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Summary. This paper examines properties of a class of complex-valued 
stable processes which have spectral representation by means of inde- 
pendent-increments processes. A representation is derived by an application 
of Schilder's stochastic integral. Also, another construction of harmonizable 
stable processes by means of generalized stochastic processes is given, and 
its relation to the stochastic integral is shown. Some limit theorems of the 
Fourier transform of a sample from harmonizable stable processes are 
provided. Moreover, a linear prediction theory which pertains to those 
processes is suggested as an extension of that of second-order stationary 
processes. 

O. Introduction 

This paper aims at exploring properties of a class of complex-valued discrete- 
parameter stochastic processes which are termed harmonizable stable pro- 
cesses, establishing a number of results paralleling to those of the second-order 
stationary processes, such as spectral representations, isomorphism theorems, 
limit theorems of the Fourier transform of observations, and an optimal linear 
prediction. As the related previous works, there are those by Urbanik (1967, 
68, 70) and Schilder (1970) whose results are extended by Kuelb (1973). Ur- 
banik examined the properties of stochastic process which consists of the 
Fourier coefficients of infinitely-divisible random measure, whereas Schilder 
constructed stochastic integrals with respect to an independent-increments 
symmetric stable process. Section 1 of the paper extends, at first, Schilder's 
result and constructs complex-valued stable processes which have spectral 
re'presentation by means of independent-increments symmetric stable processes. 
Those processes are termed harmonizable. The construction differs from 
Urbanik's in that, though the latter deals with a wider class of probability 
laws, it is at the same time limited in most of its applications to the case where 
random measures are atomless, whereas as far as symmetric stable laws are 
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concerned the present construction does not require this limitation, and could 
deal with processes which have harmonics of various frequencies with non- 
degenerate random weights. The isomorphism of Theorem 1.1 is more general 
than Schilder's in that it is established without the use of Schilder's concept of 
"length" which applies, for complex-valued stable random variables, only to 
the case when they are isotropic. Theorems 1.2 and 1.3 give the relationships 
between isotropicity and stationarity of harmonizable stable processes; in 
particular, the latter theorem establishes the result under a weaker condition 
than that given by Urbanik, as far as stable laws are concerned. 

Section 2 introduces a method of constructing harmonizable processes by 
means of generalized stochastic process with independent values at every point, 
instead of using a random measure of an independent-increments process. The 
relationship between this construction and that of Sect. 1 is given in Theorem 
2.1 and also the usefulness of this construction is exhibited. Theorem 2.3 
provides an asymptotic property of the Fourier transform of a finite sample 
from a harmonizable stable process {xt}. It is shown there as an extension of 

Gaussian case, that, under a general condition, the set w N ~ x t e  ~~ for 
t =  - N  

distinct points co j, j =  1,2, .. . ,p, is asymptotically independently distributed for 
appropriate choice of wry. 

Section 3 deals with the linear prediction of an isotropic harmonizable 
stable process whose exponent is greater than or equal to 1. It is shown that, if 
the Schilder's length is used to measure the degree of concentration of the 
distribution of prediction error to the origin for the purpose of scaling the 
goodness of prediction of various linear predictions, there exists an optimal 
one-step ahead linear predictor under a condition paralleling to that in second- 
order stationary processes. Also a condition is given for the process to be 
deterministic. The optimal predictor is explicitly constructed and the distribu- 
tion of the predictor error is determined. The theory of Hardy space 
H~(1 < c~ < 2) turns out to be the useful tool for this problem, as is the theory of 
H 2 for the second-order stationary processes. Urbanik demonstrated the iso- 
morphism between an Orlicz space and the closure with respect to probability 
convergence of the linear hull of a set of random variables generated by a 
harmonizable process and also extended the Szeg6-Kolmogorov-Krein theo- 
rem so as to apply to an Orlicz space. However, though his results are very 
important in themselves, thanks to his limitation of the class of predictors (see 
Sect. 3) they do not in effect lead to a substantial extension of the previous 
prediction theory as far as the construction of an optimal predictor is con- 
cerned. In his class of stationary processes admitting prediction, purely non- 
deterministic harmonizable processes are Gaussian and thus the prediction 
theory of those processes is reduced to the known one of second-order sta- 
tionary processes. 

As for notations and symbols used in this paper, characteristic function is 
abbreviated as c.f., the set of all integers is denoted as I, and the real part of a 
complex number is signified by Re. In representation of characteristic function, 
the complex plane is identified as R2; thus a characteristic function q~(sl,s2) of 
a two-dimensional distribution is denoted as ~b(s) for s = s  I + is 2. Sometimes the 
notation e ~'~ is used to denote the function e~'t(co)= e ~ t .  
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1. H a r m o n i z a b l e  S t a b l e  P r o c e s s e s  

A complex-valued random variable x is said to have a symmetric stable 
distribution of exponent ce (0 < e < 2) if x has the characteristic function qS~ of 
the form 

Ox(S)=expt-~[Re(se-~~ } 

for a finite measure # on ( - ~ ,  re]. That the function ~b~ is a characteristic 
function follows from the general canonical representation of multivariate 
stable law [see Rvaceva (1962) or Hosoya (1978) for example], but the non- 
negative definiteness is proved directly as this: since the integration can be 
viewed as that of Stieltjes because the integrand is continuous, the function ~b x 
can be arbitrarily closely approximated by a function of the form exp 
g ~ 

, ~-J=~ JRe(se-i~ rnj~ (m j >  0)for fixed s; then the necessary result follows from 

the facts that the function f(x)=exp(-mlxl ~) ( m > 0 , 0 < ~ < 2 )  defined on the 
real line is non-negative definite and that the product of non-negative definite 
functions are non-negative definite. This result is also used below in Lemma 
2.1. Henceforth the term symmetric is omitted since this paper deals only with 
symmetric stable laws. Define a weight function F(2, O) to be a non-negative, 
nondecreasing function on (-re, re] x(-Tr, rc] such that if 2520 and 0~0o, then 
F(2, 0)~F(2o, 00), F(~, 0)>0 for all 0 and also for 21,2z, 01,02 such that 21 < J~2 
and 01 < 02 

F(22, 02)- F(21,02)-F(2a, 01) + F(21,01) > 0. 

Let {z(2); - ~ < 2 < ~z} (z(0) = 0)) be a complex-valued stable independent-incre- 
ment process such that the c.f. qS~ of z(2) is representable as 

~b~(s) = exp {--~ilRe(se-~~ 

and call it a process based on the weight function F. Given -~z 
=20<21 < . . .  <2p<~,  define qS~ ...... ~.~ as 

r ...... ~(Sl,...,s,) 
P _'( Re v =exp [--g_~ 1 (xJ~sje-iO) {F(J.g, dO)-F(~k_l,dO)} ] 
- j=k  ~1 

(where F(2o,dO)=O.dO ). Since ~b~ ...... ;.; thus defined is a c.f. of a multivariate 
stable law and the class of all c.f. qS~ ...... 4, defined for all integer p>0,  and for 
all 21,... , 2p constitutes a consistent class in Kolmogorov's sense, there exists a 
process {z(2), -rc<2<Tz} such that the joint  c.f. of z(21) ,...,z(2v) is given as 
qS~ ...... x .  Also from the definition of qSz ...... ~ ,  it is seen that, for 
"~1 <22 ~J~3 <24, 
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E exp [i Re {s 1 (z(22) - z (21)  --~ $2(z(~4)  - z(23))} 3 

[ ' i  [Resl e-i~ ] = exp 1" {F(22, d 0) - F(21, d 0)} 
L --7~ 

[ ] -exp - S  ]Re s2e-i~ {F(24, dO)-F(23, dO)} 
--Tg 

and thus that the process {z(2)} is of independent-increment. Also it follows 
from the property of F that z(2) is stochastically right-continuous (i.e. 
z(2)+Z(2o) in probability when 252o). 

Schilder (1970) constructed stochastic integral by means of a real-valued 
independent-increments stable process. His construction can be applied in a 
straightforward way to complex-valued processes as follows. Given an inde- 
pendent-increments stable process z(2) based on a weight function F. Set G(2) 

= i F(2,dco); then G(2) is a non-negative, non-decreasing bounded function of 

2 such that G(~z)>0. Let /2 be the set of the Borel measurable functions f on 

(-rc, rc] such tha t  i [f(2)l=dG(2) <~ If g is a step-function of ( - n ,  rc] such 

that g(2) = gj if 2j_ 1 < 2__< 2j, j = 1, ..., k (where 0 = 2 o < 41 < . . .  < 2 k = re), define 
the stochastic integral S(g) of g as 

S(g)= g(2)dz(2)= ~ gj[z(2j)-z(aj_a) ]. (1.1) 
- -~  j = l  

Then, due to the stochastic right-continuity of the path of z, z (2 j_ l+e  ) 
~z(2j_ 0 in probability as e$0. The characteristic function (as(g)(s) of S(g) is 
given as the limit of that of Zgj[z(2j) -  z(2j_ ~ + e)]; namely 

k 

= lira ~I E exp [i Re {s gj(z(2j) - z(2j _ 1 + ~))}] (1.2) 
e ~ O  j = l  

=exp{-!nlRe(sg(2)e-i~ dO) }. 

For general geL s, since the step-functions of the type above are dense in L ", 
there is a sequence g" of step-functions which converges to g in ~-with respect 

to the metric induced by i ['] 'G(d2) �9 Then given e>0, since {g"} is Cauchy, 

there is an N such that for n, re>N, [g"(2)-gm(2)[~G(d2)<e. From the in- 
equality -~ 

i i IRe(s(g"(2)-gin(2)) e-~~ F(d2, dO) 
(1.3) 

~ls[ ~ i Ig"(2)--gm(2)] ~ G(d2), 
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it follows that {S(g")} is Cauchy with respect to the probability convergence in 
the space IR of random variables on the probability space (f2, N, Pr) for which 
the stochastic process z is defined (in P, two random variables which are equal 
a.e. are identified throughout the paper), because for any compact set D and 
e>0  there is an N such that for n, m > N  the c.f. C~s(g.)_s(gm)(s) satisfies 
t~bS(g.)_S(gm)-ll%e uniformly in seD. Then there is a random variable S(g) to 
which the sequence {S(g")} converges in probability. It is evident that S(g) does 
not depend upon the choice of sequences of simple functions. Now define the 

stochastic integral i g(c~)dz(2) by setting it equal to S(g). The next lemma is 

an obvious consequence of the preceding argument. 

Lemma 1.1. Given gl, "",gk sLy, the c.f Cs(gl) ..... s(g~)(sl, ..., Sk) of the joint distribu- 
tion of S(gl), ..., S(gk) is given as 

..... exp{ 4 
To the space N of complex-valued random variables on (~2, N', Pr) a to- 

pology is endowed such that probability convergence of a sequence of random 
variables is equivalent to the convergence with respect to that topology, and it 
is termed P-topology. Specifically, for each x~N let Vx(e, 2)={y~lR: Pr(lx 
- y l < e ) > l - r / }  for e, r/>0; then the set {Vx(e,r/): e > 0 , 0 < r / < l }  is a neigh- 
bourhood base of P-topology. Denote by /5(A) the completion of the linear 
hull of an arbitrary subset A of /2  and denote by IS(f);  f sA]  the completion 
with respect to P-topology in ~ of the linear hull of {S(f); f~A}. 

Theorem 1.1. Let S be the mapping S ( f ) =  i f(2)dz(2); then it is a topological 
isomorphism of Ig(A) onto [S(f): f6A]. -~ 

Proof The continuity of S follows from the definition of the stochastic integral 
and from the inequality (1.3). It is subjective: For each xe[S(f); f~A], there is 
a sequence {g": gn~A, n=  1,2, ...} such that {S(g")} converges to x in probabili- 
ty, where A is the linear hull of A. Since then {S(g")} is Cauchy, it holds for the 
c.f. 

~)s(g~)-S(gm)(s)=exp { - -~i -~i [Re {S(gn--gm) e-i~ F(d)., dO)} 

that, given e > 0, there exists N such that for n, m > N 

max 4)s~g.) -s(g~)(~) < ~- (1.5) 
I~l = 1 

i(rg+~] Then by setting s~ =e  ~ and s a =e  2, it is seen that 

(�89 Ig"-gml=G(dA)< ~ [Resj(g"-g'~)e-~~ dO)<2e. 
- ~  j =  1 - ~  - ~  
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Thus it is concluded that the sequence {g"} is Cauchy, and that g" converges to 
gEE(A). It is evident that S(g)=x. Since S is continuous and bijective the 
Banach homomorphism theorem implies that S is an open-mapping [-see 
Schaefer (1971)]. [] 

A discrete-parameter stochastic process {Yt} (tel) is said to be stationary if 
for any finite subset (t 1 ... .  ,tk) of I and any integer l(ytl+z,...,yt~+z ) has the 
same distribution as (Ytl, ..., Yt~). An independent-increments stable process z(2) 
is said to be isotropic if for any 2 and c o ( - ~ < 2 ,  co<z0, z(2) and z(2)e i~ have 
the same distributions; in other words, if the distribution of z()~) is preserved 
under rotational transformations. A discrete-parameter process {xt: teI} which 

is representable as xt= i eitXdz(2) for an independent-increments stable pro- 

cess z(2) based on a weight function is called harmonizable. 

Theorem 1.2. The process z(2) is isotropic if and only if the harmonizable process 
xt= ~ e ixt dz(2) is stationary and has the c.f.'s which are representable as 

4)t ...... t j(sl , . . . ,sj)=exp{-!,~ ;=~ slei~tl~G(do.))} (1.6) 

for a non-negative, bounded, non-decreasing function G. 

Proof Suppose z(2) is isotropic; then for a weight function F, the c.f. q~x(t) of 
z(2) is representable as 

(o~(s)=exp{-ls]~ i lcos(O-O)l~F(2, (1.7) 

for any 0(-r~<0__<~). Consequently ~bx is expressed as 4)x(s)=exp{-lsl~G(.~)} 

where G(2)= (V2_ i ]coslpl~d01F(2, rc). Then in view of the construction of 
\LT~ 

stochastic integrals xt= ~ exp(itco)dz(o~) and of Lemma 1.1, the c.f. of 

xt~,... ,xt, ~ is representable as given in (1.7). Conversely suppose a harmonizable 
process x t has the c.f. of the form (1.6). Given 2 ( - n < 2 < ~ z )  and 

e ( 0 < e < ~ ) ,  denote by hx and hx,~ the functions defined on ( - ~ , ~ ]  re- 

spectively such that hA(co)= 1 for coe(--rc, 2] and hx(co)=0 otherwise; hx,~(co)= 1 
co-J.  

for cos(-Tc,)~] h x , ~ ( c o ) = l - - -  for coe(2,~.+e], hx.~(co)=0 for e)s(2+e,  rc-e), 

C 0 - - ~ + 8  
and h x , ~ ( c o ) = - -  for m e ( g - e ,  ~]. Since ha, ~ is continuous, the sequence of 

8 

the Cesaro means converges uniformly to it. In other words, there exists a 

sequence {a j , , : j=  - n  ....  , 0 , . . . , n ; n = l , 2 , . . . }  such that p,(o))= ~ aj,,e ioj con- 

i j=-n verges uniformly to h~,~. Since the c.f. o f y , - -  P,(co)dz(co) is given by 
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it is concluded that the c.f. ,of S(hx,~) is given by 

OS(h~,~)(s)=exp{-ls]~ 'h~i~l~G(dco)} �9 

In view of the fact that hx,~(co ) converges monotonically to hx(co) for all ~o and 
that S(hx)= z(2), the c.f. ~bx of z(2) is given by 

and thus z(2) is isotropic. As for the isotropicity of z(Tc), it is a straightforward 

consequence that z(rc)= i dz(@=xo" [] 
-/r 

As in the preceding theorem, let F be a weight function and let 

The next theorem is a little stronger version of that given by Urbanik (1968, 
p. 80) as far as harmonizable stable processes are concerned in the sense that 
his proof applies to the case where F(., 0) has no jumps for all 0 whereas the 
next one requires only that F(.,  0) has no jumps for all 0 on those points {2} 
such that 2/2rc is rational. 

Theorem 1.3. Suppose an independent-increment process {z(2)} is based on F such 
that for all O,F(2, O) has no jumps on points 2 such that - ~ < 2 < r c  and 2/27~ is 

rational, then a harmonizable stable process x t = i exp(icot)dz(@ is stationary if 
and only if  the process {z(co)} is isotropic. -~ 

Proof The sufficiency is evident. The necessity is proved as follows. Because of 
the stationarity of {xt}, it holds that for every integer k 

- -~  S .  i e ) t j  

(1.8) 

= S ~ s~ ei~ [c~176176176 dO) 
- -~  --~z j ~  1 

where 0(~) is the argument of the complex number Z s y  ~'tJ. Now it follows 
from Weyl's theorem (see Breinan (1968) p. 117, for example) that, for ~o such 
that co/27~ is irrational, 

1 
~in'l ~ kZl= Ic~176 = i Ic~176 d~ 

-" (1.9) 

= ~ rcos 21 ~ d2. 
--TT 
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Hence in view of the bounded-convergence theorem, it follows from (1.8) that 

i i 12sy~ Icos(O(co)- 0)1 ~ F(dco, dO) 

= IS, sje~'~[ ~ f(do), dO) (1.t0) 

-- i t S s j e~ l~  G(do9). 

This equation implies that the c.f. of (x~,... ,  x~) is written as in the form of the 
right-hand side of (1.6) in Theorem 1.2. 

Remark 1. An example of a harmonizable stationary stable process {Xt} with a 
non-isotropic independent-increments process is this. Suppose the function F is 
such that it gives the unit masses to each of the lattice points 

( -~z+~-), - ~  , j , k =  1, ...,4. 

Then the c.f. of xtl, . . . ,  xt, is given as 

2 2 k .:~m ~nxlcQ 

qSt ...... t~(sa . . . .  ,Sk)=exp -- 2 ~ 2 Resj  e ' t T t j - T }  ~. 
m = - - I  n = - - I  j = l  .)  

It is evident that ~btl ..... ~(s 1 . . . .  ,sk)=q~t~+t ..... rk+z(St,...,Sk) for all integer h thus 
{xt} is stationary. On the other hand, since the c.f. of z(2) is given as 

~bx(s ) = exp - Re se ~ -2- -T  ~ 
m = - 1  n = - - I  

where l - - [ ~ ]  and consequently ~b~ is not invariant under orthogonal trans- 

formations s-~ s e i~. 

Remark 2. An independently identically distributed (i.i.d.) sequence of Gaussian 
random variables is harmonizable and plays the basic role in the family of 
Gaussian stationary processes in that a stationary process with given spectral 
structure can be reduced to and also can be constructed from an i.i.d, sequence 
through appropriate linear filter. However, this is not the case for stable 
processes with exponent less than 2. In this connection, it is important to note 
the fact that any i.i.d, sequence of isotropic random variables whose exponent 
is less than 2 is not harmonizable except for the degenerate case. 

The c.f. of a complex-valued isotropic random variable x which has a 
symmetric stable distribution with exponent ~ is expressed as e x p ( - b N  ~} 
(b>0). Following Schilder (1970), define the length ttxtl of x as ttxll =b  ~/~ for 
1_<~_<2 and IIxll =b  for 0 < ~ < 1 .  The following properties concerning to this 
length are derived as a straightforward extension of his result. Given a family 
~ of random variables such that any linear combination of elements in ~ is 
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isotropically, stably distributed with exponent ,, then the length 11 II is a metric 
on the family N=; namely, if Ilxll =0, x = 0  (note that two random variables 
which are identical a.e. are identified) and IIx 1 +x21l <_-IIx~ll + IIx~ll. If x 1 and x 2 
are independent, 

and 

lIxl-+-x2ll=ilxlll-I-llx211 if 0 < , < 1  

Ilxl +x2ll~:llxlll~+l[x2[I ~ if 1 < . < 2 .  

Given {z(2)} an isotropic independent increments process with e x p o n e n t . ,  
llz(2)]l is a bounded, nondecreasing function ( - r t ,  ~t]. Denote b y / 2  the space of 
.- th power integrable Borel functions with respect to d Itz(,qll for 0 < . <  1 and 
to d llz(.~)ll = for 1 _<.<2. Suppose fe/~,  then 

" i ~f(co)dz(~o) = If(~o)l~dllz(,~)ll, for 0 < ~ < 1 ,  
-rt  0.11) 

= ff If(co)[~d(llz(~)ll~), for 1_<,<2. 

Let J be a set of integers and denote by /2 (eit: t~J) the completion of the 
linear hull of the set {el't: t~J} in the space /2 of ,-th power integrable 
functions with respect to dllzil for 0 < , < 1  and to d(llz]l ~) for 1<,_<2.  Mo- 
reover let Ix,: t~,l] be the closure with respect to probability convergence of 
the linear hull of {xt: t~J}. It is obvious that the length [1 II defined on 
[xt: t e J ]  is a metric. The next theorem is a special form of Theorem 1.1 and 
will be used later in Sect. 3. 

Theorem 1.4. There is an isometric isomorphism S from /2(e i't: t~J) to [xt: teJ] 
such that S(ei't)=xt for teJ. 

Proof Evident in view of Theorem 1.1. 

2. Stochastic Integral with Respect to a Generalized Stochastic Process 

Let @ be the space of complex-valued infinitely differentiable periodic func- 
tions (modulo 2r~) defined on the real line and define norms in this space by 

n 

II IL = i = -~ dcoq do,  n=0,1 ,2 , . . .  (2.1) 

for Oe@. Endow the space ~ with the topology generated by the countable 
family {ll 0lln},~-_ 0 of the above norms; then it is a separable, nuclear, countably 
Hilbert space [see Gel'land and Vilenkin (1968) pp. 80-84]. Denote by F a 
weight function as in the previous section and define a real-valued functional 
C as: 

C(~) = exp { -  i_~ -~iLRe~(2)e-i~ (2.2) 

where ~eN and 0<,__<2. 
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Lemma 2.1. The functional C is a characteristic functional; namely it has the 
properties: (i) C(0)= 1, (ii) C is continuous, (iii) C is non-negative definite. 

Proof (i) and (iii) are obvious. In order to establish (ii), it is sufficient to prove 
C is continuous at 0. Let ej be the j-th Fourier coefficient of (~eg). Since ~ is 

d 2  (co) 
infinitely-differentiable, ~(co) and have the expansion respectively such d co z 
that 

~(co)= ~ a y  '~ and d2~(co)/dco ;= ~ ~i(-ij)2e '~l 
j~ -co j~ -oo 

where each sum converges uniformly. Now given e(> 0), choose ~ such that 

i ;) i 
j = l  -~ - 

Then for ~ such that I] ~ I[ 2 < ~/, 

d 2 ~(~0) 2 ~ ~2. 
j d c o 2  do)= /_.. Ic~jl a j2 < (2.4) 

--~g j ~  - o o  

Hence in view of the relation (2.4) and the inequalities 

[~(co)[ _-<X [~j] _< ] / ~ j l 2 j z )  1 
\ j * 0  J ] 

(2.5) 

it follows that 

i i IRe~(c~176176 i i I~(c~176 <e" (2.6) 

Since 11 ~ll 2 < ]~ is a neighbourhood of 9 at 0, (2.6) implies that C is continuous 
at 0. [] 

Denote the dual space of 9 as 9*,  and # be the probability measure on 9 "  
provided by the Minlos theorem [Minlos (1959)]. The next result is the 
counterpart of Lemma i.1. 

Lemma 2.2. Given f l , . . . , s  the joint c.f. ~)f ...... f k (S l , . . . ,Sk )  of the random 
variables T(fl) , . . . ,  T(fk) is representable as 

~) f l . . . . .  f k  ( $ 1 '  ' ' ' '  Sk) 

{ i i R e ~  ~ } =exp - s* fj(o)) e -  i~ f(dco, dO) , 
--~ --~ j = l  

(2.7) 

where s* is the conjugate of  sj. 

Proof This is a straightforward consequence of the equalities: 

(of ...... f~(sa, ... , Sk) = ~ exp {i Re Zs* T(f~)) d# 

= ~ exp {i Re (Xs* fj,  x )}  dl~(X) = C(Xs* f~). [] 
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The sequence z~=(ei ' t ,z)  (tel), for z as defined in the above, is equivalent 
in distribution to a harmonizable stable process xt=Sei~~ for an inde- 
pendent-increments process z. Moreover if a generalized stochastic process x is 
termed isotropic when x and eiax have the same distribution for all 2, it is 
easily shown that if x is isotropic, the process z t = (e i't, x)  is stationary and any 
subset ztl, .... zt~ of {zt} has the c.f. which is expressed as 

for a nonnegative nondecreasing bounded function G. 
The relation between the spectral representation by means of generalized 

stable process and the one by independent-increments stable process is exhib- 
ited in the next theorem: 

Theorem 2.1. Let {xt} be a stable process defined as x t = ( e i t , x )  for a general- 
ized stable process whose characteristic functional is given as (2.2); then there is 

an independent-increments process {z(2)} such that xt= i ei~~ dz(r a.e., for all 
t~I. -~ 

This theorem is a consequence of the following more general proposition. 
Namely, 

Lemma 2.3. Suppose a discrete-parameter stable process {xt} has finite dimen- 
sional c.f.'s such that 

~tl,.i . ,tk(Sl' ' ' ' 'Sk)=exp{ - --~i -~i lRe Y'sjei(~~176 F(do)'dO)} 

for a weight function F. Then there exists an independent-increments stable 

process {z(2)} such that x~ = i ei~t dz(co), a.e. 

Proof Given 2 ( - n < 2 < n ) ,  let h z and h~,~ he functions on I - re ,  n] defined as 
in the proof of Theorem 1.2. Denote by Xaj ..... e ~~ a Cesaro sum for hx,~. Let 
{e,} be a sequence of positive numbers which nonotonically tend to 0. Then it 
is seen in view of Theorem 1.2 that 

S[Zaj ..... ei~176 G(dco)--*O as n--*~. (2.8) 

Set y ,= ~ aj ...... xj; then the y,'s converge in probability to a random vari- 
j = - n  

able z(2) whose c.f. is expressed as 

Set z(n)=x o. Then the set {z(2)} of random variables constitutes an in- 
dependent-increments stable process, and thus the stochastic integral 

i ' e g~ dz(o~) is able to be defined by means of Schilder's method. In view X t -~- 
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of the construction of the process {z(2)}, however, the joint c.f. 4)(sl,sz, ...,Sk) 
of x~, 

Z(~2)--Z(~I),..., Z(~k)--Z('~k- 1) (--7~ <~21 < ~2 <""  <2k ~7~) 

is given as 

(o (s 1,... , Sk) (2.9) 

=exp [ ..,(h..(.,;<.,.,,e'~ 
On the other hand, there exists a sequence of sums of the form 

s~= X bj, n(hj, n - h j _  l,,) ( -  rc < )bl,n <. . .  < )%n<=~) 

such that for all Sl,... , s k 

lim i i [Res{ei t~-Xbi , , (hxj ,~(c~)-haj  . . . .  (c~176 =0. (2.10) 

Since the difference d ,=x , -2b j , , { z ( )~ j , , ) - z (2 j_ l . n )  } converges in probability 
to x t - x ;  and the c.f. q~(s) of d R is given as 

~b(s)=exp [ -  !~ _~ ",- ' - ,  ] IRe s{e i~ r~bj ,(ha, (o~)-ha, i ,(o~)) e -i~ ~ F(doJ, dO)} , 

it follows from that x t - x ' t = O  a.e. [] 
Though stronger convergences than that in probability are hard to argue 

for the class of random variables which are represented by the stochastic 
integral using independent-increments process, since those integrals are only 
defined as probability limit, it is possible for the class { ( f , x ) : f ~ } .  For 
instance it is evident in view of the definition of duality that if f, ,  n = 1, 2,..., 
converge to f in @ with respect to the topology generated by the countable 
norms (2.1), then T(f , )  converges to T ( f )  a.e. 

As another result pertaining to the process z t = ( e  ~ t , x )  (teI), the following 
theorem established a weak convergence of generalized processes. Given sam- 
ples z , , . . . ,  z, of a harmonizable stable process z t = ( d  "t, x), the Fourier trans- 

form ~ e ~.t zj defines a linear form l on @ by means of identification such 
j=-n 

that for ~ ,  

1(~)=2~ i~(co ) ~ (zje~'J)do). (2.11) 

Lastly a type of point-wise convergence is shown. For a fixed e(1 < ~<2), let 

K.(~o)=(2n+l) '  7" s i n { ( n + ~ )  c@/s in  (2 )  ", if co:4=0; 

= 2 n +  1, if co=0, 
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and define a constant  P~ as 1/P, = S K,(co)dco. Then define D,(2) as 
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D,,(k)=(2rO-1/~P.1/~(2n+ l)(1-~)/~ ~, e i:tj, 
j = - i  

- - ~ N 2 N ~ .  

Suppose that  {xt} is a harmonizable  s tat ionary stable process and that  the 
characteristic function ~b(s . . . . . .  ,s,) of the sample x _ , , x , + l , . . . , x  ~ is repre- 
sented as 

qS(s_,,..., s,) = exp - (2.12) 
- - r e  1 

and F has a density f with respect to the Lebesque measure. Now construct  
statistics I,(2), - rc < 2 < re, as this : 

1.(2) =(2=) -1/~ P~l/~(2n + 1) (1-~)/~ ~ xj exp(i2j). 
j = - i  

(2.13) 

Theorem 2.3. Let 2i, i= 1,2,. . . ,p, be distinct Lebesgue points of f Then I,(,~i) , 
i =  1, 2, ...,p, are asymptotically independent and the c.f. ~i(s) of the asymptotic 
distribution of I,,(.~i) is provided as Oi(s) = exp { - - f  ()Li) ISle}. 

Proof Denote  by ~b,(#l, ... , #p) the joint  c.f. of  In(2i). Then, 

O,(#1,. . . ,#p)=EexP{iRej~=i#jln(Aj) } 

The theorem is a straightforward consequence of Theorem 4.1 of Hosoya  
(1978). [ ]  

3. An Optimal Linear Prediction 

In the theory of linear predict ion of discrete-parameter  strictly s tat ionary 
processes, Urbanik  examines for those processes various concepts of the theory 
of second-order  s tat ionary processes such as deterministic or non-determinist ic  
processes, or Wold's  decomposi t ion [-see Urbanik  (1967, 68, 70)3. However,  it is 
impor tant  to note  that  his theory is framed essentially on his part icular  way of 
defining prediction. Namely,  he calls a s tat ionary process to admit  a predict ion 
if there exists a cont inuous linear opera tor  A from [-x,: te l]  to [xt: t < - 1 ]  
such that  

(i) A x = x  whenever xE[x, : t< - 1]; 

(ii) if a r andom variable x is independent  with every ye[xt:  t< - 1 ] ;  
(iii) for very x.e[x, : t e I ]  and ye[x  t : t< 7 1], x - A y  and 

y are independent.  

(3.1) 
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His concept of linear prediction, however, turns out to be of limited use except 
for Gaussian stationary processes. Actually he shows that if {x~} is a harmoniz- 

able stationary process such that x t=  i e~ot dM(co) for an atomless isotropic 

random measure M, {x~} is completely non-deterministic only if either M---0 
or M is Gaussian [see Urbanik (1968) p. 861. The purpose of this section is to 
consider a prediction problem of harmonizable stationary stable process from 
a less restrictive view, giving a criterion of optimality of prediction and con- 
structing an optimal one-step head predictor. For that purpose, Schilder's idea 
is useful [-see Schilder (1970) p. 420]. He considers the problem of minimizing 

the quantity Y l -  ~ ~jYj with respect to the ~j for a finite set of real-valued 
j=2 

stable random variables yj such that y j = ~  fi(oJ)dz(o~) ( j = l ,  ...,p) where z is a 
- - R  

real-valued independent-increments stable process and q] II is the length as was 
defined in Sect. 1, and he gives a necessary and sufficient condition of the ej 
minimizing ]JYl-~jYjl l  where I] II is the length as defined in Sect. 1. Since, as 
was shown in that section, the length llxll is defined for a complex-valued 
isotropic stable random variable, it is able to be employed for the purpose of 
comparing the goodness of prediction of various predictors. Given a harmoniz- 

able stationary stable process {xt} such that x t=  i ei~176 for an isotropic 

independent-increments stable process z, a one-step a head predictor of x 0 is 
an element of [x~: t__<, 11 and the predictor error of y~[xt: t< - 1] is mea- 
sured in terms of the length [[Xo-yj] , and if there is an element z in [xt: t__< 

- 1] such that ]ix0 - z[l _-< Ilxo - Y]L for all y~ Ix: t < - 1], the random variable z 
is called optimal (the symbol [-x t �9 t < - 1 ]  was defined in the last paragraph of 
Sect. 1). It is to be noted that if there is an optimal predictor, it will usually be 
not a predictor in Urbanik's sense except for in the case of Gaussian process, 
since his conditions (ii) and (iii) are violated. Now as the next theorem states, 
an optimal one-step ahead predictor in the above sense exists under appropri- 
ate conditions on the process z, and as the proof of the theorem will show, it is 
actually able to be constructed by an extension of Kolmogorov and Wiener's 
result for second-order stationary processes. The result is summarized i n  the 
following. 

Theorem 3.1. Let xt= i eit~~ dz((~) be a harmonizable stationary stable process 

for an isotropic independent-increments process {z(2)} such that the measure 
induced by IIz(,~)ll ~ has a density f(2) with respect to the Lebesque measure. I f  

i l og f (c~)dco>-or ,  there exists an optimal predictor x* in [-x~: t < - 1 ]  of x o 

andthen [[x._x0lJ~ =2re exp (~_ ~ i log f(co) dco). 

I f  i logf (co)dco=-oo ,  there exists a predictor y in [-xt: t < - l l  such that 

y* --x 0 a.e. 
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The rest of the section is for the proof of this theorem and the proof is 
broken into steps where results are given as lemmas. First, suppose that 

i logf (co)d~o>-oe .  Then an optimal predictor is constructed as follows: 

Since _1 l o g f  is then integrable, it has the formal Fourier series 
6( 

_ 1 !,logf(2)e_~,Xd2. l l o g f ( 2 ) ~  ~, anei"* where an=2~-~ 
(~ - - 0 0  

By means of these coefficients, construct a function g defined on the open unit 

disk of the complex plane as g(z)= a + 2 ~ a, z n. Since {an} is bounded, g is 
analytic. Set ~= 1 

c(z)= ~ cjz j where ~ cjzJ=(2z@/=exp{g(z)}, [zl<l. 
j=o j=o 

Note that c(z) is analytic on the open unit disk. For r such that 0 < r < 1, 

i Ic(re-i~)l~ d2=2rc i exp{e Reg(reiZ)} d2 
- - g  --7~ 

=2re exp ~ -  P~(O-2)log[f(O)]~/2dO d2 

<2re i If(O)] ~/2 dO<~ 

where P~(O-2)=(1-rZ)/(1-2rcos(O-r)+r2). Therefore it is seen that c(z) be- 
longs to the Hardy space /-P, and the boundary value c(e-~Z)=limc(re -~) 
exists a.e. Also it follows from the construction of c that ,-1 

2rclc(e-iX)l~=f(2) a.e. and c0=2rcex p logf (2 )d2  . 

Now set p(2)= ~ cje-J~/c(e-~X). 
j = l  

Lemma 3.1. p~Ig(ei't; t< 1). 

Proof The Fourier coefficients bj of p satisfy that bj =0  for j >0. Also it holds 
that 

i Ip(2)pf(2)d2<=2 i f(2)d2+2~ZlCol ~<~176 [] 

In view of Theorem 1.4, there exists an element x* of [x~ : t < - 1] such that 
S(p)=x*, and x * - x  o has the distribution whose characteristic function ~b(u) is 
given as 
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4(u)=exp {-]ul~ i ll -4)(2)l~ f (Z) d2} =exp{ -co 

__ 

Lemma 4.2. If x~[x t ; t<= - 1], then lix* -xoll < ]Ix -Xol[. 

Proof In view of Theorem 1.4, for x, there exists g 6 L ~ ( { t < - 1 } ; f )  such that 
the characteristic function of x - x  o is written as 

exp{-lul~ll-g(oo)l~f(co)dco} 

and moreover that there exists a sequence {a], . . . ,  a~}, n = 1, 2 . . . .  and 

i 1-ks__~l "" a a~e~/~ f(co) do 

converges to i II-g(c~176 de~ as n tends to infinity. On the other hand, 
--gZ 

Szego's theorem [see Achiezer (1956), p. 2621 maintains that if w(oo) be an 

integrable function such that i log w(co) d o  > - o% 

lim min i [ l+A~e ~'~ 
n ~ o o  A k  - -  I~  

t 
Therefore 

Ii-g(co)l f(co)dco>2rcexp ~ logf(co)dco . [] 

Lemma 3.3. In case i logf(~o)de)= - ~ ,  there exists a predictor z* in [xt; t<= 
- -  TZ 

--1] such that z * - x o = O  a.e. 
Proof Let l be a positive number and define fl as: fl(co)=f(~o) if f (c~)>l  and 
fi(co)=l if f(~o)<l. Let x(1) be the optimal predictor constructed according to 
the foregoing argument when the spectral density is given as fz. Let Pz be an 

element in L~({t<-l},m) corresponding to x(l) note that S [P~I ~dc~176176 ; 
--TZ 

then it follows from the already established result that 

P(Pl,f~)-- II-pl(co)l~fz(co)dog--2~exp ~ logfz(co)dco . (3.2) 
--TZ - - ~  

Let {l," n= l ,2 , . . . }  be a sequence of positive constants such that limln=0. It 
can be shown that {x(/,)} is a Cauchy sequence in probability. For that 
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purpose, note that P(p~,f)  monotonically decreases to 0 as l~0,  and also that 

i l1 -pl(co)[~f(co) de) 
--TZ 

-- i J1 -p~(co)l~fz(~o) de) + i 11 -p~l ~ (f(co)-f(co)) de) 

< (27r + 1) P(p~,f~). 

For any positive m and n, x ( l , . ) -x ( l . )  has the characteristic function given as 

exp{ 
Then according to the inequality (3.3), 

i IPtm(c~ - Pl~176 f(c~ d o  

can be made arbitrarily small for sufficiently large n and m. Thus it follows 
that {x(/,)} is Cauchy in probability. Thus it converges to a random variable z* 
in [xt; t <  - 1 ] .  It is evident that z * - x  o is equal to 0 a.e. [] 
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