A Class of Random Variables which are not Continuous Functions of Several Independent Random Variables

Juha Alho
Northwestern University, Dept. of Mathematics, Lunt Hall, Evanston, IL 60201, USA

Let (Ω, \mathscr{F}, P) be a probability space. A random variable $Z: \Omega \rightarrow R$ is $F_{m, n^{-}}$ distributed, if it has a density

$$
\begin{align*}
f_{m, n}(x) & =C(m, n) x^{\frac{m}{2}-1}(m x+n)^{-\frac{m+n}{2}}, \quad x>0 \\
& =0, \quad x \leqq 0 \tag{1}
\end{align*}
$$

where $C(m, n)=\Gamma\left(\frac{m+n}{2}\right) m^{\frac{m}{2}} n^{\frac{n}{2}} /\left(\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)\right)$. If $X: \Omega \rightarrow R$ and $Y: \Omega \rightarrow R$ are independent and χ^{2}-distributed, with m and n degrees of freedom respectively, then the r.v.

$$
\begin{equation*}
Z=(X / m) /(Y / n) \tag{2}
\end{equation*}
$$

is $F_{m, n}$-distributed ([2], p. 167). Our main result shows that there are many r.v.'s having a density of the form (1) which cannot be written in the form (2) on the same space Ω. The result is more general so that it applies in an analogous way to r.v.'s having e.g. a t - or a χ^{2}-distribution ([2], pp. 166-167, 170-171). The result applies also to the representations of r.v.'s with infinitely divisible distributions.

Consider the space (Ω, \mathscr{F}, P). Let $g: \Omega \rightarrow R$ be a r.v. which is injective and has the property: $g(F)$ is a Borel set for all $F \in \mathscr{F}$. It can be shown that if Ω is a Polish space or a Lusin space, then the above property holds for any g which is injective and continuous (see [1], p. 135). Denote by P_{g} the probability measure induced by g on R.

For $i=1,2$, let I_{i} be an interval on the real line, and $\mathscr{B}\left(I_{i}\right)$ be the corresponding set of Borel sets. Consider a measurable mapping (X, Y): $\Omega \rightarrow I_{1} \times I_{2}$. This defines two r.v.'s $X: \Omega \rightarrow I_{1}$ and $Y: \Omega \rightarrow I_{2}$. Moreover, X induces a probability P_{X} on I_{1} and Y induces a probability P_{Y} on I_{2}.
Theorem. Assume that X and Y are independent and that both the support of P_{X} and of P_{Y} have a non-empty interior. Then there is no continuous function
$f: I_{1} \times I_{2} \rightarrow R$ such that

$$
\begin{equation*}
g(\omega)=f(X(\omega), Y(\omega)) \text { a.s. }(P) \tag{3}
\end{equation*}
$$

Proof. Assume that (3) does hold. Let $\Omega^{\prime} \subset \Omega$ be a measurable set where $g(\omega)$ $=f(X(\omega), Y(\omega))$ with $P\left(\Omega^{\prime}\right)=1$. Define functions g_{0}, f_{0} and $\left(X_{0}, Y_{0}\right)$ as follows:

$$
\begin{gathered}
g_{0}: \Omega^{\prime} \rightarrow g\left(\Omega^{\prime}\right), \quad g_{0}(\omega)=g(\omega), \\
\left(X_{0}, Y_{0}\right): \Omega^{\prime} \rightarrow(X, Y)\left(\Omega^{\prime}\right), \quad\left(X_{0}(\omega), Y_{0}(\omega)\right)=(X(\omega), Y(\omega)), \\
f_{0}:(X, Y)\left(\Omega^{\prime}\right) \rightarrow g\left(\Omega^{\prime}\right), \quad f_{0}(x, y)=f(x, y) .
\end{gathered}
$$

These are essentially the restrictions of g, f and (X, Y). Since g_{0} is bijective, and $\left(X_{0}, Y_{0}\right)$ and f_{0} are surjective, we have that $\left(X_{0}, Y_{0}\right)$ and f_{0} are also bijective. By assumption the set $g\left(\Omega^{\prime}\right)$ is measurable.

Let μ be the probability on $I_{1} \times I_{2}$ induced by (X, Y). The independency of X and Y implies:

$$
\mu(C \times D)=P_{X}(C) P_{Y}(D) \quad \text { for all } C \times D \in \mathscr{B}\left(I_{1}\right) \otimes \mathscr{B}\left(I_{2}\right)
$$

Since the supports of P_{X} and P_{Y} both have a non-empty interior, we can find two numbers a and b such that the sets

$$
\begin{aligned}
& C_{a}=\left\{\omega_{1} \in I_{1} \mid \omega_{1} \geqq a\right\}, \\
& D_{b}=\left\{\omega_{2} \in I_{2} \mid \omega_{2} \geqq b\right\}
\end{aligned}
$$

satisfy: $0<P_{X}\left(C_{a}\right)<1$ and $0<P_{Y}\left(D_{b}\right)<1$. It follows that the probability of each of the sets $C_{a} \times D_{b}, C_{a}^{c} \times D_{b}, C_{a} \times D_{b}^{c}, C_{a}^{c} \times D_{b}^{c}$ is strictly between zero and one. Furthermore there is an $\varepsilon>0$ such that simultaneously

$$
\begin{aligned}
& 0<\mu([a, a+\varepsilon) \times[b, b+\varepsilon))<\mu\left(C_{a} \times D_{b}\right), \\
& 0<\mu((a-\varepsilon, a) \times[b, b+\varepsilon))<\mu\left(C_{a}^{c} \times D_{b}\right), \\
& 0<\mu([a, a+\varepsilon) \times(b-\varepsilon, b))<\mu\left(C_{a} \times D_{b}^{c}\right), \\
& 0<\mu((a-\varepsilon, a) \times(b-\varepsilon, b))<\mu\left(C_{a}^{c} \times D_{b}^{c}\right) .
\end{aligned}
$$

In other words, the "quadrants" of the rectangular ε-neighborhood

$$
N_{\varepsilon}(a, b)=(a-\varepsilon, a+\varepsilon) \times(b-\varepsilon, b+\varepsilon)
$$

satisfy these inequalities.
Since f is continuous and $C_{a} \times D_{b}, C_{a}^{c} \times D_{b}, C_{a} \times D_{b}^{c}, C_{a}^{c} \times D_{b}^{c}$ are connected, the sets $f\left(C_{a} \times D_{b}\right), f\left(C_{a}^{c} \times D_{b}\right), f\left(C_{a} \times D_{b}^{c}\right), f\left(C_{a}^{c} \times D_{b}^{c}\right)$ must be intervals. Denote them in the above order by $J_{1}, J_{2}, J_{3}, J_{4}$. These intervals are a.s. (P_{g}) disjoint, because if e.g. we would have $P_{g}\left(J_{1} \cap J_{2}\right)>0$, then we would also have $P_{g}\left(J_{1} \cap J_{2} \cap g\left(\Omega^{\prime}\right)\right)>0$, which is a contradiction since

$$
\begin{aligned}
P_{\mathrm{g}}\left(J_{1} \cap J_{2} \cap g\left(\Omega^{\prime}\right)\right) & =P\left(g_{0}^{-1}\left(J_{1} \cap J_{2}\right)\right) \\
& =P\left(\left(X_{0}, Y_{0}\right)^{-1}\left(C_{a} \times D_{b}\right) \cap\left(X_{0}, Y_{0}\right)^{-1}\left(C_{a}^{c} \times D_{b}\right)\right)=0 .
\end{aligned}
$$

These intervals must be in some order on the real line so that we may assume e.g. that the elements of J_{1} are smaller than those of J_{2} (except perhaps for the points of their intersection, which has P_{g}-measure zero), those of J_{2} smaller than those of J_{3}, and those of J_{3} smaller than those of J_{4}.

Consider now the "quadrants" of $N_{\varepsilon}(a, b)$. The set $[a, a+\varepsilon) \times[b, b+\varepsilon)$ is a connected subset of $C_{a} \times D_{b}$. Hence $f([a, a+\varepsilon) \times[b, b+\varepsilon))$ is an interval. Denote it by J_{1}^{\prime}. Let $J_{1}^{\prime \prime}=J_{1}-J_{1}^{\prime}$. With an analogous notation we decompose all J_{i} 's:

$$
J_{i}=J_{i}^{\prime} \cup J_{i}^{\prime \prime}, \quad i=1, \ldots, 4
$$

where J_{i}^{\prime} is an image of a "quadrant". Then

$$
f\left(N_{\varepsilon}(a, b)\right)=J_{1}^{\prime} \cup J_{2}^{\prime} \cup J_{3}^{\prime} \cup J_{4}^{\prime} .
$$

This is a connected set since $N_{\varepsilon}(a, b)$ is connected. Consider now J_{1}^{\prime} and J_{3}^{\prime}. With the order of J_{i}^{\prime} s that we have the set $J_{2}^{\prime \prime}$ is between them. This is a contradiction, since $P_{g}\left(J_{2}^{\prime \prime}\right)>0$.
Remark. If X and Y have continuous densities, then the condition on the support of P_{X} and P_{Y} is satisfied.
Example 1. Take $\Omega=R_{+}, P=$ measure corresponding to $F_{m . n}$-distribution and g $=$ identity mapping. Let $f: R_{+} \times R_{+} \rightarrow R_{+}$be defined by

$$
f(x, y)=(x / m) /(y / n)
$$

Obviously f is continuous. Let X and Y be any two independent χ^{2} distributed r.v.'s on Ω. Then the theorem shows that it is not true that

$$
g(\omega)=f(X(\omega), Y(\omega)) \text { a.s. }
$$

Example 2. Let $\Omega=R_{+}, g: \Omega \rightarrow R_{+}$be strictly increasing and choose P so that g has χ^{2}-distribution with two degrees of freedom. Define $f: R^{2} \rightarrow R$ by

$$
f(x, y)=x^{2}+y^{2} .
$$

If $X: \Omega \rightarrow R$ and $Y: \Omega \rightarrow R$ are any two independent r.v.'s with $N(0,1)$ distributions then by our theorem it is not true that $g(\omega)=f(X(\omega), Y(\omega))$ a.s. Note also that this result can easily be extended to χ^{2}-distributions with $n>2$ degrees of freedom. Namely if g is as before but now with n degrees of freedom, and if we would have

$$
g(\omega)=X_{1}^{2}(\omega)+\ldots+X_{n}^{2}(\omega) \text { a.s. }
$$

where X_{i} 's are independent and $N(0,1)$-distributed, then by taking $X=X_{1}^{2}, Y$ $=X_{2}^{2}+\ldots+X_{n}^{2}$ and $f(x, y)=x+y$ we arrive at a contradiction with our theorem.

Let $g: \Omega \rightarrow R$ be as in the theorem and suppose that the support of P_{g} has a non-empty interior. Assume that r.v.'s $X: \Omega \rightarrow I_{1}$ and $Y: \Omega \rightarrow I_{2}$ are not only independent but also identically distributed. If the support of P_{X} has an empty interior, then so does the support of P_{Y}. In that case it is not hard to see that
we cannot have a continuous function f such that (3) would hold. If the support of P_{X} does have a non-empty interior, then the impossibility of (3) follows from the theorem. Thus we have the following corollary.

Corollary. Let g be as in the theorem and assume that the support of P_{g} has a non-empty interior. Then g cannot be represented as a finite sum of i.i.d. random variables.

This corollary shows that in the case of infinitely divisible distributions we often have to go outside our original space to find such independent r.v.'s that their sum would have the same distribution as our original variable.
Example 3. Let g be as in the corollary and define a continuous function f : $R^{2} \rightarrow R$ by $f(x, y)=x$. Suppose $X=g$, and let $Y: \Omega \rightarrow R$ be any other r.v. such that the measure P_{Y} has a non-empty interior. Then it follows from the theorem that X and Y cannot be independent.

Acknowledgement. The author is indebted to C. Ionescu Tulcea for bibliographic reference.

References

1. Bourbaki, N.: Topologie générale, ch. 9, 2éme éd. Paris: Hermann, 1958
2. Rao, C.R.: Linear Statistical Inference and Its Applications, 2nd ed. New York: Wiley, 1973

Received April 29, 1981; in revised form February 15, 1982

