A Method for the Derivation of Limit Theorems for Sums of \boldsymbol{m}-dependent Random Variables

Lothar Heinrich

Bergakademie Freiberg, Sektion Mathematik, Bernhard-von-Cotta-Str. 2, DDR-9200 Freiberg

1. Introduction

Let $\left(X_{k}\right)_{k=1,2, \ldots}$ be a sequence of random variables ($r v$'s) which are defined on a probability space $(\Omega, \mathfrak{H}, P)$. For $a \leqq b$, let $\mathfrak{M}_{a}^{b}=\sigma\left(X_{a}, \ldots, X_{b}\right)$ denote the σ algebra of events generated by X_{a}, \ldots, X_{b}. We put $E X_{k}=0, k=1,2, \ldots$, and write $S_{N}=X_{1}+\ldots+X_{N}, B_{N}^{2}=E S_{N}^{2}, F_{N}(x)=P\left(S_{N}<x B_{N}\right), f_{N}(z)=E e^{z S_{N}}$ and $\Delta_{N}(x)$ $=\left|F_{N}(x)-\Phi(x)\right|$, where $\Phi(x)$ is the standard normal distribution. The sequence $\left(X_{k}\right)_{k=1,2, \ldots}$ is called m-dependent if for $1 \leqq s<t<\infty, t-s>m$, the σ-algebras \mathfrak{A}_{1}^{s} and $\mathfrak{g l}_{t}^{\infty}$ are independent (see [12]). For example, the sequence X_{k} $=h\left(\xi_{k}, \ldots, \xi_{k+m}\right), k=1,2, \ldots$, where $\left(\xi_{j}\right)_{j=1,2, \ldots}$ are independent $r v$'s and $h \mid R^{m+1} \rightarrow R^{1}$ Borel-measurable, is m-dependent.

Sequences of m-dependent $r v$'s are special cases of ϕ-mixing sequences (see $[12,13])$. In general the estimates of the error $\Delta_{N}(x)$ for ϕ-mixing sequences are cruder than in the case of m-dependence (see [13]). Recently, many authors studied the error $A_{N}(x)$ for m-dependent $r v$'s. The reader is referred to $[1,2,8$, $9,12,13]$. Perhaps the best published result on uniform bounds of $\Delta_{N}(x)$ is that of V.V.Shergin [9], who shows that under the assumption $E\left|X_{k}\right|^{3}<\infty, k$ $=1,2, \ldots, N$, the discrepancy $\Delta_{N}(x)$ is less than

$$
c_{1}(m+1)^{2} \sum_{k=1}^{N} E\left|X_{k}\right|^{3} B_{N}^{-3} .
$$

Here and below, c_{1}, c_{2}, \ldots denote positive constants (not depending on N). θ stands for a complex number with $|\theta| \leqq 1$ which may be differ from one expression to another and χ_{A} denotes the indicator function of the event A. indicates the end of a proof.

The main purpose of this paper is to provide a general method for the derivation of limit theorems for sums of m-dependent $r v$'s. This method is based on a factorization of the characteristic (moment-generating) function $f_{N}(i t), t \in R^{1},\left(f_{N}(z), z \in C^{1}\right)$ in some neighbourhood of $t=0(z=0)$. Section 4 contains some results concerning asymptotic expansions of $F_{N}(x)$ and large
deviations of S_{N}. In Sect. 5, these theorems are proved by using the basic relations of Sect. 3 and the standard procedures from the summation theory of independent $r v$'s (see [7]). By the given factorization of $f_{N}(i t)$ it is possible to derive further results for sums of m-dependent $r v$'s and random vectors, for example: convergence to infinitely divisible distributions, non-uniform bounds of $\Delta_{N}(x)$ and so on. The factorization of the characteristic function of a sum of dependent $r v$'s was first used by the author in order to investigate the limit behaviour of sums of $r v$'s connected in a Markov chain (see [3-6]).

2. Preliminary Lemmas

For a sequence of arbitrary complex-valued $r v$'s Y_{1}, Y_{2}, \ldots the symbol $\widehat{E} Y_{1} Y_{2} \ldots Y_{k}$ is defined recursively by:

$$
\begin{align*}
& \widehat{E} Y_{1} Y_{2} \ldots Y_{k}=E Y_{1} Y_{2} \ldots Y_{k}-\sum_{j=1}^{k-1} \widehat{E} Y_{1} \ldots Y_{j} E Y_{j+1} \ldots Y_{k} \text { for } k \geqq 2^{1} \tag{2.1}\\
& \text { and } \hat{E} Y_{1}=E Y_{1} .
\end{align*}
$$

This symbol was at first defined (in another way) by V.A. Statulevičius [11]. The above equivalent definition was given by the author [3].

Applying (2.1) successively, we get

$$
\begin{align*}
\widehat{E} Y_{1} Y_{2} \ldots Y_{k}= & \sum_{l=1}^{k}(-1)^{l-1} \sum_{\substack{k_{1}+\ldots+k_{l}=k \\
k_{i} \geqq 1}} E Y_{1} \ldots Y_{k_{1}} E Y_{k_{1}+1} \ldots Y_{k_{1}+k_{2}} \tag{2.2}\\
& \ldots E Y_{k_{1}+\ldots+k_{l}-1+1} \ldots Y_{k}
\end{align*}
$$

Similarly to (2.2) we can show (see [3])

$$
\begin{align*}
& \hat{E}\left(Y_{1}+a_{1}\right)\left(Y_{2}+a_{2}\right) \ldots\left(Y_{k}+a_{k}\right) \\
& \quad=\sum_{l=2}^{k} \sum_{1=q_{1}<q_{2}<\ldots<q_{l}=k} \hat{E} Y_{q_{1}} Y_{q_{2}} \ldots Y_{q_{l}} \prod_{\substack{j=2 \\
j \neq q_{2}, \ldots, q_{l}-1}}^{k-1} a_{j}, \tag{2.3}
\end{align*}
$$

where $a_{1}, a_{2}, \ldots, a_{k}$ are arbitrary complex numbers.
Another result is concerned with the differentiation of $\hat{E} Y_{1}(t) \ldots Y_{k}(t)$, where $\left(Y_{j}(t)\right)_{j=1, \ldots, k}$ are differentiable $r v$'s (with respect to the parameter t). If differentiation and expectation are exchangeable, then the following analogue to Leibniz's rule holds (see [3]): ${ }^{2}$

$$
\begin{aligned}
\frac{d^{p}}{d t^{p}} \widehat{E} Y_{1}(t) \ldots Y_{k}(t)= & \sum_{\substack{p_{1}+\ldots+p_{k}=p \\
p_{k} \geqq 0}}\binom{p}{p_{1} \ldots p_{k}} \widehat{E} Y_{1}^{\left(p_{1}\right)}(t) \ldots Y_{k}^{\left(p_{k}\right)}(t) \\
= & \sum_{i=1}^{\min (p, k)} \sum_{p_{1}+\ldots+p_{l}=p}\binom{p}{p_{1} \ldots p_{l}} \sum_{1 \leqq i_{1}<\ldots<i_{l} \leqq k} \widehat{E} Y_{1}(t) \\
& \ldots Y_{i_{1}}^{\left(p_{1}\right)}(t) \ldots Y_{i_{l}}^{\left(p_{l}\right)}(t) \ldots Y_{k}(t) .
\end{aligned}
$$

[^0]Lemma 2.1. Let U_{1}, \ldots, P_{p} and V_{1}, \ldots, V_{q} be arbitrary $r v$'s with $E\left|U_{i}\right|^{p}<\infty$, $i=1, \ldots, p$ and $E\left|V_{j}\right|^{a}<\infty, j=1, \ldots, q$. If the σ-algebras $\sigma\left(U_{1}, \ldots, U_{p}\right)$ and $\sigma\left(V_{1}, \ldots, V_{q}\right)$ are independent, then

$$
\widehat{E} U_{1} \ldots U_{p} V_{1} \ldots V_{q}=0
$$

Proof. Because of the Definition (2.1) and the assumptions of Lemma 2.1 we have

$$
\begin{aligned}
& \widehat{E} U_{1} \ldots U_{p} V_{1} \ldots V_{q}=E V_{1} \ldots V_{q}\left(E U_{1} \ldots U_{p}-\sum_{i=1}^{p-1} \hat{E} U_{1} \ldots U_{i} E U_{i+1} \ldots U_{p}\right) \\
&-\hat{E} U_{1} \ldots U_{p} E V_{1} \ldots V_{q}-\sum_{j=1}^{q-1} \hat{E} U_{1} \ldots U_{p} V_{1} \ldots V_{j} E V_{j+1} \ldots V_{q} \\
&=-\sum_{j=1}^{q-1} \hat{E} U_{1} \ldots U_{p} V_{1} \ldots V_{j} E V_{j+1} \ldots V_{q} .
\end{aligned}
$$

In the same way we get

$$
\widehat{E} U_{1} \ldots U_{p} V_{1}=E V_{1}\left(E U_{1} \ldots U_{p}-\sum_{i=1}^{p-1} \widehat{E} U_{1} \ldots U_{i} E U_{i+1} \ldots U_{p}-\hat{E} U_{1} \ldots U_{p}\right)=0
$$

Repeating the above procedure we obtain the assertion of Lemma 2.1.
Corollary 2.1. If Y_{1}, \ldots, Y_{k} are 1-dependent rv's with $E\left|Y_{j}\right|^{k}<\infty, j=1, \ldots, k$, then we have

$$
\begin{equation*}
\widehat{E}\left(Y_{1}+a_{1}\right)\left(Y_{2}+a_{2}\right) \ldots\left(Y_{k}+a_{k}\right)=\widehat{E} Y_{1} Y_{2} \ldots Y_{k} \tag{2.5}
\end{equation*}
$$

where a_{1}, \ldots, a_{k} are arbitrary complex numbers.
Proof. By Lemma 2.1 and the 1-dependence we have $\hat{E} Y_{q_{1}} Y_{q_{2}} \ldots Y_{q_{l}}=0$ for $1=q_{1}<q_{2}<\ldots<q_{l}=k, 2 \leqq l<k$. Using (2.3) we immediately get (2.5).

Lemma 2.2. Let Y_{1}, \ldots, Y_{k} be 1-dependent rv's with $E\left|Y_{j}\right|^{2}<\infty, j=1, \ldots, k$. Then the following estimate holds:

$$
\begin{equation*}
\left|\widehat{E} Y_{1} Y_{2} \ldots Y_{k}\right| \leqq 2^{k-1} \prod_{j=1}^{k}\left(E\left|Y_{j}\right|^{2}\right)^{1 / 2} . \tag{2.6}
\end{equation*}
$$

Proof. We prove relation (2.6) by induction. Clearly (2.6) holds for $k=1$. By Schwarz's inequality and the 1-dependence we have

$$
\begin{align*}
\left|E Y_{j+1} \ldots Y_{p}\right| & \leqq\left(E\left|Y_{j+1} Y_{j+3} \ldots\right|^{2}\right)^{1 / 2}\left(E\left|Y_{j+2} Y_{j+4} \ldots\right|^{2}\right)^{1 / 2} \\
& =\prod_{i=j+1}^{p}\left(E\left|Y_{i}\right|^{2}\right)^{1 / 2} \tag{2.7}
\end{align*}
$$

Let us assume that (2.6) is valid for $k=1, \ldots, p-1$. Using the Definition (2.1) for $k=p$ and (2.7), it is easy to see that (2.6) also holds for $k=p$.

Let there be given a sequence of m-dependent $r v^{\prime} s X_{1}, X_{2}, \ldots, X_{N}$. We can construct the following sequence of 1-dependent $r v$'s:

$$
\begin{equation*}
Y_{k}=\sum_{j=1}^{m} X_{m(k-1)+j}, \quad k=1, \ldots,\left[\frac{N}{m}\right] \quad \text { and } \quad Y_{\left[\frac{N}{m}\right]+1}=S_{n}-\sum_{k=1}^{\left[\frac{N}{m}\right]} Y_{k} .{ }^{3} \tag{2.8}
\end{equation*}
$$

Therefore, it suffices to consider the case $m=1$. We use the notations of Section 1 and put $M_{p N}=\max _{1 \leqq k \leqq N} E\left|X_{k}\right|^{p}$,

$$
w_{N}(z)=\max _{1 \leqq k \leqq N}\left(E\left|e^{2 X_{k}}-1\right|^{2}\right)^{1 / 2}, \quad K_{N}=\left\{z \in C^{1}: w_{N}(z) \leqq 1 / 6\right\}
$$

Lemma 2.3. If X_{1}, \ldots, X_{N} are 1-dependent rv's with $M_{p N}<\infty$, then the following estimate holds:
$\left|\frac{d^{p}}{d t^{p}} \widehat{E}\left(e^{i t X_{j}}-1\right) \ldots\left(e^{i t X_{k}}-1\right)\right| \leqq_{M_{p N}(k-j+1)^{p} 2^{2(k-j)}, k-j<2 p}^{M_{p N}(k-j+1)^{p} 2^{3 p+1}\left(2 w_{N}(i t)\right)^{k-j-2 p}, k-j \geqq 2 p,}$
where $1 \leqq j<k \leqq N$.
Proof. To prove relation (2.9) we replace the $r v^{\prime} s\left(Y_{i}\right)_{i=1, \ldots, k}$ in (2.4) by $e^{i t X_{1}}-1$, $l=j, \ldots, k$. Using (2.2), the well-known inequality $\left|e^{i t x}-1\right| \leqq 2$, Hölder's inequality and keeping in mind the 1 -dependence, it follows easily that

$$
\left|\widehat{E} \ldots Y_{i_{1}}^{p_{1}} e^{i t X_{i_{1}}} \ldots Y_{i_{l}}^{p_{l}} e^{i t X_{i_{l}}} \ldots\right| \leqq \begin{cases}M_{p N} 2^{3 l+1}\left(2 w_{N}(i t)\right)^{k-j-2 l}, & k-j \geqq 2 l \\ M_{p N} 2^{2(k-j)-l+1}, & k-j<2 l\end{cases}
$$

for $j \leqq i_{1}<\ldots<i_{l} \leqq k$.
Therefore the identity

$$
\sum_{i=1}^{\min (p, k-j+1)} \sum_{\substack{p_{1}+\ldots+p_{1}=p \\ p_{i} \geqq 1}}\binom{p}{p_{1} \ldots p_{t}}\binom{k-j+1}{l}=(k-j+1)^{p}
$$

implies the desired estimate (2.9).

3. Factorization of the Characteristic Function of a Sum of 1 -dependent Random Variables

We are now in position to formulate the main lemmas of this paper.
Lemma 3.1. Let X_{1}, \ldots, X_{N} be a sequence of 1-dependent r 's. Then the product representation

$$
\begin{equation*}
E e^{z S_{N}}=\varphi_{1}(z) \varphi_{2}(z) \cdot \ldots \cdot \varphi_{N}(z) \tag{3.1}
\end{equation*}
$$

holds for each $z \in K_{N}$, where $\varphi_{1}(z)=E e^{X_{1}}$ and for $k=2, \ldots, N$

$$
\begin{equation*}
\varphi_{k}(z)=\frac{E e^{z S_{k}}}{E e^{z S_{k-1}}}=E e^{z X_{k}}+\sum_{j=1}^{k-1} \frac{\hat{E}\left(e^{z X_{j}}-1\right)\left(e^{z X_{j+1}}-1\right) \ldots\left(e^{z X_{k}}-1\right)}{\varphi_{j}(z) \varphi_{j+1}(z) \ldots \varphi_{k-1}(z)} \tag{3.2}
\end{equation*}
$$

[^1]Furthermore, the following estimates are true for each $z \in K_{N}$ and $k=1,2, \ldots, N$:

$$
\begin{equation*}
\left|\varphi_{k}(z)-1\right|_{(\overline{>})}\left|E e^{z X_{k}}-1\right|+\frac{2\left(E\left|e^{z X_{k-1}}-1\right|^{2} E\left|e^{z X_{k}}-1\right|^{2}\right)^{1 / 2}}{1-4 w_{N}(z)} \tag{3.3}
\end{equation*}
$$

or

$$
\left.\left|\varphi_{k}(z)-1\right|_{(\bar{\lambda})}^{\leqq}\left|E e^{z X_{k}}-1\right|+6(-) w_{N}(z)\right)^{2} .
$$

Proof. Applying the elementary symmetry property $\widehat{E} Y_{1} Y_{2} \ldots Y_{k}=\widehat{E} Y_{k} \ldots Y_{2} Y_{1}$ for arbitrary $r v$'s, we get from (2.1)

$$
E e^{z S_{k}}=\widehat{E} e^{z X_{1}} \ldots e^{z X_{k}}+\sum_{j=1}^{k-1} E e^{z S_{j}} \widehat{E} e^{z X_{j+1}} \ldots e^{z X_{k}}
$$

Taking into account that $\varphi_{1}(z)=E e^{z X_{1}}$ and $\varphi_{j}(z)=E e^{z S_{j}} / E e^{z S_{j-1}}, j=2, \ldots, k-1$, we have

$$
\frac{E e^{z S_{k}}}{E e^{z S_{k-1}}}=E e^{z X_{k}}+\sum_{j=1}^{k-1} \frac{\widehat{E} e^{z X_{j}} \ldots e^{z X_{k}}}{\varphi_{j}(z) \ldots \varphi_{k-1}(z)}
$$

Finally, using Corollary 2.1, we obtain the representation (3.2). Now, our problem is to estimate $\left|\varphi_{k}(z)-1\right|$ in certain neighbourhood of $z=0$. We shall prove (3.3) by induction.

Clearly $\left|\varphi_{1}(z)-1\right|=\left|E e^{z X_{1}}-1\right|$. By Lemma 2.2 we conclude that

$$
\begin{align*}
& \left|\widehat{E}\left(e^{z X_{j}}-1\right) \ldots\left(e^{z X_{k}}-1\right)\right| \\
& \quad \leqq 2^{k-j}\left(w_{N}(z)\right)^{k-j-1}\left(E\left|e^{z X_{k-1}}-1\right|^{2} E\left|e^{z X_{k}}-1\right|^{2}\right)^{1 / 2} \tag{3.4}
\end{align*}
$$

Let us assume that (3.3) holds for $\left|\varphi_{j}(z)-1\right|, j=1, \ldots, k-1$. Then $z \in K_{N}$ implies that

$$
\begin{equation*}
\max _{1 \leqq j \leqq k-1}\left|\varphi_{j}(z)-1\right| \leqq w_{N}(z)+6\left(w_{N}(z)\right)^{2} \leqq 2 w_{N}(z) \tag{3.5}
\end{equation*}
$$

Note that

$$
\frac{2 w_{N}(z)}{1-\max _{1 \leqq j \leqq k-1}\left|\varphi_{j}(z)-1\right|} \leqq \frac{2 w_{N}(z)}{1-2 w_{N}(z)} \leqq \frac{1}{2}
$$

and hence combining (3.4) and (3.5), we get

$$
\begin{aligned}
\left|\varphi_{k}(z)-1\right| \leqq & \left|E e^{z X_{k}}-1\right|+\frac{2\left(E\left|e^{z X_{k}-1}-1\right|^{2} E\left|e^{z X_{k}}-1\right|^{2}\right)^{1 / 2}}{\left|\varphi_{k-1}(z)\right|} \\
& \times \sum_{j=1}^{k-1}\left(\frac{2 w_{N}(z)}{1-\max _{1 \leqq i \leqq k-1}\left|\varphi_{i}(z)-1\right|}\right)^{k-j-1} \leqq \mid E e^{z X_{k}-1 \mid} \\
& +\frac{2\left(E\left|e^{z X_{k-1}}-1\right|^{2} E\left|e^{z X_{k}}-1\right|^{2}\right)^{1 / 2}\left(1-2 w_{\mathrm{N}}(z)\right)}{\left(1-\left|\varphi_{k-1}(z)-1\right|\right)\left(1-4 w_{N}(z)\right)}
\end{aligned}
$$

which proves (3.6). In the same way one can show the validy of " \geqq " in (3.6).

Lemma 3.2. Let X_{1}, \ldots, X_{N} be a sequence of 1-dependent rv's. Then the estimate

$$
\begin{align*}
& \left|\log E e^{z S_{N}}-\sum_{k=1}^{N} E\left(e^{z X_{k}}-1\right)-\sum_{k=2}^{N} \hat{E}\left(e^{z X_{k-1}}-1\right)\left(e^{z X_{k}}-1\right)\right| \\
& \quad \leqq 2 w_{N}(z)\left(\sum_{k=1}^{N}\left|E e^{z X_{k}}-1\right|+22 \sum_{k=1}^{N} E\left|e^{z X_{k}}-1\right|^{2}\right) \tag{3.6}
\end{align*}
$$

holds for each $z \in K_{N}$.
Proof. Using (3.1) and (3.2) we decompose the cumulant-generating function of S_{N} as follows:

$$
\log E e^{z S_{N}}=\sum_{k=1}^{N} E\left(e^{z X_{k}}-1\right)+\sum_{k=2}^{N} \widehat{E}\left(e^{z X_{k-1}}-1\right)\left(e^{z X_{k}}-1\right)+R_{N}(z),
$$

where

$$
\begin{aligned}
R_{N}(z)= & \sum_{k=1}^{N}\left(\log \varphi_{k}(z)-\left(\varphi_{k}(z)-1\right)\right)+\sum_{k=2}^{N} \sum_{j=1}^{k-1}\left(\frac{1}{\varphi_{j}(z) \ldots \varphi_{k-1}(z)}-1\right) \\
& \times \hat{E}\left(e^{z X_{j}}-1\right) \ldots\left(e^{z X_{k}}-1\right)+\sum_{k=3}^{N} \sum_{j=1}^{k-2} \widehat{E}\left(e^{z X_{j}}-1\right) \ldots\left(e^{z X_{k}}-1\right) .
\end{aligned}
$$

As an immediate consequence of (3.4), (3.5) and $z \in K_{N}$ we obtain the following estimates:

$$
\begin{aligned}
& \left|\frac{1}{\mid \varphi_{j}(z) \ldots \varphi_{k-1}(z)}-1\right| \leqq(k-j) \frac{2 w_{N}(z)}{1-2 w_{N}(z)}\left(1+\frac{2 w_{N}(z)}{1-2 w_{N}(z)}\right)^{k-j-1} \\
& \leqq 3(k-j) w_{N}(z)\left(1+3 w_{N}(z)\right)^{k-j-1}, \\
& \left\lvert\, \begin{array}{l}
\sum_{j=1}^{k-2} \widehat{E}\left(e^{z X_{j}}-1\right) \ldots\left(e^{z X_{k}}-1\right) \mid \leqq 6 w_{N}(z)\left(E\left|e^{z X_{k-1}}-1\right|^{2} E\left|e^{z X_{k}}-1\right|^{2}\right)^{1 / 2}, \\
\left|\sum_{j=1}^{k-1}\left(\frac{1}{\varphi_{j}(z) \ldots \varphi_{k-1}(z)}-1\right) \widehat{E}\left(e^{z X_{j}}-1\right) \ldots\left(e^{z X_{k}}-1\right)\right| \\
\quad \leqq 6 w_{N}(z) \sum_{j=1}^{k-1}(k-j)\left(3 w_{N}(z)\right)^{k-j-1}\left(E\left|e^{z X_{k}-1}-1\right|^{2} E\left|e^{z X_{k}}-1\right|^{2}\right)^{1 / 2} \\
\quad \leqq 24 w_{N}(z)\left(E\left|e^{z X_{k-1}}-1\right|^{2} E\left|e^{z X_{k}}-1\right|^{2}\right)^{1 / 2} .
\end{array}\right.
\end{aligned}
$$

By these estimates we get

$$
\begin{aligned}
\sum_{k=1}^{N}\left|\varphi_{k}(z)-1\right| \leqq & \sum_{k=1}^{N}\left|E e^{z X_{k}}-1\right| \\
& +\left(2+30 w_{N}(z)\right) \sum_{k=2}^{N}\left(E\left|e^{z X_{k-1}}-1\right|^{2} E\left|e^{z X_{k}}-1\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Using the above estimates again and the elementary inequality

$$
|\log z-(z-1)| \leqq|z-1|^{2} \quad \text { for }|z-1| \leqq 1 / 2
$$

we have

$$
\begin{aligned}
\left|R_{N}(z)\right| \leqq & 2 w_{N}(z) \sum_{k=1}^{N}\left|E e^{z X_{k}}-1\right| \\
& +44 w_{N}(z) \sum_{k=2}^{N}\left(E\left|e^{z X_{k-1}}-1\right|^{2} E\left|e^{z X_{k}}-1\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

This yields (3.6).
Corollary 3.1. Let X_{1}, \ldots, X_{N} be a sequence of 1-dependent rv's. If $t \in R^{1}$ satisfies $w_{N}(i t) \leqq 1 / 6$, then

$$
\begin{aligned}
& \left|\log E e^{i t S_{N}}-\sum_{k=1}^{N} E\left(e^{i t X_{k}}-1\right)-\sum_{k=2}^{N} \widehat{E}\left(e^{i t X_{k-1}}-1\right)\left(e^{i t X_{k}}-1\right)\right| \\
& \quad \leqq 90 w_{N}(i t) \sum_{k=1}^{N}\left|E e^{i t X_{k}}-1\right| .
\end{aligned}
$$

Proof. In fact, Lemma 3.2 and the well-known inequality

$$
E\left|e^{i t X_{k}}-1\right|^{2} \leqq 2\left|E e^{i t X_{k}}-1\right|
$$

yield the desired result.
Corollary 3.2. Let X_{1}, \ldots, X_{N} be a sequence of 1-dependent rv's with $E X_{k}=0$ and $E\left|X_{k}\right|^{3}<\infty$. If $|t| \leqq B_{N}^{3} / 192 N M_{3 N}$, then

$$
\begin{equation*}
\left|f_{N}\left(i t / B_{N}\right)\right| \leqq e^{-t^{2} / 4} \tag{3.7}
\end{equation*}
$$

Proof. Noting that $\left|e^{i t x}-\sum_{k=0}^{p-1} \frac{(i t x)^{k}}{k!}\right| \leqq \frac{|t x|^{p}}{p!}, p=1,2, \ldots$ and $B_{N}^{2} \leqq 3 \sum_{k=1}^{N} E X_{k}^{2}$, we have the following estimates: $w_{N}\left(i t / B_{N}\right) \leqq 1 / 64$,

$$
\begin{gathered}
w_{N}\left(i t / B_{N}\right) \sum_{k=1}^{N}\left|E e^{i t X_{k} / B_{N}}-1\right| \leqq \frac{1}{2}|t|^{3} \frac{N M_{3 N}}{B_{N}^{3}}, \\
\sum_{k=2}^{N}\left|\widehat{E}\left(e^{i t X_{k-1} / B_{N}}-1\right)\left(e^{i t X_{k} / B_{N}}-1\right)-\frac{(i t)^{2}}{B_{N}^{2}} \widehat{E} X_{k-1} X_{k}\right| \leqq 2\left(\frac{|t|}{B_{N}}\right)^{3} \sum_{k=1}^{N} E\left|X_{k}\right|^{3}, \\
\sum_{k=1}^{N}\left|E e^{i t X_{k} / B_{N}}-1-i t \frac{E X_{k}}{B_{N}}-(i t)^{2} \frac{E X_{k}^{2}}{2 B_{N}^{2}}\right| \leqq \frac{1}{6}\left(\frac{|t|}{B_{N}}\right)^{3} \sum_{k=1}^{N} E\left|X_{k}\right|^{3} .
\end{gathered}
$$

We conclude from Corollary 3.1 that

$$
\left|\log E e^{i t S_{N} / B_{N}}+\frac{t^{2}}{2}\right| \leqq \frac{283}{6}\left(\frac{|t|}{B_{N}}\right)^{3} N M_{3 N} \leqq \frac{t^{2}}{4},
$$

which implies (3.7).
A more delailed study of the terms $\log \varphi_{k}(i t)$ leads to the following extension of Lemma 3.2.

Lemma 3.3. Let X_{1}, \ldots, X_{N} be a sequence of 1-dependent rv's. If $w_{N}(i t) \leqq 1 / 6$, then

$$
\begin{align*}
& \left\lvert\, \log E e^{i t S_{N}}-\sum_{k=1}^{N}\left(\left(E e^{i t X_{k}}-1\right)-\frac{1}{2}\left(E e^{i t X_{k}}-1\right)^{2}+\frac{1}{3}\left(E e^{i t X_{k}}-1\right)^{3}\right)\right. \\
& \quad+\sum_{k=2}^{N}\left(\left(E e^{i t X_{k}-1}-1\right)+\left(E e^{i t X_{k}}-1\right)-1\right) \widehat{E}\left(e^{i t X_{k}-1}-1\right)\left(e^{i t X_{k}}-1\right) \\
& \quad-\sum_{k=3}^{N} \hat{E}\left(e^{i t X_{k-2}}-1\right)\left(e^{i t X_{k}-1}-1\right)\left(e^{i t X_{k}}-1\right)\left|\leqq c_{2}\left(w_{N}(i t)\right)^{2} \sum_{k=1}^{N}\right| E e^{i t X_{k}}-1 \mid . \tag{3.8}
\end{align*}
$$

One can verify the assertion of Lemma 3.3 by simple refinements in the proof of Lemma 3.2. To avoid tedious, but not difficult calculations we omit this proof.

Lemma 3.4. Let X_{1}, \ldots, X_{N} be a sequence of $1-$ dependent rv's with $M_{p N}<\infty$. If $w_{N}(i t) \leqq 1 / 6$ then

$$
\begin{equation*}
\max _{1 \leqq k \leqq N}\left|\frac{d^{p} \varphi_{k}(i t)}{d t^{p}}\right| \leqq C(p) M_{p N}, \tag{3.9}
\end{equation*}
$$

where $C(p)$ is a constant only depending on p.
Proof. For brevity we put

$$
g_{j k}^{(p)}=\frac{d^{p}}{d t^{p}}\left(\varphi_{j}(i t) \ldots \varphi_{k-1}(i t)\right)
$$

and

$$
f_{j k}^{(p)}=\frac{d^{p}}{d t^{p}} \widehat{E}\left(e^{i t X_{j}}-1\right) \ldots\left(e^{i t X_{k}}-1\right)
$$

for $p=0,1,2, \ldots$ It is easily seen from (2.9) and (3.5) that

$$
\begin{equation*}
\left|\frac{f_{j k}^{(p)}}{g_{j k}}\right| \leqq 12^{2 p} M_{p N}(k-j+1)^{p} 2^{-(k-j)}, \quad 1 \leqq j \leqq k \tag{3.10}
\end{equation*}
$$

Next we prove (3.9) for $p=1$.
Assume that $\left|\varphi_{q}^{(1)}(i t)\right| \leqq C(1) M_{1 N}$ with $C(1)=866$ holds for $q=1, \ldots, k-1$. In view of the representation formula (3.2) the first derivative of $\varphi_{k}(i t)$ has the form

$$
\frac{d}{d t} \varphi_{k}(i t)=i E X_{k} e^{i t X_{k}}+\sum_{j=1}^{k-1} \frac{f_{j k}^{(1)}}{g_{j k}}-\sum_{j=1}^{k-1} \frac{f_{j k}}{g_{j k}} \sum_{q=j}^{k-1} \frac{\varphi_{q}^{(1)}(i t)}{\varphi_{q}(i t)} .
$$

Then by (3.4), (3.10) and our assumption

$$
\begin{aligned}
\left|\frac{d}{d t} \varphi_{k}(i t)\right| & \leqq M_{1 N}+\sum_{j=1}^{k-1} M_{1 N} \frac{(k-j+1) 12^{2}}{2^{k-j}}+3 w_{N}(i t) \sum_{j=1}^{k-1} \frac{(k-j) C(1)}{2^{k-j+1}} M_{1 N} \\
& \leqq M_{1 N}\left(1+144 \sum_{k=1}^{\infty}(k+1) 2^{-k}+3 C(1) w_{N}(i t) \sum_{k=0}^{\infty}(k+1) 2^{-k-2}\right) \\
& \leqq M_{1 N}(433+C(1) / 2) \leqq C(1) M_{1 N} .
\end{aligned}
$$

Thus the last relation implies $\left|\varphi_{k}^{(1)}(i t)\right| \leqq 866 M_{1 N}$ for every $k \geqq 1$.

To prove (3.9) for $p \geqq 2$ we state the following differentiation formulae:

$$
\frac{d^{p} \varphi_{k}(i t)}{d t^{p}}=i^{p} E X_{k}^{p} e^{i t X_{k}}+\sum_{j=1}^{k=1} \frac{d^{p}}{d t^{p}}\left(\frac{f_{j k}(i t)}{g_{j k}(i t)}\right)
$$

and

$$
\begin{aligned}
& \frac{d^{p}}{d t^{p}}\left(\frac{f_{j k}(i t)}{g_{j k}(i t)}\right)=\frac{f_{j k}^{(p)}}{g_{j k}}-\sum_{q=1}^{p}\binom{p}{q} \frac{f_{j k}^{(q)}}{g_{j k}^{(q)}} \frac{g_{j k}^{(p-q)}}{g_{j k}}-\frac{f_{j k}}{g_{j k}} \sum_{q=j}^{k-1} \frac{\varphi_{q}^{(p)}(i t)}{\varphi_{q}(i t)} \\
& \quad-\frac{f_{j k}}{g_{j k}} \sum_{q=2}^{\min (p, k-j)} \sum_{p_{1}+\ldots+p_{q}=p}\binom{p}{p_{1}, \ldots, p_{q}} \sum_{j \leqq j_{1}<\ldots<j_{q} \leqq k-1} \frac{\varphi_{j_{1}}^{\left(p_{1}\right)}(i t) \ldots \varphi_{j_{q}}^{\left(p_{q}\right)}(i t)}{\varphi_{j_{1}}(i t) \ldots \varphi_{j_{q}}(i t)} \\
& \quad-\sum_{i=3}^{p+1}(-1)^{l-1} \sum_{p_{1}+\left(p_{2}+1\right)+\ldots+\left(p_{l}+1\right)=p}\binom{p}{p_{1}, p_{2}+1, \ldots, p_{l}+1} \\
& \quad \times \frac{f_{j k}^{\left(p_{1}\right)} g_{j k}^{\left(p_{2}+1\right)} \ldots g_{p_{k}}^{\left(p_{l}+1\right)}}{g_{j k}} g_{j k} \ldots g_{j k}
\end{aligned}
$$

Now one can verify (3.9) in the following way: It is assumed that (3.9) holds for $p=1, \ldots, s-1$ and $\left|\varphi_{q}^{(s)}(i t)\right| \leqq C(s) M_{s N}$ for $q=1, \ldots, k-1$. Then by the above formulae one can show that $\left|\varphi_{k}^{(s)}(i t)\right| \leqq C(s) M_{s N}$ and therefore (3.9) holds for $p=s$.

This yields (3.9) for every $p \geqq 1$. We remark that in accordance with the above differentiation formulae the constants $C(p), p=1,2, \ldots$ are successively calculated.

Corollary 3.3. Let X_{1}, \ldots, X_{N} be a sequence of 1 -dependent rv's with $M_{p N}<\infty$. If $w_{N}(i t) \leqq 1 / 6$, then

$$
\begin{equation*}
\max _{1 \leqq k \leqq N}\left|\frac{d^{p}}{d t^{p}} \log \varphi_{k}(\mathrm{it})\right| \leqq K(p) M_{p N}, \tag{3.11}
\end{equation*}
$$

where

$$
K(p)=p!\sum_{q=1}^{p}\left(\frac{3}{2}\right)^{q} \frac{1}{q} \sum_{\substack{p_{1}+\ldots+p_{q}=p \\ p_{i} \geqq 1}} \frac{C\left(p_{1}\right)}{p_{1}!} \ldots \frac{C\left(p_{q}\right)}{p_{q}!} .
$$

Proof. The derivatives of $\log \varphi_{k}(i t)$ are given by

$$
\frac{d^{p}}{d t^{p}} \log \varphi_{k}(i t)=p!\sum_{q=1}^{p} \frac{(-1)^{q-1}}{\left(\varphi_{k}(i t)\right)^{q}} \sum_{p_{1}+\ldots+p_{q}=p} \frac{\varphi_{k}^{\left(p_{1}\right)}(i t)}{p_{1}!} \ldots \frac{\varphi_{k}^{\left(p_{q}\right)}(i t)}{p_{q}!}
$$

A simple application of Hölder's inequality shows the validy of (3.11).
Remark 3.1. If X_{1}, \ldots, X_{N} are m-dependent $r v$'s with $M_{p N}<\infty$, then using (2.8), (3.11) and the well-known inequality

$$
\left|a_{1}+\ldots+a_{m}\right|^{p} \leqq m^{p-1}\left(\left|a_{1}\right|^{p}+\ldots+\left|a_{m}\right|^{p}\right)
$$

we get for $|t| \leqq B_{N} / 6 m \max _{1 \leqq k \leqq N}\left(E X_{k}^{2}\right)^{1 / 2}$

$$
\begin{equation*}
\left|\frac{d^{p}}{d t^{p}} \log E e^{i t S_{N} / B_{N}}\right| \leqq K(p) \frac{m^{p-1} N M_{p N}}{B_{N}^{p}} \tag{3.12}
\end{equation*}
$$

4. Results

Theorem 4.1. Let X_{1}, \ldots, X_{N} be a sequence of 1-dependent rv's with $E X_{k}=0$. Suppose that

$$
\begin{equation*}
E\left|X_{k}\right|^{p} \leqq H \frac{E X_{k}^{2} p!}{\delta_{N}^{p-2}}, \quad p=2,3, \ldots ; \quad k=1, \ldots, N, \tag{4.1}
\end{equation*}
$$

with $H \geqq 1 / 2$ and $0<\delta_{N} \leqq\left(18 H M_{2 N}\right)^{-1 / 2}$.
Then in the interval $0 \leqq x \leqq c_{3} A_{N} / H_{N}$ the following relation for large deviations holds:

$$
\frac{P\left(S_{N} \geqq x B_{N}\right)}{1-\Phi(x)}=\exp \left\{x^{3} \sum_{k=0}^{\infty} \lambda_{k N} x^{k}\right\}\left(1+O\left(\frac{H_{N}(1+x)}{A_{N}}\right)\right)^{4} \quad \text { as } N \rightarrow \infty
$$

where

$$
\Delta_{N}=\delta_{N} B_{N} / 4, \quad H_{N}=80 H \sum_{k=1}^{N} E X_{k}^{2} / B_{N}^{2}
$$

and

$$
\lambda_{k N}=\frac{1}{(k+2)(k+3)} \sum_{l=1}^{k+1}(-1)^{l-1}\binom{k+l+1}{l}_{\substack{k_{1}+\ldots+k_{1}-k+1 \\ k_{i} \geq 1}} \prod_{i=1}^{l} \frac{\Gamma_{k_{i}+2}\left(S_{N} / B_{N}\right)}{\left(k_{i}+1\right)!}
$$

and

$$
\Gamma_{k}\left(S_{N}\right)=\left.\frac{1}{i^{k}} \frac{d^{k}}{d t^{k}} \log f_{N}(i t)\right|_{t=0}
$$

Corollary 4.1. Let X_{1}, \ldots, X_{N} be a sequence of m-dependent ($m \geqq 1$) rv's with $E X_{k}$ $=0$. Suppose that (4.1) is satisfied. Then the assertion of Theorem 4.1 remains valid if we replace H_{N} and Δ_{N} by

$$
\bar{H}_{N}=80 H m \sum_{k=1}^{N} E X_{k}^{2} / B_{N}^{2} \quad \text { and } \quad \bar{\Delta}_{N}=\delta_{N} B_{N} / 4 m
$$

respectively.
Theorem 4.2. Let X_{1}, \ldots, X_{N} be a sequence of 1-dependent rv's with $E X_{k}=0$ and $E\left|X_{k}\right|^{3}<\infty$. Put $L_{3 N}=N M_{3 N} / B_{N}^{3}$. Suppose that the following conditions are satisfied:
(A) $0<c_{4} \leqq M_{3 N}, B_{N} \rightarrow \infty$ and $L_{3 N} \rightarrow 0$ as $N \rightarrow \infty$,
(B) there exists a real number $\alpha, 0<\alpha<1$, such that

$$
\max _{1 \leqq k \leqq N} E\left|X_{k}\right|^{3} \chi_{\left\{\left|X_{k \mid}\right| \leqq L_{3 N}^{-\alpha}\right\}}=o\left(M_{3 N}\right) \quad \text { as } N \rightarrow \infty
$$

(C) $\int_{|t| \geqq \frac{1}{192 L_{3 N}}} \frac{\mid E e^{i t S_{N /} / B_{N} \mid}}{|t|} d t=o\left(L_{3 N}\right) \quad$ as $N \rightarrow \infty$.
$4 \Lambda_{N}(x)=\sum_{k=0}^{\infty} \lambda_{k N} x^{k}$ is the Cramer's power series.

Then the asymptotic expansion

$$
F_{N}(x)-\Phi(x)-\frac{\left(1-x^{2}\right)}{6 \sqrt{2 \pi}} \frac{\Gamma_{3}\left(S_{N}\right)}{B_{N}^{3}} e^{-x^{2} / 2}=o\left(L_{3 N}\right) \quad \text { as } N \rightarrow \infty
$$

holds uniformly in x.
Corollary 4.2. Let X_{1}, \ldots, X_{N} be a sequence of m-dependent rv's with $E X_{k}=0$ and $E\left|X_{k}\right|^{3}<\infty$. Then the whole formulation of Theorem 4.2 remains valid if we replace $L_{3 N}$ by $\bar{L}_{3 N}=m^{2} N M_{3 N} / B_{N}^{3}$.

5. Proofs of the Results

Proof of Theorem 4.1. (2.6) implies

$$
\left|\hat{E} X_{j}^{p_{j}} \ldots X_{k}^{p_{k}}\right| \leqq 2^{k-j}\left(E\left|X_{j}\right|^{2 p_{j}} \ldots E\left|X_{k}\right|^{2 p_{k}}\right)^{1 / 2}
$$

and therefore by a short calculation one can show the analyticity of

$$
\widehat{E}\left(e^{z X_{j}}-1\right) \ldots\left(e^{z X_{k}}-1\right)=\sum_{p=k-j+1}^{\infty} z^{p} \sum_{\substack{p_{j}+\ldots+p_{k}=p \\ p_{i} \geq 1}} \frac{\widehat{E} X_{j}^{p_{j}} \ldots X_{k}^{p_{k}}}{p_{j}!\ldots p_{k}!}
$$

$1 \leqq j \leqq k, 1 \leqq k \leqq N$, for $|z|<\delta_{N} / 2$.
The analyticity of $\varphi_{1}(z), \ldots, \varphi_{N}(z)$ for $|z| \leqq \delta_{N} / 4$ can be verified inductively by the defining formula (3.2). Thus $\log E e^{z S_{N}}$ is an analytic function for $|z| \leqq \delta_{N} / 4$. Again using (2.6) we have for $|z| \leqq \delta_{N} / 4$

$$
\left|E e^{z X_{k}}-1\right| \leqq \sum_{p=2}^{\infty} \frac{|z|^{p}}{p!} E\left|X_{k}\right|^{p} \leqq \frac{4}{3} H E X_{k}^{2}|z|^{2}
$$

and

$$
E\left|e^{z X_{k}}-1\right|^{2} \leqq \sum_{p=2}^{\infty} \frac{|z|^{p}}{p!} 2^{p} E\left|X_{k}\right|^{p} \leqq 8 H E X_{k}^{2}|z|^{2}
$$

δ_{N} was chosen in such way that each z with $|z| \leqq \delta_{N} / 4$ belongs to K_{N}. Next we apply Lemma 3.2 and use the above estimates:

$$
\begin{aligned}
\left|\log E e^{z S_{N}}\right| \leqq & \sum_{k=1}^{N}\left|E e^{z X_{k}}-1\right|+2 \sum_{k=1}^{N} E\left|e^{z X_{k}}-1\right|^{2} \\
& +2 w_{N}(z)\left(\sum_{k=1}^{N}\left|E e^{z X_{k}}-1\right|+22 \sum_{k=1}^{N} E\left|e^{z X_{k}}-1\right|^{2}\right) \\
\leqq & 80 H \sum_{k=1}^{N} E X_{k}^{2}|z|^{2} \quad \text { for }|z| \leqq \delta_{N} / 4 .
\end{aligned}
$$

Together with the introduced notations we can state the following result. The cumulant-generating function $\log E e^{2_{S_{N}} / B_{N}}$ is an analytical function for $|z| \leqq \Delta_{N}$ such that

$$
\left|\log E e^{z S_{N} / B_{N}}\right|_{|z|=\Lambda_{N}} \mid \leqq H_{N} \Delta_{N}^{2}
$$

Now we are in position to apply a lemma on large deviations which is due to V.A. Statulevičius [10, 11]. This lemma yields the assertion of Theorem 4.1.

Proof of Corollary 4.1. In order to proof Corollary 4.1 we only repeat the proof of Theorem 4.1 for the 1 -dependent $r v$'s (2.8). Taking into account the inequality

$$
\begin{equation*}
E\left|Y_{k}\right|^{p} \leqq m^{p-1} \sum_{j=1}^{m} E\left|X_{(k-1) m+j}\right|^{p}, \quad k=1, \ldots,\left[\frac{N}{m}\right] \tag{5.1}
\end{equation*}
$$

and the corresponding inequality for $k=\left[\frac{N}{m}\right]+1$, it is easy to show the analyticity of $\log E e^{z S_{N}}$ for $|z| \leqq \delta_{N} / 4 m$ and the estimate

$$
\left|\log E e^{z S_{N}}\right|_{|z|=\bar{J}_{N}} \mid \leqq \bar{H}_{N} \bar{U}_{N}^{2}
$$

Proof of Theorem 4.2. We first prove the following
Lemma 5.1. Let X_{1}, \ldots, X_{N} be a sequence of 1-dependent rv's with $E X_{k}=0$ and $E\left|X_{k}\right|^{3}<\infty$. Suppose that the conditions (A) and (B) are satisfied. Then, for $|t| \leqq L_{3 N}^{-\beta}, 0<\beta<1-\alpha$,

$$
\left|\log f_{N}\left(i t / B_{N}\right)-\left(-\frac{t^{2}}{2}+\frac{(i t)^{3}}{6} \Gamma_{3}\left(S_{N}\right) B_{N}^{-3}\right)\right| \leqq \varepsilon_{N} L_{3 N}|t|^{3}
$$

Here and below, ε_{N} denotes a positive null sequence which may be differ from one expression to another.

Proof of Lemma 5.1. Since $\left|L_{3 N}^{-\alpha} t\right| \leqq \varepsilon_{N} B_{N}$ by our assumptions, we have for $p=1,2,3$

$$
\begin{aligned}
E\left(e^{i t X_{k} / B_{N}}-1\right) & =\sum_{q=1}^{p}\left(\frac{i t}{B_{N}}\right)^{q} \frac{E X_{k}^{q}}{q!}+\theta \frac{|t|^{p}}{p!B_{N}^{p}}\left(E\left|X_{k}\right|^{p} \chi_{\left\{\left|X_{k}\right| \geqq L_{3 N}^{-\alpha}\right\}}\right. \\
& \left.+\frac{|t|}{(p+1) B_{N}} E\left|X_{k}\right|^{p+1} \chi_{\left\{\left|X_{k}\right|<L_{3 N}^{-\dot{N}}\right.}\right)=\sum_{q=1}^{p}\left(\frac{i t}{B_{N}}\right)^{q} \frac{E X_{k}^{q}}{q!}+\theta \varepsilon_{N} \frac{|t|^{p}\left(M_{3 N}\right)^{p / 3}}{p!B_{N}^{p}}
\end{aligned}
$$

The following estimates may be derived in like manner:

$$
\begin{aligned}
& \widehat{E}\left(e^{i t X_{k-1} / B_{N}}-1\right)\left(e^{i t X_{k} / B_{N}}-1\right)=\left(\frac{i t}{B_{N}}\right)^{2} \widehat{E} X_{k-1} X_{k}+\frac{1}{2}\left(\frac{i t}{B_{N}}\right)^{3} \\
& \quad \times\left(\hat{E} X_{k-1}^{2} X_{k}+\widehat{E} X_{k-1} X_{k}^{2}\right)+\theta \varepsilon_{N}|t|^{3} M_{3 N} B_{N}^{-3}, \\
& \hat{E}\left(e^{i t X_{k-1 / B} / B_{N}}-1\right)\left(e^{i t X_{k} / B_{N}}-1\right)\left(E\left(e^{i t X_{k-1} / B_{N}}-1\right)+E\left(e^{i t X_{k / B} / B_{N}}-1\right)\right) \\
& \quad=\left(\frac{i t}{B_{N}}\right)^{3}\left(E X_{k-1}+E X_{k}\right) \hat{E} X_{k-1} X_{k}+\theta \varepsilon_{N}|t|^{3} M_{3 N} B_{N}^{-3}, \\
& \hat{E}\left(e^{i t X_{k-2} / B_{N}}-1\right)\left(e^{i t X_{k-1} / B_{N}}-1\right)\left(e^{i t X_{k k} / B_{N}}-1\right) \\
& \quad=\left(\frac{i t}{B_{N}}\right)^{3} \hat{E} X_{k-2} X_{k-1} X_{k}+\theta \varepsilon_{N}|t|^{3} M_{3 N} B_{N}^{-3},
\end{aligned}
$$

$$
w_{N}^{2}\left(\frac{i t}{B_{N}}\right) \sum_{k=1}^{N}\left|E e^{i t X_{k} / B_{N}}-1\right| \leqq \varepsilon_{N}\left(\frac{|t|}{B_{N}}\right)^{3} M_{3 N}
$$

A short calculation shows that

$$
\begin{aligned}
\Gamma_{3}\left(S_{N}\right)= & \sum_{k=1}^{N}\left(E X_{k}^{3}-3 E X_{k} E X_{k}^{2}+2\left(E X_{k}\right)^{3}\right)+3 \sum_{k=2}^{N}\left(\hat{E} X_{k-1}^{2} X_{k}+\hat{E} X_{k-1} X_{k}^{2}\right) \\
& -6 \sum_{k=2}^{N}\left(E X_{k-1}+E X_{k}\right) \hat{E} X_{k-1} X_{k}+6 \sum_{k=3}^{N} \hat{E} X_{k-2} X_{k-1} X_{k}
\end{aligned}
$$

and by Hölder's inequality

$$
\begin{equation*}
\left|\Gamma_{3}\left(S_{N} / B_{N}\right)\right| \leqq 13 \sum_{k=1}^{N} \frac{E\left|X_{k}\right|^{3}}{B_{N}^{3}} \leqq 13 L_{3 N} . \tag{5.2}
\end{equation*}
$$

Using Lemma 3.3 and the above estimates, it is rapidly seen that

$$
\begin{aligned}
\log f_{N}\left(i t / B_{N}\right)= & \frac{i t}{B_{N}} E S_{N}+\frac{1}{2}\left(\frac{i t}{B_{N}}\right)^{2} D^{2} S_{N}+\frac{1}{6}\left(\frac{i t}{B_{N}}\right)^{3} \Gamma_{3}\left(S_{N}\right) \\
& +\theta \varepsilon_{N}|t|^{3} L_{3 N} .
\end{aligned}
$$

We return to the proof of Theorem 4.2.
Making use of Lemma 5.1 and (5.2) we see that for $|t| \leqq L_{3 N}^{-\beta}$

$$
\begin{align*}
f_{N}\left(i t / B_{N}\right) & =e^{-t^{2} / 2}\left\{1+\frac{(i t)^{3}}{6} \Gamma_{3}\left(S_{N} / B_{N}\right)+\theta_{1} \varepsilon_{N} L_{3 N}|t|^{3}\right. \\
& \left.+\left.\left.\theta_{2}\left|\frac{(i t)^{3}}{6} \Gamma_{3}\left(S_{N} / B_{N}\right)+\varepsilon_{N}\right| t\right|^{3} L_{3 N}\right|^{2} \exp \left(\frac{|t|^{3}}{6}\left|\Gamma_{3}\left(S_{N} / B_{N}\right)\right|+\varepsilon_{N} L_{3 N}|t|^{3}\right)\right\} \\
& =e^{-t^{2} / 2}\left(1+\frac{(i t)^{3}}{6} \Gamma_{3}\left(S_{N} / B_{N}\right)\right)+\theta \varepsilon_{N} L_{3 N}\left(|t|^{2}+|t|^{5}\right) e^{-t^{2} / 4} . \tag{5.3}
\end{align*}
$$

Now we quote a lemma which is needed for the proof of Theorem 4.2.
Lemma 5.2. (see [8], p. 13). Let $F_{1}(x), F_{2}(x)$ be functions of bounded variation on the real line,

$$
\int_{-\infty}^{\infty}|x|\left|d F_{k}(x)\right|<\infty, \quad k=1,2
$$

Further, suppose that $R(-\infty)=R(+\infty)=0$ and $\int_{-\infty}^{\infty}\left|\frac{r(t)}{t}\right| d t<\infty$, where $R(x)$ $=F_{1}(x)-F_{2}(x)$ and $r(t)=\int_{-\infty}^{\infty} e^{i t x} d R(x)$. Then

$$
\frac{1}{2}(R(x-0)-R(x+0))=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i t x}}{-i t} r(t) d t
$$

for every x.

If we take in Lemma 5.2

$$
F_{1}(x)=F_{N}(x) \quad \text { and } \quad F_{2}(x)=\Phi(x)+\frac{\left(1-x^{2}\right) \Gamma_{3}\left(S_{N}\right)}{6 \sqrt{2 \pi} B_{N}^{3}} e^{-x^{2} / 2}
$$

it remains to show that the integral

$$
I_{N}=\int_{-\infty}^{\infty}\left|f_{N}\left(i t / B_{N}\right)-e^{-t^{2} / 2}\left(1+\frac{(i t)^{3}}{6} \Gamma_{3}\left(S_{N} / B_{N}\right)\right)\right||t|^{-1} d t
$$

equals to the order $o\left(L_{3 N}\right)$ as $N \rightarrow \infty$.
Splitting the domain of integration we obtain

$$
\begin{aligned}
I_{N} \leqq & \int_{|t| \leqq L_{3 N}^{-\beta}}\left|f_{N}\left(i t / B_{N}\right)-e^{-t^{2} / 2}\left(1+\frac{(i t)^{3}}{6} \Gamma_{3}\left(S_{N} / B_{N}\right)\right)\right||t|^{-1} d t \\
& +\int_{|t| \geqq\left(192 L_{3 N}\right)^{-1}}\left|\frac{f_{N}\left(i t / B_{N}\right)}{t}\right| d t+\int_{L_{3 N}^{-\beta}<|t|<\left(192 L_{3 N}\right)^{-1}}\left|\frac{f_{N}\left(i t / B_{N}\right)}{t}\right| d t \\
& +\int_{|t|>L_{3 N}^{-\beta}} e^{-t^{2} / 2}\left|1+\frac{(i t)^{3}}{6} \Gamma_{3}\left(S_{N} / B_{N}\right)\right||t|^{-1} d t .
\end{aligned}
$$

By (3.7), (5.3) and (C) it is easily seen that $I_{N}=o\left(L_{3 N}\right)$ as $N \rightarrow \infty$. This completes the proof of Theorem 4.2.

For the proof of Corollary 4.2 we write $S_{N}=\sum_{k=1}^{[N / m]+1} Y_{k}$ with the 1-dependent $r v$'s (2.8). Then the assertion of Corollary 4.2 can be proved by using (5.1) and the technique in the proof of Theorem 4.2.

References

1. Berk, K.N.: A central limit theorem for m-dependent random variables with unbounded m. Ann. Probab. 1, 352-354 (1973)
2. Erickson, R.V.: L_{1} bounds for asymptotic normality of m-dependent sums using Stein's technique. Ann. Probab. 2, 522-529 (1974)
3. Heinrich, L.: On a factorization of the characteristic function of a sum of dependent random variables (German). Liet. mat. rink. 22, 190-202 (1982)
4. Heinrich, L.: On probabilities of large deviations for sums of random variables connected in a Markov chain under a non-Cramérian type condition (German). Liet. mat. rink. (To appear)
5. Heinrich, L.: A new approach to the summation theory of random variables connected in a Markov chain. Math. Nachr. (To appear, 1982)
6. Heinrich, L.: Infinitely divisible distributions as limit laws for sums of random variables connected in a Markov chain. Math. Nachr. (To appear, 1982)
7. Petrov, V.V.: On the central limit theorem for m-dependent random variables (Russian). In: Proc. All-Union-Conf. Prob. Theory and Math. Statistics, Erevan 1958, pp. 138-144. Erevan: Izdat. Akad. Nauk Armjan. SSR 1960
8. Petrov, V.V.: Sums of independent random variables. Berlin-Heidelberg-New York: Springer 1975
9. Shergin, V.V.: On the speed of convergence in the central limit theorem for m-dependent random variables (Russian). Teor. verojatn. primen. 24, 781-794 (1979)
10. Statulevičius, V.A.: On large deviations. Z. Wahrscheinlichkeitstheorie verw. Gebiete 6, 133-144 (1966)
11. Statulevičius, V.A.: On limit theorems for random functions I (Russian). Liet. mat. rink. 10, 583-592 (1970)
12. Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proc. 6th Berkeley Sympos. Math. Statistics Probab., Vol. 2, pp. 583-602. Berkeley: Univ. Calif. Press 1972
13. Tichomirov, A.N.: On the speed of convergence in the central limit theorem for weakly dependent random variables (Russian). Teor. verojatn. primen. 25, 800-818 (1980)

Received December 1, 1981

[^0]: ${ }^{1} \quad$ We suppose $E\left|Y_{j}\right|^{k}<\infty, j=1,2, \ldots, k$.
 $2\binom{p}{p_{1} p_{2} \ldots p_{k}}=\frac{p!}{p_{1}!p_{2}!\ldots p_{k}!}$

[^1]: $3 \quad[x]$ denotes the integer part of x.

