differential equations when the coefficients are random 
variables. We will prove a law of large numbers and a central limit theorem 
for the solutions of certain algebraic systems, and the weak convergence to 
a Gaussian process for the solution of a system of differential equations. 
Some of the results were surprisingly difficult to prove, but they are all 
easily anticipated from a "chaos hypothesis": i.e. an assumption of near 
independence for the components of the solutions of large systems of 
weakly coupled equations. 

1. Introduction 

In a large and homogeneous system of interacting particles, it is natural to 
think of the states of individual particles as being "nearly independent". For 
example, in his derivation of the Maxwell velocity distribution for an ideal gas, 
Boltzmann assumed that velocities are pairwise independent (Boltzmann's so- 
called chaos hypothesis). Although he was unable to rigorously justify the 
assumption, its consequence, the Maxwell distribution, has been experimentally 
verified. 

We will demonstrate that a similar assumption of statistical chaos is appro- 
priate in other systems as well: a "chaos hypothesis" leads easily to true 
conjectures, although many of these are quite difficult to prove. We will 
examine systems of random equations in which intuition suggests the near 
pairwise independence of all of the random variables involved. In each case, 
the assumption of independence leads, through a law of large numbers (LLN) 
or the central limit theorem (CLT), to a conjecture about the distribution of 
the solutions, and in each case the validity of the conjecture will be established. 
Although the discussion here is of linear systems (algebraic and differential), we 
have examples in nonlinear systems as well (see [6]). 
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We will begin in Sect. 2 with a discussion of a linear system of algebraic 
equations with random coefficients. The assumption of independence will lead 
us to conjecture a law of large numbers for the solution, as the number  of 
equations grows. This conjecture is followed by a formal proof. In Sect. 3 we 
will study the same system under a different normalization. Here, the natural 
conjecture is a central limit theorem for the solution, and, here again the 
conjecture can be shown to be true. In Sect. 4, we will look at systems of 
differential equations with random constant coefficients. A chaos hypothesis 
leads us to predict that the solutions converge, as the number  of equations 
increases, to Gaussian processes with specified mean and covariance functions. 
We will prove that this is indeed the limiting behavior. 

This research was motivated in part  by our belief that the systems studied 
here are of some interest in their own right. What, if any, regular behavior can 
we expect in a large linear system of algebraic or differential equations in 
which the coefficients are random variables? To us, a natural question, and 
one whose answer will possibly be of some use in applications. Mostly, though, 
we had hoped to gain techniques which would apply to more sophisticated 
versions of the same problem: relating a "local chaos" to a "global regularity". 
But we have not succeeded in finding a general approach;  our proofs are 
specialized to their particular systems. Nevertheless, we are convinced that 
there is a common method of proof, more natural and more general. This 
would be worth finding, for it is certainly true that chaos is operating in a 
similar fashion in a broad class of systems. 

We would like to remark finally on a technique, not yet very common, 
used in developing our theorems: namely, we have repeatedly used a computer  
to convince ourselves of the validity of a conjecture before or during our 
attempts to prove it. We found some of these proofs to be quite challenging. It 
is unlikely that we would have been able to complete these without first 
knowing that the conjectures were (in all likelihood) true. This knowledge was 
obtained through simulation. 

2. LLN for an Algebraic System of Equations 

Let {wifl , i= 1, 2 . . . .  ; j = 1, 2, ... be independent and identically distributed ran- 
dom variables with zero means. For  each n =  1,2, ... define W~ to be the n • n 
matrix whose (i,j) component  is wij. Given a sequence of numbers ~1,~2 . . . .  
define, for each n, v , = ( e l ,  . . . ,%)r.  Finally, for each n define a random vector 
Xn =(Xn ,  1, " ' ' ,  Xn,n) T as the solution to the equation 

i.e. 

1 
x , = V , + n W ~ X  . (2.1) 

n 

X n i~-O~i-~ - ~ WijXn,  j 
' n j =  1 

l ~ i ~ n .  

For  a given realization of the matrix Wn, the components  of x n are de- 
terministically related. Still, we would expect that when n is large each com- 
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ponen t  of  x n would be "near ly  independen t"  of  each of the remaining com- 
ponents,  as well as of each element  in the matr ix  W,. Fo r  n large, then, we 
might  expect that  

n 

7. ~ wi~x . , . i~Ewil  Xn,1 " ~ ' E [ W i l ]  E[x .  1] =0 .  
r i j =  I 

In other  words, it is na tura l  to conjecture that  for each i, x , , i ~ c  q in some 
sense. The  logic is of  course very loose, and in fact a s t ra ightforward a rgumen t  
shows tha t  E[x, ,  1] does not  generally exist. Nonetheless :  

Theorem 1. Define x ,  by (2.1) whenever I -  1 Wn is nonsingular. Otherwise, define 
x n = O. n 

i) I f  E l %  iI s < oo and (%, ~2 . . . .  )~l~,  then for  each i=  1, 2 , . . . ,  x , , i ~  ei a.s. 
ii) I f  Elw111<1, E[e i~w11] is analytical at 2 = 0 ,  and (el,  e2 . . . .  )~loo , then 

sup x ,  i -~ i l - -+0 a.s. 
l <_i <n 

iii) I f  ElWll[ 8 < oo and (~1, ~2 . . . .  )el2, then 
(x,, 1 , . . . , x  . . . .  0,0 . . . .  )--~(~1,c~2,...) in 12 a.s. 

If  e 1 = % = . . .  =~,  and  if E w l x  = m  (instead of 0) then the same heuristics 

lead to the conjecture x , , ~  1 - m  for each i: 

Theorem 2. Define x n by (2.1) whenever 1 -1 -  W n is nonsingular and define x . = 0  
n 

otherwise. I f  [m] < 1 and if  there exists a fi such that EIw 11[ n ~ H fin gn > 2, then for  
O~ 

each i =  1,2, . . . , x , , i -+ 1 - m  a.s. 

Certainly other  (and p robab ly  better) results along these lines are possible. 
But the point  is this: in each case an assumpt ion  of "stat is t ical  chaos"  leads us 
to conjecture exactly the right asympto t ic  (i.e. large system) behavior .  

Proof  o f  Theorem 1. The proofs of  i and iii are based on the following three 
lemmas.  The  first we cite wi thout  p roof  (cf. Chung [-4], Chap.  5). 

L e m m a  2.1. I f  x l , x 2 , . . ,  are uncorrelated random variables, and their second 
moments have a common bound, then 

xi - E x i -q" O 
i i = l  

L e m m a 2 . 2 .  I fE[Wl l [8<oo ,  then (~ - )2  ---+0a.s.1 

a . s .  

1 When applied to a matrix, l] ]l denotes induced operator norm. (Recall that 11 ]12 is dominated 
by the "Euclidean norm" of the matrix: the square root of the sum of the squares of its 
components.) When applied to a vector, [1 ]l denotes Euclidean or I z norm 
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Proof of Lemma 2.2 

1 ~ 2 2  
n4 ~, (Wig wkj) 2 + Wik Wkj Wlh Whj. (2.2) 

ijk ij k > h 

Let S, = 1  ~(wi k Wk)2" Then, since S 2 has n 6 terms, and since 
n ijk 

E (w., wkj) 2 (wz,. Wrs) 2 < E lwl 118, ES~. < c n6/n s = c/n 2. 

Hence E ~ S ~ < ~ ,  which implies S n--~ 0 a.s. 
n = l  

Concerning the indices of the second expression in (2.2), let I =  {i,j, k, h): at 
least two of these indices are paired}, and let J={(i,j, k, h): k>h}. The size of I 
is of order n 3, and therefore, reasoning as above, 

2 
n ~ 2 WikWkjWihWhj ---'~0 a.s. 

I n , /  

For (i,j, k, h) and (i',j', k', h') in ICe, J, we claim that 

Wig Wkj Wih Whj (2.3) 

and 

Wi, k, Wk, j, Wi, h, Wh, j, (2.4) 

are orthogonal, unless (i,j,k, h)=(i',f, k',h'). Obviously the expressions in (2.3) 
and (2.4) have zero expectation. If they are not orthogonal, then each element 
in (2.3) matches an element in (2.4). If (say) i~i', then either (ik=k'j' and ih 
=h'f) or (ik=h'j' and ih=k'f). Both of these choices leads to the conclusion k 
= h, which is not allowed. Hence i=  i'. Similar reasoning establishes j = f ,  k = k', 
and h =h'. An application of Lemma 2.1, to the expression 

2 
l ~  2 Wik Wkj Wih Whj 

lCnJ 

then completes the proof of Lemma 2.2. 
Lemma 2.2 implies that for almost every e), when n is sufficiently large, 

Wn oo oo 

converges. Hence 

Lemma 2.3. I f  Elwlal s < o% then, almost surely, ( I -  Wjn) -1 exists and equals 

0 
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We may  now proceed with the p roo f  of  the Theorem:  
i) It is, of course, enough to show X, ,a~Ct  ~ a.s. 

sufficiently large, 
Almost  

x.-~~ I-~w, v.=~ 
1 

surely, for n 

Let  A~ denote the first row of a matr ix  A. Fo r  n large 

+ W. v. 

+ sup 
1 k =  1 ,  2 ,  . . .  = 

' 2 .5 '~02,  a.s., by an appl icat ion of L e m m a  2.1. 
in (2.6), converges (a.s.) to (Ewe1) I/2 by the usual law of 
Fo r  the second expression in (2.6), write 

and apply  

(2.5) 

(2.6) 

(2.7) 

jIwo/V t N, 
large numbers .  

' 
~ ki , Ft k i>j 

L e m m a 2 . 1  to each term. Conclude that  1/~ 0 a.s., and 

therefore ' 2 . 6 ' ~ 0  a.s. In  (2.7), for k even, write II(Wn/n)kll ~ 11(Wn/nt2H k/2, and for k 
< 1 _  2 2 odd write ]p(W,/n)klp < r] W,/n]] ]](Wn/yO2H (k-11/2. Since ][ Wn/Ytll 2 = ~  )_.:, wij~Ew11, 

U 
L e m m a  2.2 implies ' 2 . 7 ' ~ 0  a.s. 

iii) First, we claim 1 W, v, ~ 0 a.s. 

1WnVn 2"~-~k~=l (i~=lO~iWki) 2 

1 Z c~{w2~ (2.8t z - -  

t'12 ki 

+~ ~ i~j~iC~JWk'Wk~" (2.9) 

2 Sometimes, it will be convenient to use line numbers to represent expressions 
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In (2.8) apply Lemma 2.1: 

2 1 ~ 2 2 1 E cd %, - E 7_2 L ~* wk,-+ 0 a.s. 
n ki n ki 

1 ~ 2 2 1 2 ~--~ 
B u t  E ~..0~ i W k i = - - E W l l  ~ o~2~0. Hence '2.8'-+0 a.s. For (2.9) we can write 

V ki /~ i=1 

'2.9'=,~g ~ t(k "', where t~), ..., t f ) a re  i.i.d, with Et(,"'=O and 
k=l  

E(t(n))2~-E(E ~iO~jWliWlj) 2= ~ ~2(z2Ew2iw2 j 
i>j i>j 

= ~  2 2  2 2  (~-~ 2)  2 O~ i O~j(EWll ) ~ O~ (Ew21) 2. 
i >j  \ i= 1 

So E( '2 .9 ' )2=O(1/n3)~ '2 .9 ' -+O a.s. 
Now, to prove xn-+v ~ in 12, use Lemma 2.3: when n is large 

xn= I - ~  % vn=v, + ~ v.. 
k=l 

+ Ilvnll 
k=l  

by Lemma 2.2, and the fact (demonstrated above) that 1 Wnvn -+ 0 a.s. 

ii) We will make use of the following lemma. The proof is omitted; it is a 
typical application of techniques used in proving large deviation theorems for 
sums of independent random variables (cf. Chernoff I-3]). 

Lemma2.4. I f  x , , x  2 . . . .  are zero mean iid random variables, if E[e  i'zxl] is 
analytic at ,~=0, and if(a1, ~2 . . . .  )eloo , then for every e>O there exists an d > O  
such that 

for all n = 1, 2, .... 
For n sufficiently large, equation (2.1) holds and 

1 n i n 

Xn, i--O~i =-n j=12 Wij(Xn, j--~j)Af-n j~= l WijO~j 

~[xn.,--cq,<(,__<,__<nsup ,x.,j--%.[) 1 j=l ~ [wu'+ ! j ~ ,  w,, ~,. 
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Let S .=  sup Ix.,i-~,l Then 
l<_i<_n 

1 n 1 n W i j ~ j  " 
S , < S ,  sup 7 ~ Iw,jl+ sup - 

1 <--i<-n rt j =  1 1 <i<=nlH j =  1 

Lemma 2.4 implies that sup 1 ~ wi~ c~j - ,  O, almost surely: 
l < i<n[n  j = l  

\i__<i_<,lnj=l 

<i,( i ) 1 
-- WijO~ j >e <=2ne -n~' 

i=1 \ lnj=i  I 

(2.10) 

and apply the Borel-Cantelli Lemma. We can use a similar argument to show 

that -1 ~ iwu[ converges uniformly in i to ElWll I (almost surely). What is 
/// j =  1 

needed is the analyticity of 

E [ e  ix(Iwil I - E l w i l  I)], 

or equivalently E[ei'Zlw~ll], at 2 = 0  (then apply Lemma 2.4 to _1 ~ {Iwljl 
n j = i  

- E lwi x I}). Let f (2 )  = E [eiiW'], which is, by assumption, analytic at 4 = 0. Then, 
it is well known that for some 2 o > 0, 

f(4)= ~ ik;? 

for all 141<4 o. Define ak=Elwi i lk /k! .  Then 

1 

lim ~kk < lira (EIw 1112k)~-/( k !)i/k 

1 1 

_<lim (EIw11127 ~ "  ~ 
- ~  {(2k)!}~- ~oo (k!) 1/~ 

IE[w~]l 1/k 
_< 21im < 0% 
- ~ o o  ( k ! )  1/k 

because f(4) is analytic at 4=0).  Hence, for all 141 (the latter inequality 
sufficiently small, 

cc ik 2k 

E[ei~lw~lq=E y, 77-1wlll k 
k = 0  rv. 

ik2 k 
= ~ ~ E l W i l l  k. 

k=O - 
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Therefore, E [e i2lw~ll] is analytic at 2 = 0, and with probability one, 

1 ~ [wijl__+ElWlll 
n j = l  

uniformly in i. 
Finally, return to (2.10): 

1 
lim S, < lim S~ lim sup ~ Iw~jl 
n ~ c y o  n ~ o o  n ~ o o  l < i  < n  n j =  1 

sup 1 ~ wi~c~J = + lim Elwl  1[ 
n~ee l<i<n n j= 1 

lim S~. 

Since E[Wli[<l  , lim S , = 0  a.s. 
n~oo 

Proof  of  Theorem 2. Let M, be the n x n matrix with every component equal to 
m, let  W, = W , - M , ,  and let s, be the n-dimensional column vector with each 
component equal to e/(1-m). Under the moment condition on wll , the theo- 

rem in Geman [5] says that IIl~n/lfn]l---~2VE(w11-rn) f almost surely, which 
implies IbW,/nll ~ 0  a.s. From this we can conclude that 

II VC~/n]l--~ Ira[ a.s.: HMjnll - II l?V,/nll < II W,/nll < ItM,/nll + II W,/nll 

and [[Mjn][ = Iml. Since Iml < 1, (2.1) holds for all n sufficiently large (a.s.). After 
some algebra, (2.1) can be written 

1 ^  1 1 =- Wo(~-s.)+~ M.(~.-~.)+~ r162 Xn -- Sn n 

= l l x , - s ~ l l  < = x . - s o l l  + �9 

(2.11) 

And, therefore, since 

lim IIx , -s ,L[<c a.s. 

Return to (2.11): 

IIs,/l,/nll=lc~/(1-m)l , there is a constant c such that 

xn' 1 ~-m 1 =l (x , - snhl  

_-< H x . - s .  ll hi= (wli 

~ n  1 1 "  m)~0 .  "~ I[Xn--Snll Jr-]]Xn--Snl] -}- ~ 1 ~ ( W l i -  a.s. [] 
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3. CLT for an Algebraic System of Equations 

The discussion in Sect. 2 suggests that a renormalization may produce a more 
interesting limit. For each n define 1, to be the n dimensional column vector 
composed only of l's, and define x,=(x,, i . . . .  , x,,,) r as the solution to 

1 
x.= l. +~n W.X. 

(3.1) 
i . e . x . , i = l + +  ~ wijx.,~ l<_i<n 

Vnj=i  

where Wn is again composed of independent and identically distributed random 
variables {w~j} with zero means. As before, reason from intuition: when the 
system is large all variables should be "nearly independent". This leads to the 
conjecture that for fixed m 

(x,, 1 . . . .  , x,,m) w,  i.i.d. N(p, y2). (3.2) 

To determine p and y2, pretend that all moments of x,,~ exist and that all 
variables actually are independent: 

n 
#=Ex~ i= 1 + ~  ~ EwijEx . j= 1 

' e n j = l  ' 

E x 2 i : E  1 -1 -~  j~----1 WijXn'j 

= 1+1 ~ Ewi2Ex:, J 
?l j = l  

(3.3) 

2 2 = 1 +EwilEx. ,  ~ 

Ew~I __ 2 __{Exn, i}2__ (3.4) :=>YZ--EXn'i 1 -Ew~i  " 

Although here it is much harder to prove, a chaos hypothesis has again led 
us to precisely the right asymptotic (large system) behavior: 

Theorem3. Define x, by (3.1) whenever 1 - 1 ~  ]/~ W n is nonsingular. Otherwise, 

define x ,=0 .  I f  Ew211 <�88 and if there exists a constant c~ such that glw111"<n ~ 
Vn>=2, then, for every fixed m, (3.2) holds with # and 7 2 given by (3.3) and (3.4) 
respectively. 

Remark. From (3.4), it appears unlikely that (3.2) will hold, for any 7 2, when 
Ew21 > 1. But the condition Ew2i < 1/4 is probably too strong. For example, 
computer simulations support (3.2) for the particular case wli uniform on 
[ - 1, 1], in which Ew21 = 1/3. 
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Proof. Put 0"2 =Ewe1. Fix m and 21, ..., 2,.. We will show that  

E exp i J~i x.,i -+ exp i 2 i 2 1 -~a 2 22 ' 

For  each p and n define 

XPn =- ln-}-k~= l 1 n. 

An obvious consequence of L e m m a  A.1. (see Appendix) is that  

2~ x~, i ~ N 2 0"2 _ 0"2; 22i 
i =  i i " - -  0"~ 

I 

i = i  

1 
Now define ; -  - ; Then, whenever I -  e , - x .  x,. ~ W, is nonsingular, 

-- ; - - l n 4 - 1 ~  x, x , -  }/n W"x"-xP 

= - -  l /n W, (x, - xP,) + 1 W, xP. - 2 
k = l  

: ~ n  W"(X"--X~)+k21= l"--k~= 1 \lfn 

l l f n  W n ( x _ x , ) + ( ~ ) P l .  

i.e. 

We claim 

S. Geman and C.-R. Hwang 

(3.5) 

(3.6) 

lim l imP(llae~,il>e)=O Ve>0 (3.9) 

for i = 1, 2 . . . . .  m. F rom (3.7): 

To prove (3.8), choose b < l  such that  b > 2 a  (recall that  0 " 2 < 1 ) ,  Let A, 

={co: lW,/]fn[<a}.  Then (see G e m a n  [-5]) IA.(C0)---,1 a.s. and for (3.8) it will 
suffice to show 

lim l i m P  (~1 2,e,P,, >e)=0  Ve>0. (3.8) 
p4oo n~oo 

e. W.e'.+ 1.. (3.7) 
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IIA.e~l~fillAe~l+l/~6P 
n ~iA,~]e,Pil2< n62P 
1 = ( 1 - ~ )  2 

62p 
~E{Ia, le~,~12}<(l_6)2 (by symmetry). 

Hence 

lira lim P(llAe~,il>e) 
c~2p 

_< lim lim E{1A, leV~,il2}/e 2< lim = 0  
- p . . . . .  p .  ~ ( 1  - 5 ) 2  a 2  

which is (3.9). 
Finally, return to (3.5): 

Jim Eexp i 2ix,, i - e x p  i '~i 2 1 - 0 -  2 2 

<]ifn Eexp{i~12ix,,i}-Eexp{i~2ix,,i} 

+lira Eexp  i~AixV~,i - e x p  i 2 i 21_0-2 
n~oo ~ 1 

=l im E exp i ~ 2 ~ x : i  exp i 2 2 ~ e : i  -1 
n~oo L k 1 ' ) \  k 1 ' 3  

+ e x p  i 2 i 2 1 - a  2 1 

- e x p  i 2 i 2 1 - 0 - 2 1  

< ~ E  exp{i~2ie~,~},l 

+ exp{ 
1 0 - 2  m 1 2 2 } _ 1 )  . 
2 l ~ a 2 ~ 2 ~ } ( e x p { ~ _  1~0- 20-2p m 

Finally, let p-~ oo; then both terms above converge to 0, the former by (3.8) 
and the latter because o-2<1. This establishes (3.5) and completes the 
proof. [] 

4. CLT for a System of Differential Equations 

In this article we will be content to limit the discussion to linear systems. As 
remarked earlier, we have examples of a "chaos principle" operating in some 
nonlinear systems (specifically, an LLN for a nonlinear system of differential 
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equations), but these will be discussed elsewhere. Still, within the linear context 
we can considerably extend our treatment by introducing time dependence; 
here we propose to treat a random system of ordinary differential equations in 
a manner analogous to the approach of Sect. 2 and 3. In other words, we will 
first make a chaos hypothesis for the system, then derive its consequences in 
the form of a conjecture, and then rigorously prove the conjecture�9 

Follow the previous notation: {wi~}, i=1 ,2 , . . . ,  j =  1,2,... is an iid col- 
lection of zero mean and finite variance random variables, and W, is the n x n 
matrix {wij } 1 _-<iN n, 1 <j_-< n. c~ will indicate an arbitrary constant, and 1, will 
represent the column n-vector of l's. For  each n, define an R"-valued random 
process x.(t)=(x.,  1 (t), ..., x.,.(t)) r by 

1 

2 .=~x .  +~nn W.X. 

i.e. 

x . (O)=l .  (4.1) 

�9 1 n 

x.,i(0 = j_Z 1 

l <_i<_n 

x., i(0)= 1 

(" means derivative with respect to t). We might as well assume that Ew~, = 1, 
since any other variance can be brought to 1 by scaling t and changing e. 

What sort of behavior should we expect from (4.1) when n is large? We 
might try to infer the asymptotic properties from a direct solution of the 
equation: 

but this expression does not suggest any particular limiting behavior. Let us 
instead reason intuitively: first, since the components X,, l (. ), ..., x , , , ( .  ) are 
becoming "weakly coupled", we expect asymptotic (large n) independence - at 
least for any fixed set, x , , l ( ' ) ,  ...,Xn,m(" ). TO guess the limit for a particular 
component, rewrite (4.1) as follows: 

n 

e ~' } e ={t-u)x",j(u) du. x"'i= +~nnj~=~Wi'o (4.2) 

For any collection of times tl, ..., tl, and any constants 21, ..., 21, 

k=l ' k=l CF/ j= i k i 

and our usual chaos hypothesis suggests that the right hand side is asymptoti- 
cally Gaussian. We have, then, the conjecture that for fixed m, (x,,~( ')  . . . . .  
xn,,, (.)) converges weakly to iid Gaussian processes. 
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For the mean and correlation functions return to (4.2) and pretend, when- 
ever necessary, to have complete independence: 

l n t 
#(t)__ Ex . , i ( t )=  e _  ~t -k l/ ,, ~= 1EwiJ~o ea(t-") Ex"' j (u)  du 

e at  

r(t, s) = Ex.,~ (t) x~ 

= E  { (e~t +~nn j~= l Wij i e~(t-")x,,,j(u)du ) 

X (e~S+~j~=lWi j ie~(S-V)xn ,  j ( v ) d v ) }  

1 n t s 

: e ~t e ~ + -  ~ Ew 2 ! ! e  ~(t-") e ~('-~) r(u, v)dudv 
n j = l  

t s 

= e ~t e ~ + ~ ~ e a(t -") e a(s-~) r(u, v) dudv. 
O 0  

Differentiating twice: 

rts = c~rt + c~G +(1 -~2) r. (4.3) 

The appropriate boundary conditions are r(t, 0) = Ex,,i(t) x,,i(O) = Ex,,i(t) = e ~t 
and, similarly, r(0, s)=e% The solution of (4.3), say by the method of Laplace 
transforms, is: 

o~ t k s k 
r( t, s) = e ~'t +s) J o (2 ] / ~ )  = e a(t +s)k__~ ~ (k ~)2' 

Jo being the zero'th Bessel function of the first kind. It will be conventient to 
work with the covariance function, c(t, s ) = E G ,  i(t ) G , i ( s ) -  #(t) #(s). The conjec- 
ture becomes 

oo tk S k 
c(t, S) = e a(t +s)k2 

=1 (k!)  2" 

Once again, we have identified correctly the large n behavior: 

Theorem 4. Suppose there exists a constant fl such that E[w11["<=n#" Vn__>2. Then 
for each f ixed  m and for each f ixed  T, (xn, 1( ' ) , . . . ,  G,m('))  converges weakly on 
[0, T] to independent and identically distributed Gaussian processes with mean 

#(t) =e at 

and covariance 

oo 
c( t , s )=e ~(t§ ~ tksk 

~=1 (k!) 2" 
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Remarks. 1. The  asymptotics  of Jo (cf. Olver [7]) provide us with some insight 
into the nature  of the limiting process :' 

c(t, s) = e ~(t +') {J0(2 ] / -Z ts )  - 1} ~�89 e ~(t +sl(rcz ts)- 1/4 e 2 ~  

for large t or s, with t and s positive. Hence '  

a) Var(xn, l(t))=c(t,t)--~{Ooo o~<-1 
~ >  - 1 .  

b) Corre la t ion coeff ic ient=c( t , s ) / ] /c ( t ,  t)c(s,s)-.O for all ~, as t ~  oo or 
s -+  oo with the other  variable remaining fixed. 

2. We believe that  the analogous theorem holds for the equat ion 

1 
2,=c~x,+~n WnX,+ 1,. 

Although, in this case, the limiting process appears to have a much more  
complicated covariance function. 

Proof. The  solut ion to (4.1) is 

If we define - -~' y,(t)-e x,(t), then the theorem becomes:  (Y, ,I( ' )  . . . .  Y,,m(')) 
converges weakly on [0, T ] to i.i.d. Gaussian processes with constant  mean  = 1 
and covariance 

tk S k 
~=1 (k!) 2" 

�9 -., . oo [0, T-l, and then We will show first that  {(y,, 1( ') ,  Y,,m( ))}n= 1 is tight in C '~ 
that  the finite dimensional  distr ibution functions converge appropriately.  

In light of the symmetry  in this problem, tightness will require only that  (cf. 
Billingsley I-1], Chap. 2) 

lim lim P(  sup LYe, l ( s ) -Y, ,  1(0] > e ) = 0  (4.4) 

for a bi ra y and  rom we 

Yn, 1 (S) - -  Yn, 1 (Q = k=~ W n l 
1 ] / ~  1 k! 

Let  

~k(n)={(~nnW~)kl~}~ and flk((~)=(Tq-(~)k--T k. 
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Then 

sup y. l ( s ) - y ,  l(t)I<__ ak(n) k! 
]s--tt<~ k= 1 

In Geman [5] it was shown that ~nnW, ~ 2  a.s. It follows that for any 7>2, 

={co: 1 W,,,< } IA~(co)~l a.s., where A n ~nn 7 �9 Return now to (4.4): 

lim lim P( sup IY,, t(s)-Y,.l(t)1 >e) 
3-~0 n-~ee ] s - t l<6  

<lim lira P ak(n > 8  

=l im lira P V2 t A O~k(n >e 

_-<lim lira 1 ~ E(lA~k(n))fik~) 
~ 0  n~c~ ~ k =  1 

Arguing, again, by symmetry: 

__<}- E{72kll,12 } =y  2k. 
n 

Finally then, 

lira lim P( sup ly,,l (s)-  y,, l(t)] >e) 
~ 0  n- ,ee t s - t I < ~  

<l im 1_ ~ 7kflk(6)=0. 
- -~0 e k=l k! 

It remains for us to establish appropriate convergence for the finite dimen- 
sional distribution functions. Choose, arbitrarily, numbers {2u} where 1 <_iNto 
and 1 < j <  t, and times tl, ..., t I where tfi[0, T] for each j. With 

t k S k 

~(t, s) = )2 k= 1 (k !)2 

we wish to show 

E exp i 2uy.,i(t~) 
k i = l ]  

---~ exp i ~=12u-~  
i = 1  j = l  q ~ l  
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For this purpose, define 

and 

Observe that y. = y.P + e. p. 

k=p+l 

I } E exp i Z Z 2~iy~,~(t~) 
n - * o o  I i = I  ] = 1  

- - e x p  i i j = i  ]~ij-~ c(tj, 
i = l  j = l  q = l  

<l im lira exp i 2~jy.,~(tj) - E e x p  i ~  2~y~V~(ti) (4.5) 
p ~ o e  n ~ o o  i =  1 j =  1 ( .  i =  1 j =  1 

+ lim lira exp i ~ ,~ijYn, i(tj 
; - ~  .~oo ~ i=i j=x (4.6) 

- e x p  i ~  kO-~ ~ l  ~ I 

In fact, the expressions in both (4.5) and (4.6) are zero. Start with (4.5) (use 
'4.5' to refer to the expression in (4.5)): 

'4.5'_<Eexpli ~ ~ 2~je~,~(tj)}-i 
-- t i=i j=l 

and therefore it will suffice to show 

lim tim P(le~,~(t~)t > e) =0  
p ~ o o  n ~O O  

for every e>0, l<i<__m, and l<j<l. Take 7 and A, just as in the first part of 
this proof. Then 

lim lim P(le~, i(@ > s) = lim lim P(IA~ le~, i(t2)[ > ~) 
p - * o 0  n ~ O 0  p ~ r  n~Cx9 

< lim lim ~ E]IA. eP., i(tj)[2 
p ~ o o  n ~ o 0  

= lim lim 1_1 E[IA e~(tj)[2 (once again, by symmetry) 

< l im lim l l E ( I A n  ~ k l n 
p .c~ ~c~ g n k=p+l k!] 

-<lim lim 1 1(1/- ~ ~ 7 k ~ 2 = 0  ' 
- p  . . . . . .  z n Z k! ! k=p+l 
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For the expression in (4.6), make the definition 

and write 

Then 

2~j y,,~(tj) = 2~j g(i, k, n) ~.v. 
i=l j=l i=l j=lk=O 

{ii__~ 1 ~ ~ t~.l} '4.6' < lim lim E exp 2ij c~(i, k, n) 
p ~ o o  n ~ o o  j = 1  k=O " 

k k (4.7) 
t m ~ ~ 1 __~1 ~ ~ ~ 2 ~ j 2 1 q ~  } 

--exp i ~ ZiJ--2i k = l  q = l  
( .  i = 1  j = l  = j = l  

+ lira lim exp 2~j- 
p ~ o o  j =  i n ~ e c  i = 1  k = 1  j = l  q 

(4.8) 
I m  ~ l~=l~ ~ij~iqC(t2j, tq) } �9 - e x p  i ~ 21J-2 i j= lq=l  
~ i = 1  j = l  = 

The expression in (4.7) is zero as a direct consequence of Lemma A.1 (of 
Appendix); the expression in (4.8) is zero since 

lim ~ (k!) 2 -c(tj, tq). [] 
p ~ o o  

Appendix 

Let {wlj}, i=1 ,2 , . . . ,  j = l ,  2,... be a collection of i.i.d, zero mean random 
variables, having all moments finite. Let a 2 denote the second moment, Ewes, 
and, for each n, let W, denote the n x n  matrix {wii } l<__i,j<n. The result 
presented here (Lemma A.1) describes some aspects of the asymptotic (large n) 
distribution of W,. It has been referenced in the proofs of Theorems 3 and 4, 
and is the essential part of both of these. 

LemmaA.1 is an instance of the central limit theorem for dependent 
random variables. As there is a large literature addressed to weak limits for 
dependent random variables, one might expect to discover that the result is a 
corollary of a more general, known result. To the best of our knowledge, this is 
not the case. The best results, among those potentially relevant to the problem 
here, appear to be those by Chen [2]. Unfortunately, the dependencies among 
the random variables discussed below are too strong to fit either Chen's 
theorems or, it would seem, any obvious modification of them. 

Let l, be the column vector of l's and define, for each i, k and n, 

~(i, k, n) = kin = i  th component of 1, 
i 
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LemmaA.1.  For any m, and any set o f  m distinct ordered pairs 
(i> kO, ...,  (i~, k~), 

(~:(il, kl ,  n), . . . ,  c~(im, kin, n)) w ,  (Z 1 . . . .  , Zm ) 

where Z~, ..., Z~  are independent zero mean normal random variables with E Z  2 
= o.2kj. 

Remark. So, for example, the 1 ~t and 2 nd r o w  sums of --1 Wn 2 are asymptotically 
independent N(0, o -4) random variables, n 

Proof  o f L e m m a  A.1. By the "method of moments". 
Fix m ordered pairs ( i l , k l ) , . . . ,  (ira, kin) , and define Z 1 , . . . , Z  m as in the 

statement of the lemma. Let n~, ..., n,, be an arbitrary collection of m integers. 
We will show that 

fI fI c' 
j = l  j = l  

akj~j I ]  ( 2 p -  1) all nj's even 
j = l  p = l  

0 " otherwise. 

(a.1) 

Let C~, l < p < n j ,  denote an element of that sum which comprises the p th  

occurance, in l~ c~(ij, kj, n)"~, of c~(ij, kj, n). C~ has the form 
j = l  

C j ~ Wijl l  Will2 �9  Wlk j _llkj" 

Call such a sequence of w's a chain. Using this notation we can write 

E ~I c~(ij, k j, n) nj 
~= 1 (a.2) 

/ 1 \ ,n 
2 m \ l / ~ l '  . . . . . .  ... c l . . .  c J  

where the sum is taken over all free indices, i.e. all indices except the first 

index of each chain (i t in the example above). Notice that there are ~ njkj  
free indices. J= ~ 

The following definitions and conventions will be used: 
1. A particular element of the sum in (a.2), (without the expectation) will be 

called a chain sequence (i.e. what is within the brackets { }). 
2. An element of a chain sequence is a particular w in that sequence. 
3. The elements will be considered to be ordered by their appearance in the 

chain sequence, the left-most element being the first. 
For example, if m=2,  i1=1 , i2=3 , k 1 =1, k2=2,  n~ =1, and n 2 =2 ,  3 then 

s These  s ame  p a r a m e t e r s  will  be  a s s u m e d  in  all o f  o u r  specif ic  e x a m p l e s  used  b e l o w  
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E l |  ~(ij, k~, n)"J 
j = l  

=E[~(I ,  1, n)~(3, 2, n) 2] 

= ~E{WlllW~,~w .... w~,~w,~,~l 
O L I  t l t 2  D r  r  ~ 

where the latter summation is over II, 12, 122, l~, and l~. Here, 

w~s w34 w42 w31 w~8 

is an example of a chain sequence, consisting of the chains wls, w34w42, and 
w3~ w~s. The first element is wz5 , the second is w34, etc. 

It is clear that a chain sequences will give rise to a nonzero contribution in 
(a.2) only if every element is paired to (identical to) at least one other element. 
In these chain sequences, we will distinguish two types of elements: 

1. Call an element a First if it is not repeated to its left. 
2. All other elements are Seconds. 

Thus, for example, 

W15W31W15W31W15 
f F S S S (a.3) 

is a chain sequence whose expectation is not necessarily zero, and may there- 
fore contribute to (a.2). The First and Second elements have been indicated by 
"F 's"  and "S's" respectively. 

Every chain sequence in which each element is paired to at least one other 
element can be uniquely classified according to its pairing diagram: 

For every Second, draw an arc which connects the position of that Second 
to the position of the (unique) First to which it is identical. 
For example, the pairing diagram which classifies (a.3) is 

0 ~ 0 .  (a.4) 

Notice that, with fixed i l , . . . , im, ka, . . . ,k , ,  , and n 1 . . . .  ,nm, there are only a 
finite number of pairing diagrams, and that this number does not change with 
n. Pairing class will refer to the set of all chain sequences with a given pairing 
diagram. 

We wish to count the number of chain sequences in a given pairing class 
(this number does depend on n). In particular, we wish to identify those pairing 
classes which are large enough to contribute asymptotically to the sum in (a.2). 

Before proceeding with these combinatorics in the general case, it will be 
illustrative to look more closely at the case defined by the parameters in our 
particular example. It is not hard to see that the pairing diagram, (a.4), is the 
only pairing diagram associated with this example; every chain sequence with 
nonzero expectation belongs to the pairing class associated with (a.4). Taking 
into account the restrictions on indices imposed by this pairing diagram, we 
have the following generic representation for a member of this pairing class: 

wll~ w31 wlzl w31 Wll~. (a.5) 
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Since II is the only free index in this representation, it is evident that for this 
example there are exactly n elements in the pairing class. And, since the 
expectation of every element in a pairing class is identical, there is a constant c 
such that 

1 5 
E  (ij, n)~ cn- 0 

as n--, o% which is consistent with (a.1). 
Similarly, for the purpose of counting the number of members in a pairing 

class in the general case, we will derive a generic representation, such as (a.5), 
for the members of a given class. The numbers of free indices in this generic 
representation determines the size of the pairing class. A generic representation 
for members of a pairing class can be derived from the pairing diagram by a 
relabeling process, as follows: 

Begin with a generic representation for a chain sequence, in which all of 
the indices, except the left most index of each chain, are free (i.e. the analogue 
of 

wlzl w3tl wz~l~ w3t~ Wlll 3 

for the general case). Fix a pairing class. When referring to a generic chain 
sequence, First and Second will mean those elements which are Firsts and 
Seconds in the members of this pairing class. 

Now, beginning with the left-most First (which is also the first element of 
the chain sequence), relabel the indices of each Second connected to this First 
- so that the indices of each Second are identical to those of the First. 
However, one or more of the Seconds may contain a non-free first index (by 
being the first member of a chain). In this case, the First, and all connected 
Seconds, must assume this non-free index as first index. The relabeling of 
indices is next extended to neighbors of elements which share a relabeled 
index. 

Before relabeling, a free index can be assigned an "order",  depending on its 
position in the chain sequence. We will say that one index is of higher order 
than another if it originally appears to the right of the other index. As 
relabeling proceeds, "order"  will continue to refer to the original position of an 
index. 

Now choose the next most left First. Beginning with its left most Second, 
relabel indices to reflect the fact that the First and the Second are the same 
element. Given a match of two free indices, always relabel the index of higher 
order, replacing it by the lower order index in all appearances in the chain 
sequence. (Note that the Second may have the lower order index, having 
inherited this from a relabeled neighboring element.) If an index is fixed, then, 
as before, the matching index (in all its appearances) must be relabeled. 

Continue this procedure by choosing successive Firsts. 
In summary, the following relabeling procedure is to be carried out for 

each pairing class: 
1. Begin with the left-most First and proceed to the right. 
2. For  each First, begin with the left-most Second and proceed to the right. 
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3. Relabel indices to reflect the matching of a Second to its First (as 
defined by the pairing diagram). 

a) Any index matched to a constant is made constant. 
b) If neither of the matched indices is constant, then relabel the index of 

higher order 
c) Any time an index is relabeled, relabel all occurrences of that index in 

the chain sequence. 
As an illustration, let us carry out the relabeling procedure for the single 

pairing class in our specific example: 

~wll{  w3a will w3l~ wl~d 

wll I w31 w111Wal~ will 

-->Wll~ W31 Wll~ W31 W l l  ~ �9 

We claim that all free indices originally belonging to Second elements no 
longer appear in the chain sequence after the relabeling process. To see this, 
first observe that the order of the index at a given location is never increased. 
If a free index of a Second element is unchanged at the time at which that 
element is matched with its First, then the corresponding index of the First, 
being to the left, must be of lower order (the index at that location may have 
been changed, but not to an index of higher order). Hence, the free index of 
the Second will be lost upon relabeling. On the other hand, if a free index of a 
Second was changed before matching, then, since all occurances of that index 
were changed, it is already lost from the chain sequence. 

Define a run (or "run of Seconds") to be a maximal sequence of con- 
secutive Seconds within a chain. A run with k elements has, before relabeling, 

k free indices if it contains the first element of the chain, and 
k+  1 free indices if it does not contain the first element of the chain. 

If ~ njk~ is odd, then for each pairing class there are at least 1 ~ ngkj+�89 
j = l  j=~ 

Seconds, which will "cost" at least as many free indices when paired. Hence 

there will be no more than �89 ~ n i k j -  �89 free indices after pairing and, there- 
fore, no more than j= 1 

m 

n ;=i 

terms in each pairing class. Since the summation in (a.2) is multiplied by 

and since the expectation of every chain sequence in a pairing class is 
identical and finite, the contribution from such pairing classes goes to zero as 
n--+ oo. 
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i m 
If njkj is even, then there are at least 1 ~ njkj Seconds; the same 

j=l j=l 
reasoning shows that the only pairing classes which make an asymptotic 

contribution are those with exactly �89 i njkj Seconds. Furthermore, each run 
j = l  

of these Seconds must contain the first element of its chain (so as not to lose 
an additional free index). 

In summary, the only pairing classes which have enough elements to 
contribute to the limit are those for which 

1. i nj kj is even, 
j = l  

2. there are �89 i nj kj Seconds, and 
j = l  

3. each runs of Seconds begins with the first element of a chain. 

Next we argue that, among the classes defined by 1, 2, and 3 above, only 
those for which every run of Firsts begins with the first element of a chain are 
relevant in the limit. To see this, follow the recipe for relabeling indices, but 
resolve matches by changing the index of lower order. Reasoning as before, 
conclude that relabeling leads to a loss of free indices equal to 

k for each run of Firsts containing k elements and the first element of a 
chain, and 

k + 1 for each run of Firsts containing k elements but not containing the 
first element of a chain. 

Since there are �89 i njkj Firsts in the relevant pairing classes, these contain 
j = l  

only runs of Firsts which begin with the first element of a chain. 
Putting together the previous 2 paragraphs, we conclude that the relevant 

pairing classes: 

1. contain �89 i nj k~ Firsts, each matched to exactly one Second, and 
j = l  

2. have the property that every run, of Firsts or Seconds, is a chain. 

Now, of these, we need only consider those classes for which, under the 
original relabeling scheme, no index of a First is changed. In all other classes, 

the number of free indices will be less than �89 i nj kj (this being the number of 
j = l  

indices associated with Firsts, in the relevant classes, before relabeling). 
In the relevant pairing classes, it must be the case that two consecutive 

Seconds in the same chain are paired, preserving order, to consecutive Firsts of 
a common chain. Otherwise, one of the two Firsts would have an altered index 
reflecting the shared index of the consecutive Seconds. Consider a run of 
Seconds (which, in the relevant pairing classes, is a full chain). The first 
element must be paired to the first element of another chain, in order that no 
index of a First be altered. (This, of course, requires that these first elements 
have the same fixed first index.) Each successive Second is necessarily paired to 
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each successive First, until there are no more Seconds in the chain of Seconds. 
If there is another First in the chain of Firsts, then it must be paired to an 
element of a different chain, which element can not be the first element of that 
different chain (due to the fixed index of first chain elements). But this requires 
that this other chain be a chain of Seconds, and this leads to a violation of the 
above-mentioned fact that consecutive Seconds of a common chain pair to 
consecutive Firsts of a common chain, preserving order. 

In short, in the asymptotically relevant pairing classes, every chain of Firsts 
must be matched to (exactly) one chain of Seconds of identical length, and 
identical first (fixed) index. The expectation of any chain sequence of this type 
is exactly 

(~2) k'T (all nj s must be even). 
j= l  

Furthermore, the generic member of such a pairing class has } ~ njkj free 

indices, on which the only restrictions are those which assure that no further 
pairings are created, beyond those defined by the pairing diagram. It then 
follows that there are between 

1 m n l  
nff ~ n;kj and 

j = l  nj kj ! 

members of each of the relevant pairing classes. And therefore, tl~e asymptotic 
contribution to (a.2) from each of the relevant pairing classes is 

m 

[ 1  ~ =~, ~jk, (a2) ,2 { #~ members} 
n~oo j = 1  

f i  kjn~ 
= (~2) 2. (a.6) 

j = l  

We have shown that the relevant pairing classes are those in which each 
chain is matched to exactly one other chain, the latter having identical values 
for the parameters i~ and k~ (notation as in (a.1) and (a.2)). Since, for each j, 
there are nj such chains, there are 

n.i/2 

(n j -  1)(n j -  3)... (1) = FI (2p - 1) 
p = l  

such pairings for each set of parameters i; and kj. And, since there are rn sets 
of these parameters (1 <=j<=m), there are 

m nj/2 

~I ]7[ ( 2 p -  1) (a.7) 
j = l p = l  

asymptotically relevant pairing classes. Combining (a.6) and (a.7), and compar- 
ing to (a.1), completes the proof. [] 
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Asymptotic Theory of Grenander's Mode Estimator 

Peter Hall 

Australian National University, Dept. of Statistics, P.O. Box 4, Canberra ACT 2600, Australia 

Summary. The simplicity and good performance of Grenander's mode esti- 
mator have found favour with several authors; see for example [6, 11]. 
However, mathematical difficulties have precluded a proper examination of 
its theoretical properties [3], and most of the available studies concentrate 
on Monte Carlo simulations [-2-6, 8, 11]. In this paper we give a rigorous, 
theoretical account of the estimator's properties. In particular, we derive a 
central limit theorem which describes the influence of the two adjustable 
parameters on the behaviour of the estimator. 

1. Introduction and Summary 

Grenander [12] suggested a one-stage mode estimator which provided a 
practical alternative to Parzen's [13] two-stage, density-based procedure. The 
simplicity and excellent performance of Grenander's estimator have found 
favour with several authors. For  example, after a comparative study of mode 
estimators, Ekblom [11] concluded that "on  the whole, Grenander's direct 
mode estimator is the one to be preferred of the four types examined". 
Adriano, Gentle and Sposito [6] recommended Grenander's estimator, to- 
gether with a variant of an estimator proposed by Venter E17] and Sager [16], 
over the other estimators they studied. Dalenius [8] compared three different 
estimators, and showed that Grenander's estimator has smaller standard error 
than the other two. 

These favourable conclusions have generated interest in Grenander's meth- 
od, particularly during recent years. However, the majority of studies (see for 
example [2-6, 8, 11]) have consisted of Monte Carlo experiments, with very 
little attention being paid to theoretical results. There does not even exist a 
description of central limit theory for Grenander's estimator, since "the anal- 
ytic complexity of the estimator makes a mathematical study ... quite difficult" 
E3]. 
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