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Summary. A new stopping rule for the Robbins-Monro process, based on 
an F-statistic criterion is proposed and its asymptotic behavior established. 
On the basis of evidence obtained through experimental sampling, the 
procedure seems to work well over a wide variety of situations. A two-stage 
procedure, coupling the new rule with an earlier one proposed by Sielken 
[1973] is recommended for practical use. 

1. Introduction 

Since the seminal paper of Robbins and Monro [1951], a large number of 
papers have dealt with the purely probabilistic aspects of stochastic approxi- 
mation. Schmetterer [1961] and Scheber [1973] provide good reviews of the 
relevant literature. Comparatively little attention has been devoted to the 
development of stopping rules which would permit the use of the procedure in 
practice. Two exceptions are a theoretical treatment by Farrell [1962] and a 
more practical approach by Sielken [1973]. 

In this paper we present a new stopping rule for the Robbins-Monro 
process, which is based on the first passage time of an F-statistic criterion 
below a fixed boundary. This new stopping time has finite moments of all 
orders, and it is shown that in an appropriate sequence of problems, a norma- 
lized version of the stopping time converges in distribution to a fixed random 
variable. Because the classical theorems of Billingsley [1968] cannot be ap- 
plied, a somewhat different approach, which may be of independent interest, is 
required to show that the randomly stopped Robbins-Monro process is asymp- 
totically normally distributed. Asymptotically valid confidence interval es- 
timates for the parameter of interest may therefore be obtained. 

By means of experimental sampling, the small-sample properties of the 
procedure are shown to be well approximated by the asymptotics. Com- 
parisons with Sielken's method are carried out and some suggestions for the 
practical use of the procedure are put forward. 
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2. Background and Preliminary Results 

2.1 Notation 

Stochastic approximation is concerned with the problem of determining what 
level of input is necessary to produce a given level of response. For  any real 
number x, the level of input, the corresponding observed response y(x) is a 
random variable with expectation M(x); in general, M is assumed to be 
monotone and non-decreasing. For  a given value 0~, assume _M(x)=c~ has a 
unique root, denoted by 0. Let x 1 be any constant and define x2,x 3 .... 
recursively by 

x .+l=x, -an(yn-o  O. (2.1) 

where y, is a random variable whose conditional distribution given x. coin- 
cides with the distribution of the random variable y(x.) with variance cr 2, and 
{a,} is a sequence of positive constants which converge to 0 as n ~  oo. Robbins 
and Monro [1951] proved the convergence in probability of x, to 0 under 
certain conditions, Blum [1954] strengthened this to almost sure convergence 

and Sacks [1958] demonstrated that ]/~(xn-O ) is asymptotically normal with 
mean 0 and variance ~2= A2a2/(2 A M'(O)- 1). 

R.L. Sielken [1973] applied this result to form a stopping rule of the sort 
proposed by Chow and Robbins [1965]. Heretofore, this is the only genera- 
lized treatment of the stopping problem. Sielken prescribed that sampling be 
stopped as soon as the length of the confidence interval based on the asymp- 
totic distribution of x, is as small as desired, or equivalently as soon as the 
estimated standard deviation is sufficiently small. In particular, let 7(0<7 <21-) 
and d > 0 be fixed and let K~ be such that 

Kv 

1 - 2 7 =  ~ (2n)-~exp(-�89 
-- K y  

thai[ is, let Kv be the upper 100(1-  7)-percentile of the standard normal distri- 
bution. For  an approximate 100(1-27)9/o confidence interval of the form (x, 

-d,  xn+d), sampling ceases as soon Kv~/l/n<d or, equivalently, as soon as 
K2z2/d2<=n. Now, let v=K2z2/d 2. The apparent drawback to implementing 
this procedure is that v, which determines the stopping rule, contains ~2, which 
is generally unknown and mus t  be estimated. Recall that za=A2a2/(2AM,(0) 
-1 ) ,  where cr2=var(y~lx,) (or, in general, lira var(y, lx,)) and M'(O) are the two 

unknown quantities. ,~ co 
Burkholder [1956] has proposed estimators of a 2 and M'(O) and obtained 

sufficient conditions for these estimators to converge with probability one. The 
estimator of M'(O) requires that at the n-th step in the successive approxima- 
tion procedure, an observation be taken on y(x,) and y(x~+j~), where {j,} is a 
sequence of positive constants such that j~n ~ converges to a positive limit as 
n--,oo, for some 2, 0<)~<�89 Specifically, let {w,} be a sequence of random 
variables such that the conditional distribution of w~ for a given x, coincides 
with the distribution of y(xn +j~). Form 

t~ = n-1 ~ {(wl _ Yl)/Ji} (2.2) 
i = 1  
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and 

0~2 1 f .  - 1  
n = 2- l r t  

i = 1  i = 1  
(2.3) 

Nk=inf{n: u,(k)<c} (2.9) 

Burkholder's results imply that under certain assumptions, tn~M'(O ) and 
d~--*cr 2, both with probability one as n~oe.  

_ _  2 2 2 Now let v.-K~'cn/d , where 
2 2 ^2 ~ , = A  a j ( 2 A t , - 1 )  (2.4) 

and let v and ~ be the corresponding quantities with d~ and t~ replaced by a 2 
and M'(O), respectively. Let the stopping rule implied by (2.4) be denoted by 

N s = Ns(d, 7) = inf{n: v, < n}. (2.5) 

The resulting interval is then (XN,- d, xNs + d). 
Sielken [1973] showed that N s has the following asymptotic properties: 

lim P {Jx~s- 0] <d} = 1-2?,  (2.6) 
d ~ O  

lim (Ns/v) = 1 a.s. (2.7) 
d ~ 0  

Thus the level of the sequentially determined bounded length confidence in- 
terval converges to the prescribed level as the desired length converges to zero, 
and Ns is, in the sense of expression (2.7), asymptotically efficient. 

Empirical Monte Carlo results of Sielken [1971] and Stroup [1979] in- 
dicate that the small sample properties of Ns are reasonably close to its 
asymptotic ones when the regression function M is linear or piecewise-linear, 
the distribution function of y ( x ) - M ( x )  is short-tailed (normal, uniform or chi- 
squared), and the variance of the observations, a 2, is not much larger than the 
deviation of the initial observation Ix I -01. 

In some cases, quantal response for example, it is desirable to accom- 
modate non-linear response functions. In practice, the effect of the initial 
observation and of the distributional form of y ( x ) - M ( x )  should be minimized. 
For these reasons, we consider more closely certain aspects of Sielken's rule. 

It is clear from (2.3) that d~ is a biased estimator of a2 and that the early 
observations, the ones responsible for determining N~, contribute to the bias. 
Actually, the second observation at each input level (w,, the response at x, +j,) 
is necessary only for the estimate of slope. It is used to estimate the variance 
only because it is available and increases the degrees of freedom in d 2. In a 
sense, the observations w, distort the variance estimator. We will develop 
estimators s~ of a 2 and b, of M'(O) which improve on those of Burkholder. 

In the following, take a = 0  without loss of generality. As an alternative to 
Sielken's rule, we define 

u,(k)= ~ y~/ks 2 ( n = k , k + l  . . . .  ; k = l , 2  .. . .  ) (2.8) 
i = n - - k + l  

where s~ is an estimator of the variance a 2. As a stopping rule, take 
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for some positive constant c. The intuition underlying this rule is that as x. 
converges to 0, the numerator  of u.(k) should be numerically close to the 
denominator  inasmuch as M(x.) near zero implies that y. will be determined 
by e . = y . - M ( x . ) .  To formulate the procedure, this implication is reversed so 
that values of u.(k) near one are taken as an indication that x. is near 0. 

2.2 Assumptions 

The following conditions on {a.}, M(x), y(x), and e (x )=y(x ) -M(x )  are sum- 
marized here for completeness. 

A I : The sequence {a.} has the form {A/n} where A is a constant such that 
2AM'(O)> 1. 

YI :  The distribution function of y(x), denoted F('lx), is such that F(yI') is 
Borel-measureable for every y. 

m l :  For each ~ in (0, 1), inf {M(x)-c~}.(x-O)>O. 
~<lx-01<~-i 

M 2: For some constants K 1 and K2, IM(x)-c~l < K 1 + K z Ix-OI for all x. 
M 3: M(x) is continuously differentiable at O. 
E I: y ( x ) -M(x )=e (x )  have a common distribution with zero mean and e(x) is 

independent of the previous part of the {x} process. 
E2: sup E le(x)12 < ~ .  

x 
E 3: The fourth moments of the distributions of e(x) exist and have a common 

bound. 
E4: For all x, Ee3(x) exists and equals zero. 

2.3 Estimating Variance and Slope 

Clearly, two independent observations of the response at level x. (rather than a 
displaced second observation) will permit an unbiased estimate of the response 
variance. Let y., 1 and Y.,2 be two independent and identically distributed 
observations of the response variable at level x..  Thus E(y.. 1 [x . )=E(y. .  2 ]Xn) 
= M(x~). At step n, form 

1 
Yn =2(fin, 1 @fin, 2); 
e .=(y . ,1-Y. )Z +(y . , z -Y. )2;  

2=//--1 ~ ei" Sn 
/=1 

Since we have replicate observations at each level, we can modify the original 
process to be 

Xn+ 1 =Xn-an~Jn 

with var(y.lx.)=�89 The following lemma is an immediate con- 
sequence of the strong law of large numbers (Breiman [1968]). 

Lemma  1. Under assumptions A 1, M 1, M 2, E 2, E 3, 

2 (a . s . )  a s  
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As an estimator for the slope M'(O) we consider the least squares regression 
estimate, since under assumption M3, the regression is essentially linear in a 
neighbourhood of 0. The drawback to this estimator is that early observations 
may be far from the target value and the slope of M at these points may be 
very different from M'(O). This problem is also present in Burkholder's estimate 
t,, used by Sielken. 

With pairs of observations (xl, yl), i=  1, 2,.. . ,  n, a modification of the usual 
least squares estimate is 

y,(x,-X.) 
bn - i =  ~ (2.10) 

~ (x~- X.) ~ 
i = l  

where ~ , = n -  ~ ~ x~. The following result will be useful in investigating the 

properties of the proposed stopping rule. 

Theorem 1 (Lai and Robbins). Under assumptions A1, Y1, M1, M 2, M 3, E1 
and E 3, 

b,~M'(O) (a.s.). 

One version of this result can be found in Lai and Robbins [1979]. Its 
proof as well as some generalizations are contained in an unpublished manu- 
script (Lai and Robbins, 1978). The critical step of the proof is to show that 
the condition 

n 

lim ~ (x i - Xn)2/1og n---~ oo 
n ~ 0 0  l 

implies strong consistency of the least squares estimator. That condition cer- 
tainly holds for the scheme defined by (2.1). However, Lai and Robbins were 
concerned with more general adaptive stochastic approximation schemes in 
which an updated estimate of M'(O) is incorporated into the {a,} sequence. 

3. Properties of the Prediction Stopping rule N k 

3.1 Properties for a Fixed Value for k 

2 defined in Sect. Using the averaged responses y, and the variance estimator s, 
2, the stopping statistic becomes 

u,(k) = ~ ~2/ks~ (n = k, k + 1,...). 
i=n--k+ l 

Let us henceforth write y, for y, and e~ for e~ = y , -M(x , ) .  
Considerations of the asymptotic properties (as k--+oo) of the sequence of 

stopping times N k =inf{n: u,(k)< c} will be based on the weak convergence of a 
process derived from u~(k). The asymptotic normality of the randomly stopped 
process xN~ does not follow from existing results (e.g. Billingsley [1968]), since 
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the sufficient condition that N k converge in probability to a fixed random 
variable as k ~  oo is not satisfied here. 

Theorem 2. Under assumptions A1, Y1, M1, M 2, M3, El, E2, 2kun(k ) con- 
verges in distribution to a central chi-squared random variable with k degrees of 
freedom, as n~oo. 

Proof With G(k) defined as above, 

k--1 k--1 k - 1  

s~ ku.(k)= Z MZ(x.-i) +2 • G-,M(x,-~) + Z ~2 . 
i=O  i = 0  i = 0  

Thus, 
2 ku.(k) -k- 1 

D(k, n)= ~ (V/2e,_i/s.) 2 
i=O  

k--1 k - 1  

<2s"-Z ~=o ~ M2(x"-i)+4s22 i~=o e"-iM(x"-i)" 

Since M(x,)~O (a.s.) as n-~oo, M(x,_i)~O (a.s.) for any fixed i. Hence the first 
term on the RHS--*O as n~oo .  An application of Kolmogorov's inequality 
shows that the second term must tend to 0 in probability. Consequently, 

D(k, n) P ~ 0 as n--,oo. Since 2 2 s,--+c; =E(e2(x)), 2ku,(k) converges in distribu- 

tion to the sum of k independent random variables, each having a (central) chi- 
squared distribution with one degree of freedom. 

Theorem 3. Under assumptions A1, Y1, M1, M2, M3, El, and E2, N k has 
finite moments of all orders. 

Proof For n = k, k + 1 . . . .  , define 

42 ..~ , 2 
�9 " " ] - g n - - k +  1 

u*(k) = kcr2 (3.1) 

and for some 0 < 2 < c ,  let B~={co: u * > c - 2 }  and Ci={a~: u~-u*>2} .  Let I, 

be the index set of a sequence of integers between l /n  and n which are k units 

apart; that is, I , =  {n, n-k ,  n-2k,  ..., n-d,k},  where d ,+  1 >(n-]/n)/k>d,. 
A well known result (Chung, exercise 5, p. 44 [1974]) states that for any 

positive random variable N, 

E(N r) < oo if and only if ~ nr- 1P(N > n) < oo. (3.2) 
n = l  

Now, 
{Nk>n}c  ~ (Bi~ CI)=F,;  (3.3) 

i ~ l n  

and 
F. ~( ~ Bi)w [ U (Ci\B~)] = G .  (3.4) 

l a i n  i e l n  

__ c where (C i Bi)- Cic~B i. From (3.3) and (3.4), 

P{Nk>n}<=P { ~ Bi}+ ~, P{C,\B,}. (3.5) 
i e I n  i e I ~  
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We see, from Definition (3.1), that u* is composed of independent random 
variables; and, for ieI , ,  the events B i are independent, since they are de- 
termined by disjoint sets of independent variables. 

Also from (3.1) for any i, 2ku*(k) is distributed as a chi-squared random 
variable with k degrees of freedom, denoted ft .  Thus, 

P(B~) = P(u* > c - 2) = 1 - F {2 k(c - 2)} = p < 1, 

where F ( x ) = p { z 2 < x } .  Since the events {Bi: ieI ,}  are independent, 

and 

P( ~ Bi) = 1-[ P(BI) <= P('- ~)/~ 
i~ln i~ln 

f i r -  1 p ( n -  ~ ) l k  < 00. 

n = l  

Thus the theorem will follow from (3.2) and (3.5) by showing 

Let 

then 

~, n~- l [  ~ P ( C i \ B i )  ] < oo.  ( 3 . 6 )  
n= 1 iEIn 

/+...+y?-k+l s? 
1~' i - -  k 0 . 2  0 .2 u i ,  

C i c {lu i - u'il > 2 / 2 }  w { Ju' i - u ' l >  ~ . /2}  = D i to E i. 

We consider first E i \  Bi: 

i 

< (k0.2)-1 ~, M2(xj) + 2(k 0.z)-1 
j = i - - k + l  

i 

I~jM(xj)l 
j = i - k +  l 

i 

< 0.- 2 max MZ(xj) + 2(k0.Z)- 1 max ]M(xj)l ~, ]@. 
i k+l<=j<=i i - - k + l < j < i  j = i - k + l  

Then 

P{Ei~,Bi}-=P{[u'i--u*l>A/2 and u * ~ c - A }  

< P {  max M2(xj)>20.2/4} (3.7) 
i - -k+l<j<=i  

+ P  (ko-2) -1 max IM(xj)l ~ 1e~1>2/8 and u * < c - 2  . 
i - -k+ t <j<=i j = i - k +  l 

Under assumption A1 and M 2  (with 0=0), one obtains, M2(xj)=O(x 2) uni- 
formly. Then by a result of R6v&z [1973], 

P{ max M2(xj)>2cr2/4} =O(i-t),  for each fixed t>0 .  
i - -k+l<j<=i  
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We now pick t so large ( t > 2 ( 2 r +  1)/e) that  this probabil i ty ,  the first te rm of 
(3.7), is O(i-P), where p > 2 r +  1. 

Now,  in the second probabi l i ty  of  (3.7), the fact that  u * < c - 2  gives an 
i 

upper  b o u n d  on (ko-2) -1 E Igjl. Thus, by the a rgumen t  above,  for some 
2 ' > 0 ,  j = i - k +  l 

P (ko-2) -1 max  [M(xj)l ~ [ej[>2/8 and  u * < c - 2  
i - - k + l<=j<i  j = i - - k + l  

N p {  max  IM(x j ) l>2 ' }=O( i -P) ,p>2r+l .  
i - -k+ l < j < i  

Then,  f rom (3.7), for i sufficiently large, 

P {EI \ BI} =O(i-P), p > 2r + 1. (3.8) 

Consider  now the set Di. No te  that  on (BitoEi) C, u ' i<c-2 /2  , so that  on 
(B i to Ei) ~, lu i - u'iL > 2/2 only if L1- ~s/2h > 2/2u' i > Z/2(c - 2/2). Hence,  

P {Di \ (Bi to El)} < P {I 1 - r;2/s~l> 2/2(c - 2/2)}. 

Now,  s 2 is an average of independent  identically dis tr ibuted r a n d o m  variables  
and, as i--* oo, s2-+cr 2 a.s. Thus,  we can apply  a large deviat ion result of  Cramhr  
[-1938] to conclude that  

P{Di \ (B i toE , ) }=O( i -~e  -~) as i ~ o o .  (3.9) 

Now,  P { C i \ B i }  <=P{Di\(BiwEi) } + P { E i \ B I }  =O( i -~e - i )+O( i  -~) for p > 2 r  
+ 1, by (3.8) and (3.9). Finally, 

~, nr-*(2  P { C i \ B i } ) =  ~, n ~-* ~, O(i -p) 
n= 1 i~In n= 1 i~In 

is a convergent  series, since r - 1 - (p - 1)/2 < - 1 for p > 2r + 1. This proves  (3.6) 
and hence the theorem.  

3.2 Weak Convergence of the Prediction Process 

We consider now the weak convergence  of a process derived f rom the statistic 
u,(k) in order  to prove:  

Theorem 4. Under assumptions A t ,  Y1, M I, M 2, M 3, E l ,  E 2, E3, Nk/k 
converges in distribution to a positive, non-degenerate random variable as k--, oo. 

Before prov ing  this theorem,  we will consider several p re l iminary  results. 
Since the errors  e, are independent  r a n d o m  variables  with m e a n  0 and  vari-  

ance 0"2/2, {(2e2/o-2) - 1} / I / / 2=e~ l /2 / a  2 -  1/1/~ are independent ,  identically dis- 
t r ibuted r a n d o m  variables  with m e a n  zero. Wi thou t  essential loss of  generality,  
we also assume they have unit  variance.  

Let  {W(t): 0_<t<_ 1} be a Wiener  Process. Define 

rn = (4  1 /r  
i = l  
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and let X.(t) be the corresponding partial sum process: 

l (3.20) 

Using these definitions, we now state and prove three lemmas, each under the 
assumptions of Theorem 4. 

Lemma 2. X,(t) converges weakly to W(t) as n ~  co. 

Proof Since the random variables involved in the partial sum T, are inde- 
pendent and identically distributed, the lemma follows directly from Donsker's 
Theorem. 

Define 

i = 1  

and let Y.(t) be the corresponding process: 

Y.(t) = n -~ St. q + n-~(nt - [nt]) (Y~.tl+ l l f  2/a; - 1/1~). 

The following lemma relates the processes X.(t) and Y.(t). 

Lemma 3. With the preceding definitions, 

sup [X.(t) - Y.(t)[ ~ 0  in probability, as n ~  oo. 
0<t=<l  

Proof According to the definitions of X.(t) and Y.(t), 

sup [X.(t)-Y.(t)[= max ( l~/1/no -2) 
o_<7_<1 1-<~<, i=1 (3.11) 

2 J el. < ( ] f2 / ] /na  2) ~ M(xl)2+ max ( ] / 2 / l / n .  2) ,=~1M(xi) 
i= 1 i < j < n  "= 

From Lemma 1 and assumption A 1, the first term on the RHS of Eq. (3.11) 
tends to zero a.s. Further by E1 and Kolmogorov's inequality for the mar- 
tingale difference sequence {M(x,)e,}, one obtains for each e> 0; 

P ~ m a x  n--~ i j } (k<J <=" ~=lM(xl) ei >e <=e-2n-1 i=l ~ EM(xi)2~2/2=~ 

Thus, the assertion follows. 

Lemma 4. Yn(t)--~ W(t) weakly as n-*oo. 

Proof This result is implied by Lemrnas 2 and 3 (see, e.g. Billingsley [1968], 
Theorem 4.1). 

In order to prove Theorem 4, it suffices to show that for any fixed m, 
P{Nk>mk } converges to a non-zero number as k~oo.  Now, 

P{Nk>mk } = l - P {  min u~(k)<c(k)} (3.12) 
k<=i<_mk 
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where c(k) is the s topping bounda ry  of  the s topping rule N k. Hence Theorem 4 
will be proved by showing that  the probabil i ty of  expression (3.12) converges 
to some number  between 0 and 1, as k - ,  oo. We will relate the statistic G(k) to 
a process involving Y~(t). 

Proof  of  Theorem 4. Define, for some fixed m, 

V~(t) = Y~(t) - Y~(t - m -  1). 

F r o m  L e m m a  4 and Propos i t ion  13.17 of  Breiman [19681, 

V,( t )~  W ( t ) -  W ( t - m -  ~) (3.13) 

weakly as n ~  oo. 
Since 

v~  ~(t) = (m k) - ~ (St~ ~ ,1 - s~m ~,1- k) 

+ ( m k ) - 4 ( m k t _ [ r n k t ] ) ( a - 2 V ~ ) ,  2 y2 I ,Y[rnkt l+ 1 - -  [mkt]-k+ 1), 

we have that for i = 1 , 2 ,  . . . , ink, 

V m k(i/m k) = (mk) -  *(S~ - S,_ k) 
i 

=(2k/m)4 (k(~2) - ~ ~ y ] - ( k / 2 m ) L  
j = i - - k + l  

Now, we define 

Umk(i/mk) = (2k/m) ~ ui(k) - ( k / 2 m )  ~ (1 _<i _< ink) (3.14) 

and an element of  C[0,  1]: 

g ~  k(t) = (2 k/m)~ uE~ k ~ (k) - (k /2  m)~ 

+ (m k t - [ m  k t] )  (2 k/m)~ [UEm ~ ~1 + 1 (k) - UEm k ~ (k)] .  

With this definition, 

[U mk( i /mk)-  (a2/s 2) " V m k(z/m k) l = (k/2m) I 1 - ~ 2 / s ~ l ,  (3.15) 

which converges to zero a.s. as i ~  oo. 
Now, since (a2 / s2 )~ l  a.s. as i--, oo, (3.13) and (3.15) imply that 

Un(t)_ w , W ( t ) _ W ( t _ m _ l )  as n ~ o o  (3.16) 

where n = m k and t = i/m k. 
N o w  suppose that the bounda ry  c(k) is of  the form 

c ( k ) =  -1 1 c(m/2k)~ + 7  (3.17) 

where c is some constant  independent  of  k. 
Then ui(k) <= c(k) iff (2k/rn)~ u~(k) - (k/2 m)~ =< c. 
F r o m  (3.14) and (3.17), it follows that  

rain ui(k)<c(k  ) iff inf U~k(t)Nc. 
k<--i<--mk m - l K = t < = l  
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Thus, from (3.11) and (3.16), as k--. oo, 

P{Nk>mk}--* l -P { inf [ ,W(t ) -W(t -m-~)]<c}+O,  1. 
m l< t~< l  

Hence Nk/k converges in distribution to a non-degenerate random variable as 

Note to Theorem 4. If we consider a sequence of stochastic approximation 
problems indexed by the increasing sample size n=mk, then Nk/k converges in 
distribution as n--.oo provided that Y,( t ) -Y~(t-m -1) is not degenerate; i.e. if 
k/n =m ~ does not converge to zero. 

3.3 The Asymptotic Normality of the Randomly Stopped Robbins-Monro Process 

The weak convergence of the process U,(t), derived from u,(k), provides us with 
further insight into the nature of the stopping rule N k. We now consider the 
problem of finding a confidence interval using xs, .  The stochastic approxima- 
tion process {xn} is essentially a partial sum of dependent random variables. 
Using this representation, McLeish [-1976] has shown (under certain assump- 
tions) the weak convergence of the Robbins-Monro process. Walk [-1977] has 
proved a more general version of this theorem under slightly weaker con- 
ditions, but McLeish's representation is more convenient. 

Define X(t )=X[t l+ 1 and W,(t)=n~-P[,nt] ~ (x(nt)-O) where fl=AM'(O). Then 
> t  if fl 3, Wn converges weakly to W(a), a Gaussian process of independent 

increments, with mean 0 and variance A2a 2 t2a-1/(2fl - 1). 
Note that the choice A=(M'(O)) -1 minimizes the asymptotic variance of 

W(~), and with this value the limiting process is Brownian motion. Using 
McLeish's process W,(t) and the process U,(t) defined in the proof of Theorem 
4, we can determine the asymptotic distribution of xN~ ; namely, that 

N~(XNk -- O)/[A 2 SNZ j2(2  A bN~ -- 1)] ~ 

(with s, and b, defined in Sect. 2) converges in distribution as k~oo,  to a 
Gaussian random variable with mean zero and variance one. We first show 
how XN~ can be expressed in terms of W,(.) evaluated at a random time. 

Let T be the limit in distribution of Nk/k as k~oo ,  which exists and is a 
proper random variable by Theorem 4. With 0 =0, let W,(t) be defined as for 
McLeish's result (with f i= 1). Now, for any real number m, we define truncated 
versions Nk(m ) and T(m) of N k and T respectively: 

and 

Nk(m) = {kNm i fNk<km' 
otherwise 

T(m) = { T  if T<m 
otherwise. 
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Then N(m)/km~T(m)/m in distribution as k ~ o e .  Define two processes on 
[0, i ] :  

z 2 ( t )  = A 2 0  "2 t z # -  1/2(2fl-  1) = A 2 o  "2 t/2 
and 

."2 __ 2 2 2 A b - - 1  z . ( t ) - A  s, tt nt /2(2Ab, t - 1  ). 

For  m fixed, let m k = kin, and define ~k(t, 0~)= tNk(m)/m k. Then 

- �89 X { t l k T  (m1/Wi ] - (2 A bm k Ok(t ) - -  1)/2 Wmk(~k(t)) mk [ t N k ( m ) ]  t N k ( m ) \ ~ ' k k  1 /  k] 

4m~(~bk(t)) (A 2 s2 ~(0/2(2 A b , . ~ ( t ) -  1) ~ 

Because of the almost sure convergence of the variance estimator s 2 to o -2, of 
the slope estimator b. to fl, and of Ab.  to 1, we see that as k - + ~ ,  

(Nk(m)) xN~(~) i))~ 
~m~(ek(1)) ( A 2 s g ~ ( m ~ / 2 ( 2 A G ~ ( ~  - 

converges to zero a.s. Thus, if we show that for any real number  m=mk/k,  as 
k~oo,  W~(~k(1))/~m~(~k(1)) converges in distribution to a standard normal 
random variable, it will follow that 

t 2 S  2 (Nk(m))" xu~(,,)/[A N~(m)/2 {2 A bu~(,,) - 1 }]~ 

converges in distribution to the standard normal as k ~  oo. 
The result will then follow from Theorem 4.2 of Billingsley [1968] since 

lim lim P{Nk(m)#Nk} = lim lira P{Nk>km } = lim P { T > m }  =0,  
m ~ o 9  k ~ c ~  m ~ o o  k ~  m ~  

because T is a proper random variable. 
The asymptotic normality of W~(~bk(1))/~m~(qSk(1)) will follow from the 

stronger result (see Theorem 5 below) that for any real number  m, the process 
W,,~(ebk)/~,.~(q~k) converges weakly to a Gaussian process. The proof  follows the 
lines of Chap. 17 in Billingsley [1968]. Thus we show that the sequence 
(W., U,) converges weakly to an appropriate  limit and apply the continuous 
mapping theorem. We first present two lemmas. 

Lemma 5. Let Oi = 1 + O(i- ~) and define 
[nt] 

B.(t)=(2/a2n) ~ ~ Ofij. 
j = ~  

Let X,(t) be defined as in Eq. (3.10). Then X,  and B, are uncorrelated for any n. 

Proof Without loss of generality, take t <s. Then 

Coy [X.(t), B,(s)] = Coy [X,(t), B,(t) + B.(s) - B,(t))] 

= Coy [X,(t), B,(t)] + Coy [X,(t), (B.(s) - B,(t))]. 

Now, X,(t) involves centered e~ terms and B,(t) is a sum of e i terms. Thus, in 
view of E 1 and E 4 

Cov [X,(t), B.(t)] = O. 
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Also, since X,(t) and [B,(s)-B,(t)]  involve disjoint sets of independent ds, 

Cov [xo(t), B,(s)-  B,(0] = 0. 

Thus, Cov [X,(t), B,(s)] = 0, i.e. X,(t) and B,(s) are uncorrelated. 
Let U denote the weak limit of {X,} and W denote the weak limit of {B,}. 

By the proof of Theorem 4 and McLeish's proof, both U and W are Gaussian 
processes. Select versions 0 and W that are independent. 

L e m m a  6. (X . ,  B . ) -  ~ , (~7, ff') 

Proof. Since the sequences {X,} and {B,} are individually tight, so is the 
sequence {(X~,B,)}. (Billingsley, 1968, p. 41). It remains to prove convergence 
of the finite dimensional distributions. 

Let r and s be any two positive integers, t 1 .. . .  , t  r, u l , . . . , u  s be arbitrarily 
chosen points in [0, 1], and al , . . . ,  ar, b l , . . . ,  b s any real constants. Define 

L~= ~ aiX.(ti)+ ~, biB.(ui) 
i ~ l  i = 1  

and 

L =  ~ ai(f(ti)+ ~ bilTV(u 3. 
i = 1  i = 1  

It suffices to prove than L , ~ L  in distribution. 
By virtue of Lemma 5 and the weak convergence of {X,} and {B,}, 

E(L,)=O=E(L) and var(L,)~var(L). 

Now consider the following representations, ignoring terms of linear interpo- 
lation: 

aiX,(tl) = ain--~ • ( l /~a-e  2 1/lfl2) ~ j - -  

i = 1  i = 1  j = l  

} a; n-~ 2 (I j2cr-2 2 1/l/~) = , S j - -  
i= I kj=i j j = [ n t i - 1 ] + l  

and 

tt t i = 1  i = 1  j=i l j=[nt i -a]+l  

An application of the univariate central limit theorem shows that L, is asymp- 
totically normal. Hence, L,---* L in distribution. 

Theorem 5. Assume A1, Y1, M1,  M 2, M 3, E l ,  E 2, E 3, and E4  hold. Suppose 
further that A-- [M'(0)]-  1 and that M(x) has the form 

M (x) = (x - O) M'( O) + O(x - 0)2). 

Then Wm~(~)k)/'Cm~(~k) converges weakly to a Gaussian process. 
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Proof From the proof of Theorem 4, we have 

sup [g,(t)-X,(t)l  P , 0 
0_<t_<l 

McLeish [1976] shows that 

sup IW.(t)-B.(t)] p ) 0 
o < t <  l 

Hence, by Lemma 6, 

(U., W.) w (Cr, fl/). 

D.F. Stroup and H.I. Braun 

as /~---> oo. 

as n----> oO. 

Since N k is a continuous function of 0 (except for a set of paths of measure 0 
under U) and the composition function is also continuous, we have 
W, nk(~k(t))~ W(t r(m)/m) weakly as k ~  oe. Furthermore, 

Wmk(~bk(t))/~,,k(Cbk(t)) = { Wmk((bk(O)/~(t T(m)/m)} {~(t T(m)/m)/r }. 

Given any e > 0, there exists K = K(0  such that for all k > K and for all t, 

P {[ 1 - ~(t r(m))/~mk(t  r(m))[ > e} < e. 

Thus, the theorem will follow from Slutsky's Theorem (see, for example, Bil- 
lingsley [1968], Theorem 5.1, Corollary 2) if we establish that 
Wm~(~k(t))/r(tT(m)/m ) converges in distribution to the standard normal as 
k~oe .  

For  any real number a, as k ~  o% 

P { Wmk(~bk)/z(t T(m)/m) < a} ~ P  { W(t T(m)/m)/z(t T(m)/m) <= a} 

= ~ P { W(t Y(m)/m)/v(t Y(m)/m) < a IT(m) = t'} dP { T(m) < t'} 

= ~ V(a) dP { T(rn) < t'} = V(a), 

where F is the standard normal distribution function, (McLeish [1976]). That 
is, conditional on T(m), w(tr(m)/m)/~(t  r(m)/m) has a standard Gaussian distri- 
bution. Evaluation at t = 1 yields the conclusion of the theorem. 

3.4 On the Choice of  the Boundary c 

To fully specify the prediction stopping rule and the associated confidence 
interval of 0, it remains to consider the stopping boundary c. We have seen in 
Theorem 2 that for large n the statistic 2ku,(k) behaves like a chi-square 
random variable with k degrees of freedom. Since Yl has mean M(x~) and 
variance aa/2, the noncentrality of 2 kun(k ) is approximately 

J~n=20 "-2  ~ M 2 ( x i )  �9 

i ~ n - - k +  l 

Suppose u is a Z~ random variable with noncentrality parameter 2. N. Marak- 
athavalli [1955] gives the uniformly most powerful unbiased size p test of the 
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hypothesis H o. 2 = 0 against H 1 �9 2 > 0 as: Reject H o when u > %, where 

Cp 

~L(ul2=O) du=l -p ,  
0 

for fk(" JR) the density of u. 
In the case of the prediction statistics, the Yi are asymptotically normal and 

independent, so we consider the noncentrality 2,. Acceptance of H 0 is in this 
case equivalent to termination of sampling at step n. So to completely define 
the prediction stopping time 

N k =inf{n: u,(k) <c}, 

we might consider constants c of the form c=z2(p)/2k for varying values of p, 
where X~(P) is the upper p-percentile point of a central Z 2 distribution. 

4. Small Sample Behavior of the Prediction Rule 

4.1 Properties of XNk 

Extensive Monte Carlo Studies (Stroup, [1979]) have shown that even for k = 2 
the properties of XNk are fairly close to the asymptotic results proved in the 
previous section. A suitable boundary was obtained by chosing c(2) to be the 
upper 10 percent point of the )~ distribution divided by 4. Interestingly, the 
empirical coverage probabilities were not very different for the three error 
distributions considered: Gaussian (0, 1), uniform, and chi-squared with three 
degrees of freedom. 

To illustrate the results, we confine ourselves to presenting some properties 
of XN=XN2 where the regression function is M(x)=x, the errors are standard 
normal, and x 1=5. Based on 200 replications of the Robbins-Monro process, 
we find the sample central moments of xN/(s ~ to be: # 1 = - 0 . 0 8 6 ,  #~ 
= 1.02, #; = - 0 . 2 0 ,  /~,=3.62. The sample coefficients of skewness and kurtosis 
are gl = - 0 . 1 9  and g2 =0.47. Neither is significantly different from zero under  
the null hypothesis that the normalized, randomly stopped Robbins-Monro 
estimator has a standard Gaussian distribution. Finally, Fig. 1 dispiays the p 
percent pseudo-variances (see Tukey [1977]) of xN/(s ~ for p=0.75, 0.80, 

d2(p)  

0.90- 

X 

X 

08C 

I I I I I I I I I I I I I I 'I I [ 

0.70 0.80 0.g0 1.00 q - p 

Fig. 1. Pseudovariances of the Sampling Distribution of xN/('C/]/N ) 
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0.90, 0.95, 0.975. The pa t te rn  suggests that  the d is t r ibut ion  is perhaps sightly 
more  long-tai led t han  s tandard  Gauss i an  variates. Nonetheless,  these results 
suppor t  the validity of the Gauss i an  app rox ima t ion  even for small  values of k. 

4.2 Performance Relative to Sielken's Rule 

Sielken's rule and  the predic t ion rule differ in that the former aims at a specific 
interval  length while the lat ter  does not. However,  a compar i son  between the 
two can be effected as follows. For  a par t icular  choice of the parameters  x l ,  
M'(O), k, and c, find the average width of the confidence interval  with the 
predic t ion  rule. Us ing  this value as the predetermined width d for Sielken's 
rule and  using the same values for x 1 and  M'(O), carry out  Sielken's rule. Table  
1 gives the results for three si tuations.  (Mean square error is given for xN, s 2, 
and  b N as estimates for 0, a 2, and  M'(O), respectively.) Here, we see that  the 
empirical  coverage frequency L of Sielken's rule is far from the target value 
= 0.90, and  the improvemen t  over Sielken's me thod  is suggested by the smaller 
m e a n  square error and  bias for the est imate of M'(O). 

Judged by the cr i ter ion of sample size, Sielken's rule performs as well as, or 
perhaps better  than,  the predic t ion  rule in this s i tua t ion (note smaller  m e a n  
sample sizes and  smaller var iance  of sample size). But the s i tua t ion investigated 
here is rather  specialized: small  error var iance (1) and init ial  estimates (0,2, 5) 
very near  the target value (0=0) .  So, let us compare  the two rules under  less 
ideal condit ions.  The first two co lumns  of Table  2 give results when the errors 

Table L A comparison of the prediction rule and Sielken's rule for selected widths of the 90 
confidence interval - Gaussian distribution, mean= 0, variance = 1. Based on 50 independent runs. 
(Same sequence of Gaussian Errors for both S and P.) 

S P S P S P 

Width 0.79 0.79 0.47 0.47 0.42 0.42 
VAR a 5.17e 0 1.11e- 1 4.72e-2 
x I 0 0 2 2 5 5 
M'(O) 1 1 1.25 1.25 1.25 1.25 
k 1 2 2 
C r CO. IO Co. lO 

N b MEAN 7.72e 0 9.18e 0 2.17e 1 1.30e 1 1.96e 1 1.21e 1 
VAR 1.78e 2 4.61e 1 2.79e 2 8.75e 2 2.57e 2 5.66e 2 

x N MEAN - 1.10e-2 2.01e-2 1,09e-2 -4 .92e-2  -1.54e-3 7.92e-2 
MSE 1.78e-1 8.97e-2 3,27e-2 4.47e-2 2.84e-2 3.88e-2 
BIAS 1.22e-4 4.10e-4 1,19e-4 2.41e-3 2.39e-6 6.27e-3 

s 2 MEAN 1.13e 0 1.13e 0 1.80e 0 1.27e 0 1.82e 0 1.20e 0 
MSE 4.75e- 1 3.56e- 1 9.88e- 1 6.33e- 1 1.12e 0 5.98e- 1 
BIAS 1.84e-2 1.78e- 1 6.46e- 1 7.54e-2 6.85e 0 3.97e-2 

b N MEAN 2.07e 0 1.64e 0 1.98e 0 1.26e 0 1.92e 0 1.21e 0 
MSE 2.34e 0 7.97e-1 1.72e 0 7.81e-2 1.48e-1 1.84e-2 
BIAS 1.14e 0 4.05e- 1 5.33e- 1 6.10e-3 4.45e- 1 1.40e- 3 

L 9.20e- 1 8.80e- 1 9.80e- 1 9.00e- 1 9.80e- 1 9.40e- 1 

" Sample variance of the width for the prediction rule 
b N-th stage in RM procedure, at which time 2N values have been observed 
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Table 2. Behavior of the two 
poor - Gaussian distribution. 

Stochastic Approximation 

stage procedure when the variance is large and 
Based on 50 independent runs with: 

551 

the initial estimate is 

cr 2 x 1 M'(O) k c d 
5 10 1.25 2 Co.05 0.4 

Sielken Prediction Sielken 
alone as 1st stage as 2nd stage a 

N MEAN 1.00e 2 2.99e 1 5.08e 1 
VAR 0.00e 0 b 5.64e 2 1.06e 2 

x N MEAN 2.41e 2 1.76e 0 2 .03e-2  
MSE 5.93e 2 3.18e 1 1 .66e-2  
BIAS 5.79e 2 3.10e 0 4 .12e-4  
VAR 1.45e 1 2.87e 1 1 .61e-2  

s z MEAN 9.21e 0 5.50e 0 7.25e 0 
MSE 1.94e 1 4.13e 0 6.03e 0 
BIAS 1.77e 1 2 .50e-1  5.07e 0 
VAR 1.70e 0 3.88e 0 9 .60e-1  

b u MEAN 6.17e--1 1.79e 0 1.76e 0 
MSE 9.54e 0 2.62e 0 1.63e 0 
BIAS 4.01 e -- 1 2.87 e - 1 2.68 e -  1 
VAR 9.14e 0 2.33e 0 1.36e 0 

W MEAN 3.94e-  1 
VAR 2.88e 0 

a This column refers only to the second stage of the R M  process where Sielken's rule is being used 
b N was assigned the value 100 if sampling had not terminated by that iteration. The zero variance 
reflects the fact that Sielken's rule failed to terminate in any of the 50 independent runs 

are Gaussian but with large variance (5), and a poor initial observation (x 1 
=10). Even in this relatively mild deviation from ideal conditions, Sielken's 
rule failed to converge (in 100 iterations) for any of the 50 independent runs. 

The investigation of Sielken's estimates of variance and slope indicates that 
large values of Ix -0 l  or [M(x)-e l  introduce a bias term. The discussion of the 
stopping boundary of the prediction rule indicates that this rule terminates at 
a point when the noncentrality is small Therefore, a two-stage procedure 
seems to be suggested as another possible use for the prediction rule: use the 
prediction rule initially to find a point xN~ which is near 0 (in the sense of 
small noncentrality); then use xN~ as an improved initial estimate for Sielken's 
procedure. This procedure appears to be useful, for example, in cases where the 
convergence of Sielken's procedure is poor. The third column of Table 2 adds 
the results for Sielken's rule used in this way. Note the improvement of the 
two-stage procedure over Sielken's procedure in the parameter estimates as 
well as the empirical frequency of coverage. 

One of the possible uses for the RM stochastic approximation process is in 
estimating percentage points of a quantal response curve. In this case, the 
observation y(x) takes two values only, 0 and 1, with P(y(x)= 1)=M(x). Two 
forms commonly used for P(y(x)= 1) are the probit form 

b(x-a) 

M ( x )  = S (2~)  - �89 e x p ( - � 8 9  2) d t  
- - o O  
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a n d  the  log i t  f o r m  

M(x) = [-1 + exp { - b(x - a)}J -1  

for pos i t i ve  c o n s t a n t s  a a n d  b. I n  this  work ,  the  log i t  f o r m  will  be  discussed,  

pa r t l y  because  this  a l lows  m o r e  d i rec t  p r o g r a m m i n g  a n d  analysis .  

Th i s  s i t u a t i o n  differs f r o m  those  d i scussed  p r e v i o u s l y  in tha t  var{y(x)}  is 

n o t  c o n s t a n t  a t  each  s tep bu t  va r ies  w i th  x. H o w e v e r ,  s ince var{y(x)}  < oe for 

each  x a n d  l im  var{y(x)}  = o - 2 <  o% the  t h e o r e m s  o n  a l m o s t  sure  c o n v e r g e n c e  

o f  x ,  to 0 a n d  a s y m p t o t i c  n o r m a l i t y  o f  {xn} c o n t i n u e  to  apply .  W e t h e r i l l  
[-1963] c o n s i d e r e d  the  p e r f o r m a n c e  o f  the  R M  p r o c e d u r e  for a f ixed s a m p l e  

size. I n  o r d e r  to assess the  p e r f o r m a n c e  o f  the  p r e d i c t i o n  ru le  here ,  we first 

c o n s i d e r  the  a s y m p t o t i c  d i s t r i b u t i o n  o f  the  s ta t i s t ic  u,(k). N o w ,  s ince  Yn has  a 

B e r n o u l l i  d i s t r i b u t i o n  wi th  p a r a m e t e r  M(x,), y2 is d i s t r i b u t e d  as Yn. T h u s  y~ 
+ y 2 _ i + .  + z -- Y , - k + l  is a s y m p t o t i c a l l y  (for l a rge  n) d i s t r i b u t e d  as the  s u m  of  k 

B e r n o u l l i  va r i ab l e s  w i t h  m e a n  e = M ( 0 ) ,  i.e., as a b i n o m i n a l  (k, e) va r i ab le .  T h u s  

for l a rge  n, u,(k) is a s y m p t o t i c a l l y  d i s t r i b u t e d  as (ko-2) - 1 t imes  a b i n o m i a l  (k, ~) 
va r iab le .  I n  this case, we  k n o w ,  in fact, t ha t  

o -2 = l im  v a r  {y(x)} = l ira M(x) { 1 - M(x)}  = ~(1 - e). 
x ~ O  x ~ O  

So the  b o u n d a r y  cp can  be  t a k e n  to be  

Binp(k, c~)/{k e(1 - e)}, 

w h e r e  Binp(k, e) is the  p -pe r cen t i l e  p o i n t  o f  a b i n o m i a l  (k, e) d i s t r ibu t ion .  

Table 3. A comparison of the prediction rule and Sielken's rule for the quantal response problem 

S P S P S P 

Width 0.47 0.47 2.25 2.25 0.10 0.10 
VAR ~ 1.06 1.16 1.97 
x 1 0 0 0.5 0.5 0.5 0.5 
A 4 4 4 4 4.5 4.5 
k 2 2 2 
c 1.00 1.00 1.00 

N MEAN 2.07e 1 2.46e 1 3.16e 1 6.59e 1 1.00e 2 7.75e 1 
VAR 4.31e 2 1.55e 1 4.09e 2 2.07e 1 0.0 b 1.03e 2 

x N MEAN 5.32e- 1 - 4 . 5 9 e -  1 - 2 . 0 6 e -  1 - 6 . 2 6 e -  1 1.50e 1 1.92e- 1 
MSE 3.01e-1 2.47e-1 4.97e-1 4.15e-1 2.27e 2 3.75e 0 
BIAS 2.83e- 1 2.11e- 1 4.25e-2 3.92e- 1 2.26e 2 3.68e-2 

s~ MEAN 1.23e 0 2.12e-1 1.50e-1 2.05e-1 4.99e 0 2.07e-1 
MSE 2.40e 0 6.48e-2 3.26e-1 1.06e-1 3.59e 1 7.03e-2 
BIAS 9.60e- 1 1.44e- 3 1.01 e -  1 2.02e- 3 2.24e 1 1.85e- 3 

b N MEAN 1.80e 0 2.25 e - 1 8.92e - 1 6.47e - 1 6.22e- 1 3.01 e - 1 
MSE 3.67e 0 3.31e- 1 8.48e- 1 5.69e- 1 4.57e- 1 5.61e- 1 
BIAS 2.40e 0 6.25e-4 4.13e- 1 1.58e- 1 1.38e- 1 2.60e- 3 

L 6.40e- 1 9.00e- 1 7.80e- 1 9.00e- 1 0 9.20e - 1 

Sample variance of the width for the prediction rule 
b Sielken's rule failed to terminate within 100 iterations in any of the 50 independent runs 
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Exper imen ta l  sampl ing  was done  for the  case M ( x ) =  {1 + e x p ( - x ) } -  1, with 
~ = 0 . 5  (i.e., the median).  The  value  k = 2  was used for the p red ic t ion  rule, and  
the b o u n d a r y  value  was t aken  to be 1.0. As in Tab le  1, Sielken's  rule was used 
with the preass igned  width  t aken  to be the value of  W ob ta ined  in the runs of  
the p red ic t ion  rule. The  results  are  given in Table  3. The  p red ic t ion  rule 
per forms  m a r k e d l y  bet ter  in terms of  the s lope es t imate  and  the empir ica l  
coverage  f requency L. 

4.3 Remarks 

It  should  be no ted  that  we have not  inves t iga ted  here the results  of  app ly ing  
Sielken's  s topp ing  rule N s but  with the improved  es t imators  s, 2 and  b n ra ther  
than  Burkho lder ' s  d 2 and t,. I t  is a ssumed  that  the reduc t ion  of  bias would  be 
beneficial  in this case as well. In  pract ice,  it is expected tha t  two stage 
p rocedures  of  Sect. 4.3 would  be preferable,  since Burkholder ' s  es t imates  per-  
form well in a n e i g h b o u r h o o d  of  0. 

M o r e  general ly,  further  research needs to be done  to de te rmine  efficient 
s topp ing  bounda r i e s  and  to extend these results  to the more  prac t ica l  adap t ive  
s tochast ic  a p p r o x i m a t i o n  schemes s tudied by La i  and  Robbins .  
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