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1. Introduction 

This paper is concerned with the extension to a real separable Hilbert space K 
of the finite dimensional theory of Dirichlet diffusion forms (energy forms) 
S VfVfd#, of the associated infinitesimal generators of symmetric Markov  
processes and of the processes themselves. In our case # is a (non necessarily 
Gaussian) measure associated with the Hilbert space K through a rigging 
Q ~ K c Q ' ,  where Q is a locally convex complete real vector space densely 
contained in K, with dual (2'. The Dirichlet form defines a self-adjoint operator 
in L2(d#) , which generates a symmetric stationary Markov process satisfying a 
stochastic differential equation with drift coefficient in La(d#). Besides their 
intrinsic probabilistic and functional analytic interest, such processes and the 
correspondent potential theory have also interest from the point of view of 
quantum mechanics. In the finite dimensional case the relation is immediate 
through the well known connection between the heat equation and the 
Schr/Sdinger equation, and Dirichlet forms permit e.g. to define the Hamiltonians 
of quantum mechanical systems with very singular potentials. In the infinite 
dimensional case the Dirichlet forms and the associated self-adjoint operators 
and diffusion processes are related to quantum fields, e.g. in the case of certain 
measures # on Q'= 5e'(R~). These processes can be looked upon as a particularly 
interesting class of homogeneous generalized random fields with values in 
~ ' (R"+I ) ,  namely they are such as to be symmetric stationary Markov looked 
upon as processes indexed by the real line and with state space 5,~ Although 
our present study has its roots in our previous work [-1], the knowledge of that 
work is not necessary for reading the present one. 1 Some references concerning 
work from some other points of view on stochastic differential equations, 

* Work supported by The Norwegian Research Council for Science and the Humanities 

1 The present paper constitutes, together with the paper under Ref. [88], the reference number 4 
in Reference [1] 
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stochastic processes and their relations to differential operators in infinite 
dimensional spaces are e.g. [2-14] (and references therein). 

We shall now briefly discuss the content of the different sections of our 
present paper. 

In Section2 we study Dirichlet forms on a rigged separable real Hilbert 
space K, the rigging Q ~ K ~ Q' being as above. We recall that for any probabili- 
ty measure/ t  on Q' which is quasi invariant under translations by elements of Q 
two strongly continuous unitary representations q ~ U(q) and q ~ V(q) of Q in 
Lz(d/~ ) are defined, such that U and V satisfy the Weyl commutation relations. 
Such representations have been studied intensively before, see e.g. [15-23]. We 
have 

d 
(V(q)f)(~)= ~- ~ ( - ~  ) f(~+q), 

for any fsL2(dt~), qeQ, ~sQ'. 
Let ire(q) be the infinitesimal generator of the unitary group V(tq), tER. Let 

~1 (Q') be the space of all quasi invariant probability measures on Q' with the 
property that the function 1 is in the domain of re(q) for all qsQ. ~I(Q') is the 
space of measures considered henceforth. The gradient q- V in the direction q is 
defined in a natural way, hence also the closed map f-~ Vf from a dense subset 
W 1 of Lz(d#) into K @ La(d#). The Dirichlet form we consider is then defined as 
the closed positive form ~ vf. Vfdp in L2(d#). 2 

We study the correspondent self-adjoint operator H- -  V* V. In particular we 
exhibit its Q-ergodic decomposition induced by the ergodic decomposition of # 
with respect to translations by elements in Q. We also give a definition of a 
Laplacian on L2(d#), for # in a subspace ~I(Q'), as a self-adjoint positive 
operator. 

We start Section 3 by proving that the semigroup e -tn, t > 0  generated by H 
in Lz(d#) is positivity preserving, i.e. it is a Markov semigroup. Although a 
direct proof could also be given, we do the proof  by reduction to finitely many 
dimensions, followed by application of the general theory of symmetric pro- 
cesses in R n generated by Dirichlet forms given in a series of papers by 
Fukushima, extending classical work of Beurling and Deny, see [27-29? and 
references therein. We do the reduction to finitely many dimensions because it 
provides useful additional information, and in fact we shall use this reduction 
also further on. For  this reduction we assume that Q' is such that regular 
conditional probability measures with respect to subalgebras generated by finite 
codimensional subspaces exist (which is e.g. the case when Q' is a Suslin space). 
We then associate with the Markov semigroup e -t~ in Lz(d#) a homogeneous 
Markov process ~(t) with invariant measure # and infinitesimal generator H. 
This process can be realized, e.g. with state space a suitable compactification Q' 
of Q' (Lz(d#) being separable, we can take (~' as the Gelfand spectrum of the 
uniform closure of a separable subalgebra of smooth cylinder functions on Q', 
containing the unit and separating points). This realization is discussed in [64] 
and [62]. Another realization with state space Q' is constructed from the 

2 Some contexts where related Dirichlet forms appear are [1, 17, 22-26] 
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transition probability functions given by e "-t€ and the initial distribution d/z. 
Here assumptions on (Q', #) are needed, e.g. /~ a Radon measure on the Suslin 
space Q' ([58]). We then show that ~(t) solves, in the sense of weak processes on 
Q' ([30-32]) the stochastic differential equation of a diffusion process 

d~(t)=~(~(t)) dt + dw(t), 

where w(t)/V~ is the standard Wiener process on K and the drift coefficient//(the 
osmotic velocity fl (.), in the sense of [1]) is such that q./~ = 2ir~ (q) 1. In the proof 
a suitable characterization of the standard Wiener process on R is used. Note 
that fl is, in general, neither Lipschitz nor bounded. 3 We continue Section 3 by 
giving the time ergodic decomposition of the process ( and of its generator H. 
We also compare the time-ergodic and Q-ergodic decompositions and show that 
the former is in general strictly finer than the latter. We give a sufficient 
condition for the measure # in order for the two ergodic decompositions to be 
equivalent. The condition, called strict positivity, is that the conditional mea- 
sures obtained from # by conditioning with respect to closed subspaces of 
codimension one be bounded away from zero on compacts of the corresponding 
one-dimensional subspaces. Two simple criteria for strict positivity of ~t are then 
given. The first requires 1 to be an analytic vector for zr(q) and that 
~z(q)". l~D(q. V) for all qeQ. The second requires a gap at the bottom of the 
spectrum of H and a simple estimate involving the multiple commutators of zc(q) 
with H. 

We also prove in Section 3 continuity properties of the paths ~(t) in natural 
Banach norms, for a class of measures /~ in .~I(Q')- We use here results from 
Gross theory of abstract Wiener spaces (see e.g. [6, 7]). Our results on continuity 
properties give an extension of the corresponding ones of Stroock-Varadhan [35] 
to processes with infinite dimensional state space. 

We end Section 3 with a general sufficient condition for a measure to be 
quasi invariant, a result whose usefulness is illustrated by the subsequent 
sections. 

In Section 4 we study the behaviour of Dirichtet forms and operators under 
weak convergence of measures. If the adjoint of a natural gradient operator in 
L2(d#) is densely defined, we call # admissible, and a criterium for the admissi- 
bility of weak limits of measures is given. A concept of analytic and equi 
analytic probability measures is defined and the latter are shown to yield 
analytic measures in the weak limit which are Q-quasi invariant and, if ad- 
missible, are also such that leD(It(q)), for all qeQ. Note that analytic measures, 
conditioned with respect to cofinite subspaces, have densities which are analytic 
in a strip. 

In Section 5 we apply the results of the previous sections to the case of two 
space-time dimensional quantum field theoretical models. For  these applications 
the rigging is given by the real spaces Q = 5 ~(R), K = L 2 (R), Q '=  5 g'(R). We show 
in particular for the weakly coupled P(~o)2 models ([-38, 39]), the P(q02 model 

3 In fact the drift-coefficient fl is, even for K finite dimensional, more singular (just L2(dl~)) than 
the ones usually considered in the theory of stochastic differential equations. See e.g. [33-34]. The 
finite dimensional case is studied in more details from our point of view in [63] 
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with Dirichlet boundary conditions and isolated vacuum ([40-43]) and the 
exponential interaction models [44, 45], that the physical vacuum measure 
restricted to the a-algebra generated by the time zero fields is an admissible 
analytic quasi invariant measure # on 5P'(R) such that 1 is in the domain of the 
canonical momentum ~(~p), ~0~Se(R) in L2(,9~'(R), d#). 

The restriction to time zero fields of the physical Hamiltonian of above 
Wightman field models coincides as a form on the dense domain FC z of finitely 
based twice continuously differentiable functions with �89 x the Dirichlet operator 
H given by the Dirichlet from ~ Vf.  Vfd#. ~ One has the ergodic decompositions 
as well as the stochastic differential equation for the Markov process #(t, .) with 
state space 5f'(R), infinitesimal generator H and invariant measure #: 

d ~(x, t) =�89 fl(~(t))(x) d t + d w(x, t), 

w(',t) being the standard Wiener process on 5~'(R) and f i ( . ) = 2 i n ( . ) . l  the 
osmotic velocity corresponding to the measure #. 

2. The Diriehlet Form and the Dirichlet Operator 

In this section we give an extension to the infinite dimensional case of the 
construction of an Hamiltonian by Dirichtet forms in finite dimensions. 

The extension is such as to give, as in the finite dimensional case, the 
infinitesimal generator of a Markov diffusion semigroup, yielding a diffusion 
process. 

We shall say that a reaI separable Hilbert space K is rigged if there exists a 
real locally convex complete vector space Q such that 

Q c K ~ Q ' ,  (2.1) 

where Q' is the dual space of Q and such that Q is densely contained in K and Q' 
respectively and the inner product ( , )  in K coincides on Q x K with the 
dualization between Q and Q'. 

In this case the inner product ( , )  on Q x K extends by continuity in the last 
variable to Q x Q' and this extension coincides with the dualization between Q 
and Q'. Hence we shall denote the dualization between Q and Q' by (q, ~), q e Q, 
~6Q'. 

Let ~(Q') be the space of probability measures defined on the a-algebra 
generated by the weak*-topology. We shall say that # e ~(Q') is quasi invariant 
if, for any qsQ, d#(~) and d#(# + q) are equivalent as measures, and we shall let 
~0(Q') denote the subset of quasi invariant probability measures. 

Let now # ~ ( Q ' ) ,  then on Lz(dp) we have a representation U(q) of Q by 
unitary operators with the cyclic vector (2(~)--1, given by 

(U (q) f )  (4) = e ~ (q' ~)f(~)- (2.2) 

4 It also coincides with �89 the "diffnsion operator given by #", in the terminology of Theorem 2.7 in 
Reference [1] 
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We have easily that q-~ U(q) is a strongly continuous representation of Q, 
because for f~L~(d#)  we have 

ll(U(q)- 1)ftl~ <2  llfI!~(1 - R e  ~ e i(q'~ d#(~)), (2.3) 
Q, 

which shows that U(q) is strongly continuous since L~(d#) is dense in~L2(d#). 
If moreover #~No(Q'), then we also have another representation of Q. Since 

d#(~ +q) and d#(O are equivalent we know that 

d#(~ + q) 
a(~' q)= d#(~) (2.4) 

is a non negative Ll-function , and if we define 

(V(q) f )  (~) = a ~ (4, q) f (~ + q) (2.5) 

then q~V(q)  is again a unitary representation of Q on L2(d#) , which is not 
necessarily continuous. However, it is always ray continuous i.e. V(tq) is strongly 
continuous in t, t ~ R. 

Remark. If Q is a Fr6chet space or a strict inductive limit of Fr6chet spaces then 
q ~ V(q) is also strongly continuous i.e. for any f sL2(d#)  the mapping q ~ V(q)f  
is strongly continuous. For  this result see [20]. 

One sees easily (in the general case) that U and V satisfy the Weyl- 
commutation relation 

V(p) U(q) = e i(t''q) U(q) V(p). (2.6) 

We have obviously that (q,~)-~(q) is the infinitesimal generator for the one 
parameter unitary group U(tq). Let re(q) be the infinitesimal generator of the 
unitary group V(tq)=e it~(q~, and let f2~L2(d#) be the function ~2(~)= 1. 

We shall say that #s~o(Q')  is n-times differentiabte if f2 is in the domain of 
r~(ql) . . . . .  re(q,,) for all n-tuples ql . . . .  , q, in Q, and the subset of n-times differ- 
entiable probability measures will be denoted by ~,(Q'). s We shall also say that 
#e~o(Q') is in N,~(Q') if ~2 is an analytic vector for re(q), for all qeQ. Let now 
I ~ 1  (Q') then 

ft. q = 2 i ~(q) f2 (2.7) 

is a linear mapping from Q into L2(d#) , and we denote by f l (O'q the value of 
the image function at the point ~EQ'. We call fl the drift coefficient or osmotic 
velocity given by #. 

Remark I. The mapping q-~ fi-q is not necessarily continuous. We have though 
by Prospositions 2.3 and 2.5 of Reference [1] that if Q is a countabley normed 
space then q~ f i -  q is continuous, and if Q is a nuclear space then fl is actually 

s The measures in #I(Q') were called "measures with regular first order derivatives" in Refer- 
ence [1]. Let us also take the opportunity to correct a misprint in Reference [1]: in the Remark 
following Definition 2.2, U shoutd be replaced by (U, V) 



6 S. Albeverio and R, Hoegh-Krohn 

given by a measurable mapping fl(~) from Q' to Q' so that (q, fl(~)) is the value 
of fl.q at the point ~. 

Let now R be a finite dimensional subspace of Q. Then the orthogonal 
projection PR in K with range R extends by continuity to a continuous 
projection from Q' into Q with range R. This because if r a . . . . .  r, is an orthonor- 
mal base in R then for any keK we have that 

PRk= ~ (r~,k)r~, 

which obviously extends by continuity. 
We shall say that a measurable function f on Q' is finitely based if there is a 

finite dimensional subspace R of Q such that f (~)=f(PR ~). Moreover we shall 
say that a finitely based function f is in FC"(Q') if its restriction to its base R is 
in C~(R) i.e. n-times continuously differentiable with bounded derivatives of 
order j = 0, 1,.. . ,  k. This definition is obviously independent of the choice of R. 

We shall say that a function f~C(Q') is in C"(Q/) if, for any ~ Q '  and any 
q~Q, f(~ + tq) is n-times continuously differentiable functions of t and at t = 0  all 
the derivatives are in C(Q'). If f e  C 1 we define 

(q. Vf)(~)=df(~+tq)L=o, (2.8) 

so that the operator q- V in L2(d/0 has a dense domain, containing C~. 
We see that if # ~ 1  (Q') then C~(Q') is contained in the domain of n(q) for all 

q6Q and for fEC~ we have 

1 
~(q) =~i- (q" Vf +�89 q f). (2.9) 

The operator q. V has a densely defined adjoint, namely - q .  V-ft.q, whose 
domain contains C~ and is therefore dense in L2(d#). Hence q- V is closable i.e. 
the associated form H q" Vf It 2 is closable. We shall henceforth denote the closure 
of q. V by the same symbol. 

We remark incidentally in the next Lemma that D(q. V)c~FLo~ is a core for 
q- V i.e. it is dense in D(q. V) in the graph norm, where FLo~ denotes the finitely 
based functions which belong to Loo(d#). 

Lemma 2.1. I f  # ~ ( Q ' )  then FLooc~D(q. V) is a core for q. V and fi~r the corre- 
sponding quadratic from 1t q" V f II 2, for any q ~ Q. 

Proof See Appendix. 

Let now f6D(q. V) for all qeQ. For  any finite dimensional subspace R=Q 
we define 

( fJ ') f  = ~ tie i . VfJT 2, (2.10) 
i =  1 

where ej . . . . .  e,, is an orthonormal basis for R. Actually (2.10) is independent of 
the particular basis e 1 . . . .  ,e, chosen. Since the forms tle i. Vftr~ are closed, so is 
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( f f ) ~  a closed quadratic form. We have obviously that if R c R '  then 
�9 R <  R'  

( f  f ) ,  = ( f , f ) ,  �9 
Consider now the net ~ of finite dimensional subspaces of Q. The function 

R-+(f,f)R1 is a monotone function from the net to the real line, hence the 
supremum of ( f , f ) l  R over all R e A ;  is the limit of ( f f )R  along the net JK. Call 
( f f ) l  this supremum. Note that ( f f ) ,  = oo is also allowed. By taking the limit 
over the subspaces spanned by {e 1 . . . . .  e,}, n =  1, 2 . . . .  , where {ei}~ ~ is an ortho- 
normal  base in K of elements in Q, we have that 

(ff)~ = ~ ile," Vf]l~. (2.11) 
i = l  

Note however that ( f f ) l ,  by the above definition, is basis independent. We shall 
also use the notation 

( f f )~  =~ Vf  . Vf  d#. (2.12) 

Let us now define the gradient V R in the direction of the finite dimensional 
subspace R as follows. Let e 1 . . . .  , e, be a complete or thonormal  system in R. For 
f in D(q. V), for all qeQ, we define Vaf as the element in the Hilbert tensor 
product R ~) L2(d/~ ) given by 

Vef= i ei| Vf). (2.13) 
i=1 

One has 

( f  f)R = [[ VRfI[ 2, (2.14) 

where It [I is the Hitbert norm in R@L2(d#). 

Lemma 2,2a. Let #e~t  (Q' ). Then V R is a closable operator from the dense domain 
(~D(q. V)cL2(d#) into R@La(d#). The closure ~7 R of VR, independent of the 

qeQ 

chosen basis in R in the expression (2.13), satisfies 

I ~7 12 R ,t RfI =(f,f)l- 

Proof Let heR @ L2(d#), with components  

hies V)c~ L~(d#) 

with respect to the basis vectors % i=  1,.. . ,  n in R. Such functions are obviously 
dense in R Q L2(d,u ). We now see that the adjoint Vd of V R is well defined as a 
linear map from a dense domain of R C)Lz(d#) into L2(d#) , since on elements h 
of  the above form it is given by 

n 

V* h= - ~ (e i �9 V hi +(fl. el) hl) , (2.15) 
i = I  
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and the right hand side is in L2(d#) , due to the assumption # ~ I ( Q ' )  and the 
choice of functions h i. Thus V R has a densely defined adjoint, hence it is closable 
as a map from the dense domain ~D(q .  V)cL2(d#) into R@L2(d#). This is 

q~Q 
equivalent with the form [f VRft[ e being closable. The closure of this form is 
given by I]PRfj! 2 and by (2.14) it coincides with (f , f)~.  The latter form being 
independent of the basis in R the Lemma  is proven. 

Consider now the operator  V defined as a map from a dense domain of 
L2(d#) into K QL2(d#) by its action on elements f in 

{ f eqOaD(q- V)](f f )  t < co} =-- W~ (d #) 

given by 
cO 

Vj'= Z ei | e~- V f ,  (2.16) 

where {e~} is a complete or thonormal  system in Q c K .  Note that 

II V f l i ' - j  iTf. ~ fd#= ~] ,le, " ' �9 Vfl lz<co  ( 2 . 1 7 )  
7 = i  

for such f where II II is the Hilbert  norm in K@L2(d#). 

Lemma2.2b .  Let #e~l(q_'). V is a closable map from the domain Woi(d#) into 
K @L2(dlx ). The closure V of V is independent of the basis in Q used in (2.16) and 
one has 

II ~rf N 2 ~ j" ~Tf �9 ~Tfd#=( f f )  1 

for all fED(P), where ( f  f ) l  denotes the closure of the form (2.12), as defined on 
6 D(V)- ( f f ) I  is called the Dirichlet form given by #. 

Proof Consider as in the proof  of Lemma2 .2a  elements in R@L2(d#) of the 
form h =  {hi, ...,h,}, with hi~D(q. V)c~L~(d#). For  such h we have V* h =  17" h 
and, when R runs over the net of finite dimensional subspaces of Q, the set of 
such h is dense in K @Lz(d#). This then shows that V* is densely defined, hence 
V is closable. The rest follows analogously as in the proof  of Lemma 2.2a. 
Let us from now on denote by V R resp. V the closures of the operators denoted 
by the same symbols in Lemma 2.2a and Lemma2.2b .  Define HR=V~ V R. V R 
being closed in L2(d#) we have that H R is densely defined positive and self- 
adjoint as an operator  from a dense domain D(H g) c L2(d#) into L2(d#). One has 
D ((HR) ~) = D (VR) and 

( f f ) R  = [I VRf 1[ 2 __~ ]r(Hg)~f It 2 2, (2.18) 

for all f~D(VR), The map R ~ H R from the net of finite dimensional subspaces of 
Q to the ordered set of positive self adjoint operators H R is monotone non 

6 The restriction of this form to FCZ(Q ') is what was called Dirichlet form in [1]. Note that in [1] 
we used the notation F" for FC ~ and (ff)l was denoted by (ff)~ 
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decreasing. Define H =  V* V. V being closed we have that  H is densely defined 
positive and self-adjoint as an ope ra to r  from a dense domain  
D ( H ) c D ( V ) c L 2 ( d #  ) into L2(d#). One has D(H~)=D(V) and 

( f f ) l  = ][ [7f112 = [ ]Hi f [ I  z z (2.19) 

for all feD(V) .  
We now note  that D(V)= W l ( d # ) ,  where 

W~(d#) = {fED(VR) VReQI lira I[ VRf II 2 < oo}, 
R?Q 

where R l" Q along the net JK. 
In fact D(V)= W~(d~) is evident and one has 

LI Vf  [q 2 = lim qh VRf ]12 = sup II vRf  I[ 2 (2.20) 
R~Q R=Q 

for any fEWl(d#) .  
To show D ( V ) c  Wl(d#) it suffices to use that  V is closed and that  F C ~ is 

dense in D(V) in the norm 1I'll + I[ v .  H. 
Finally we note  that  for f ~ F C  2 with base spanned by the o r thonormal  

complete  system {el, ..., en}, ef~Q we have 

Vf = ~ e i | (e i �9 V f) .  
i ~ 1  

Hence VfeD(V*) and thus, by (2.16) 

V* V f = - ~ [(e,. V)(e, . V) f +(fl . ei)(e i . V) f ]  = - A f - fi . V f 
i=1 

where 

A f  = - ~, (e~. V)2f (2.2!) 
i --1 

and 

ft. V f  =- ~ (ft. e~)(e i �9 V)f. (2.22) 
i=1 

Thus for geD(V), we have 

(H~g,H~f)=(Vg,  Vf)=(g ,  V* V f ) = ( g , - A f - f i .  Vf), 

which shows that  H f =  - A  f - f t .  V f  for all f e F C  2. We have thus proven the 
following 

Theorem 2.1. For any measure # in ~I (Q') the Dirichlet form 

( f f ) ~  - ~  Vf. V f d #  

is a closed positive form in L2(Q',d#), with domain 

D(V) = { f e ~  D(VR) I lim II VR fll z < ~ }. 
R R'~Q 
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The associated operator is the positive self-adjoint operator 

H=V*V.  

One has D(H~)=D(V) and D(H) is a core for V. The restriction H to the dense 
subset F C 2 of LE(Q' , d#) is given by 

H f =  - A  f - f t .  Vf, 

where f is arbitrary in F C 2 and 
n 

A f =  ~ (e,. V) 2, fl" V= Z (fi" e,)(ei. V), 
i = 1  i = 1  

when {el, ..., e,} is an orthonormal set of vectors spanning the base of f .  

Let now feD(V).  F r o m  the fact that  the restriction of  V to the domain  

is closable, with closure [7, we have that  the inequality 

H(HR)~ f [ I <= I[H~I ll (2.23) 

extends from the above domain  to the whole of  D(V). 
By the Theorem on m o n o t o n e  convergence of  lower bounded  forms (see e.g. 

[51] and [47]) we have then f rom (2.23) and (2.20), recalling D(V)=  Wl(d#),  
that  H R converges strongly in the generalized sense, as R increases to Q along 
the net JV, to the positive self-adjoint opera tor  H. It is well known, see e.g. [51], 
that  s t rong convergence in the generalized sense implies strong convergence 
of  the corresponding semigroups. We have thus the following 

Theorem2.2 .  Let # be in ~I(Q'). Then R-+H R is a monotone map from the 
directed set of finite dimensional subspaces of Q into the ordered set of positive 
self-adjoint operators. 

One has R " ' (f ,  f ) l  T(f, f ) l  for all f eD(V)  and e-t~R~ e -t~r strongly m LE(Q , d l~), 
uniformly on finite t intervals, as RTQ through the net of finite dimensional sub- 
spaces of Q. 

We shall call the opera tor  H of  Theorems 2.1 and 2.2 the Dirichlet operator 
given by #. v 

We shall say that  a measure # e ~ ( Q ' )  is Q-ergodic iff the only measurable  
subsets of Q' which are Q-invariant, i.e. invariant  under  translations by arbitrary 
q e Q, have #-measure  zero or  one. 

v The Friedrichs extension of the restriction of the Dirichlet operator V* V to the dense domain 
FC2(Q ') of L2(d/~ ) is what was called "the diffusion operator given by #" in Reference [1] (Th. 2.7). 
It is an open question whether FC2(Q ') is a core for the Dirichlet operator, in which case Dirichlet 
operator and diffusion operator would coincide on their whole domain 
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Consider now the closed subspace/2~*(d#) of L~(d#) consisting of functions 
f such that 

f(~ + q)---f(~) for all q e Q- 

/2~v(d#) is obviously closed under multiplication, so that it is a commutative C*- 
algebra with identity in the L~o(d#)-norm. Hence by the Gelfand representation 
theorem/J~oV(d#) is isomorphic (as a C*-algebra) with the space C(Z) of continu- 
ous complex-valued functions on a compact Hausdorff space Z, unique up to 
homeomorphisms. Z is the spectrum space of the C*-algebra /2~V(d#) i.e. the 
space of all maximal ideals of the C*-algebra /2~V(d#). The restriction of the 

inv measure d# to /2 o (d#) gives a positive continous linear functional, hence an 
element in the topological dual of i,, /2 o (d#), thus by the above isomorphism we 
get a positive linear functional on C(Z). By the Riesz-Markov theorem this 
functional gives a bounded positive regular Borel measure dz on Z. Since 

inv /2 o (d#) is weakly closed in L2(d# ) we have by the isomorphism that C(Z) is 
weakly closed in Lz(Z, dz ). This gives us that C(Z)=L~(Z,  dz), so that in 
particular all measurable sets in Z are open. 

(Z, dz) is then a standard Borel space. By the well known central decom- 
position (e.g. [50]) to the standard measure dz there exists a measurable field 
z - -*~  of Hilbert spaces over Z and an isomorphism of L2(d#) with the direct 

integral ~ YC~dz, so that the C*-algebra i,~ E~ (d#) is irreducibly represented in ~ .  
Let us now assume that Q' is such that regular conditional probability measures 
with respect to the a-algebra generated by in~ /2 o (d#) exist. 

Remark 2. Conditions yielding regular conditional probability measures with 
respect to subalgebras are well studied, both from the abstract measure theoreti- 
cal point of view, see e.g. [52-56], and the topological point of view, see e.g. 
[55-59]. We can take e.g. Q' to be a Suslin space. 

Under the above regularity assumption we can identify the central decom- 

position L2(d#)= S ~ d z  with the decomposition 

@ 

L 2 (d#) -= ~ L 2 (d#~) dz (2.24) 

where d#z is the conditional probability measure on Q' given the a-algebra 
generated by/2~V(d#), so that 

#(~)=S#z(~)dz. (2.25) 

dz is here simply the restriction of # to the a-algebra generated by L~V(d#). 
For any measurable subset A of Q' with #(A)>0, #z(A) is the density with 

respect to dz of the dz-absolutely continuous measure obtained by restricting 
#(A) to the a-algebra generated by L~V(d#). If A is invariant by translations by 
elements in Q then by construction #~(A)--Z~(z), where X3(z) is the characteristic 
function of the image of A under the isomorphism of /2~V(d#) and C(Z), 
which shows that #~(.) are Q-ergodic measures. 
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Moreover we have the following 

Lemma 2.3. I f  z 1 q=z 2 then &l • 

Proof. If z~ + z2, since Z is Hausdorff, there are two open non intersecting sets 
A~ and A 2 such that za ~A~ and z2~A 2. Now for any #-measurable set B c Q '  and 
any A open in Z we ha,ve by definition that 

#z(B) dz =#(A (~B) 
A 

where A is a Q-invariant measurable set such that its characteristic function is 
represented on Z by the characteristic function of A. So that if z e A  then, by 
(2.25), #z has support in A. Since A 1 (~A 2 = ~  we have that A1 and A2 may be 
chosen such that A 1 c~A2= ~. 

Lemma 2.4. I f  # is Q-quasi invariant then #z is Q-quasi invariant, for dz-almost 
every z ~ Z. 

- ~ l j n ~ d . ,  Proof. Let A be an invariant set so that its characteristic function ZA 0o ~ #J" 
Then for any f e  Cb(Q') and any q e Q 

d#(~ - q) d#(~) =5~f(~) d#(~ - q) d#z(~) dz. 
~f(~+q)za(~)d#(~)=~f(~)ZA(~) d#(~) A d#(~) 

This then gives, the left hand side being S~f(~ +q)d#~(~)dz, that 
A 

~f(~ +q) d&(~) =~f(~)  d # ( ~ - q )  d&(~), 
d#(~) 

for d z - a . e . z .  The exceptional set can be chosen independent of f ,  since the 
equality holds for a countable set of functions dense in the bounded convergence 

norm. This then implies d#~(~-q)= d# (~ -q )  d#~(~) for dz-a.e, z, proving the 
quasi invarianee Of#z. Thus we have d#(~) 

Theorem 2.3. Let # be a probability measure on Q'. Suppose Q' is such that the 
by 12oo (d#) conditional probability measure with respect to the a-algebra generated ~nv 

exists, which is e.g. the case when Q' is Suslin. Then # has the Q-ergodic 
decomposition 

# = S # z d z ,  
Z 

with #zl 5-#~2 for z 1 @z 2. I f  # is quasi invariant then #z is quasi invariant, for dz- 
a . e . z .  

Theorem 2.4. Let # ~ 1  (Q') and zero a simple eigenvalue of H. Then # is Q- 
ergodic. In fact the eigenspace of eigenvalue zero contains the subspace of L 2 (dp) 
consisting of Q-invariant functions. 

The decomposition (2.25) gives a direct decomposition of Lz(d#) of the form 

L2(d#) =~ L2(d#z) dz 
z 
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and with respect to this decomposition H decomposes as 

H=~ H~ dz, 

where H~ is the self-adjoint operator associated with #~. 

Proof. If f is Q-invariant, then obviously ( f , f ) l  =0  so that .fe W 1 = D ( H  ~) and 
H~f:O, which implies that feD(H) and Hf:O .  

The direct decomposition of L2(d#) follows from the fact that #~1• for 
z 1 + z  2. That  H decomposes follows from the corresponding decomposition of 
W 1" 

We shall say that a # e ~ l ( Q ' )  is in ~D(Q') if fieK@L2(d#) i.e. if 

-= {fli]I2 (2.26) 

is finite, where fli=fi.ei and {e~}[= 1 is an orthonormal base in K of elements in 
Q. Similarly as in Lemma Z1 we have 

Lemma2.4.  I f  #e~D(Q') then FLmc~W 1 is dense in WI=D(V) in the graph 
norm of V, i.e. in the Dirichlet norm ([tf1[1)2=(f,f)l +(f , f) .  

Proof. Let f E W  1 and set f k ({ )= f ({ )  if if(~)l-<k and equal to + k  (resp. - k )  if 
f ({)  is larger than k (smaller than -k) .  Then f k ~ f  in L2(d#). Moreover f 
- fkED(V),  since f - - f k = o  for [f({)l <k  and f - - f k = f - - k  for tf({)l >k.  We have 

( f _ f k ,  f _ f k ) , =  ~ Vf" Vfd# 
]f(r >k 

and f k= f - - ( f - - f k ) eW1 ,  because both f and f _ _ f k  a r e  in W 1. But ( , f__fk, , f  
_fk)~ goes to zero since v f .  Vf~L~. So that Wlc~L~ is dense in W ~. Let now 
f e  W a c~ L~ and let R be a finite dimensional subspace of Q with its correspond- 
ing conditional expectation E R. It is proven in Appendix that 

VEnJ'= E R V f +  E R [(fi  - E R fl)J']. (2.27) 

So from the triangle inequality in K @ L 2 (d#) we have 

i[ V ERf li <= IiER V f ll + [IER[ (fl-- E,  fl) f ]  ll 

and thus, since E R is a projection in L 2, 

]I V ER f H ~ [I V f ]l + li f l[, l[fllt 

so that ERfE W 1. Consider now f - E R f ,  which obviously goes to zero in L 2 (d#) 
as R~Q. On the other hand 

H V(f--ERf)][ <= ][ V f -ER  VfH + []ER[(fi--ERfi)f]II 

<-_ tlVf -ER Vfil + ii,fil~ lifi--ERfii!. 

Since E R ~ I  in L2(d#) we have that I |  in K@L2(d#), hence the right 
hand side of the previous inequality goes to zero. This proves the lemma. 
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Let now #e~@z(Q') and let us also assume that, for an orthonormal basis {e,} 
in K of elements in Q, 

V - - ~ rc(e,) 2 s (2.28) 
t l= l  

converges in Lz(d#), where s 1. In that case the operator 

7: 2= ~ rc(ei) 2 (2.29) 
i = 1  

is defined on F C 2, it is obviously non negative and we shall denote by rc 2 also its 
Friedrichs extension. Although (2.29) looks basis dependent, we may see in the 
following way that it is not. Let R be a finite dimensional subspace of Q and 

n 

rc~= ~, rc(ri) z, (2.30) 
i = 1  

where r: ,  ..., r, is an orthonormal base in R. We denote also by 7r~ its Friedrichs 
extension. It is easy to see that (2.30) is basis independent. Moreover R~rt~ is 
monotone from the directed set of finite dimensional subspaces into the directed 
set of non negative operators. 7:2 is then simply the limit, by Theorem 3.13 of 
Chapter VIII of Reference [51], of ~ as R ~ Q .  This shows that the Friedrichs 
extension of (2.29) is basis independent. 

We have obviously that on FCZ(Q ') 

7:2 + V= H, (2.31) 

where H is the Dirichlet operator. We can also give the L2-function V directly in 
terms of fl if we assume l[#i[/~< oo. Since 

ire(q) s189 fi . q 

we see that 

i = l  

Now, if H#[[D<OO, ~ f12 converges in L 2 so, 
i ~ l  

converges, we get that 

(2.32) 

by the assumption that (2.28) 

and p~ = fl.e~ and V~ = e~- 17, {ei} being an orthonormal base in K of elements in 
Q. 

where 

f l . f l=  ~ fl~ and divf l= z., ~ ~fli (2.34) 
i~ 1 i= 1 

V=�89188 (2.33) 
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In the finite dimensional case, i.e. in the case where d i m K <  o% the fact that 
re2+ V on functions of the form f Q  with f~  C2(K) is given by 

(7r2+ V)fY2=(-A - f t .  V)fg2 

gives us, since we know that - A  - f t .  V on Cb z in Lz(dt 0 is actually equivalent 
with - A  + V  on C 2 in Lz(dx), that _n2  is the image, in Lz(d/~), of the 
Laplacian in La(dx ). V is in this interpretation the potential. In this sense it is 
natural to call -~z 2 and V the Laplacian resp. potential given by /~ in Lz(dl~), 
and to extend these names also to the infinite dimensional case. 

Remark 3. The Laplacian given by an arbitrary quasi invariant measure in 
~2(Q') is an Lz-concept linked to the existence of a measure # and is thus 
different from the Laplacians defined from other points of view in other works, 
in particular by Gross and L6vy ([6, 60, 61, 65]). 

Remark 4. It is not immediately obvious that the class of quasi invariant 
measures so that (2.28) converges in L2(d#) is non empty. So we shall therefore 
give a simple example. 

Example. Let A be a positive invertible trace class operator on a real separable 
Hilbert space K. Consider now the Gaussian measure d#A with covariance A-1, 
it is, for any x, y ~ K 

S (4, x)(4, Y) dl~A (4) =- EA [(', x) (., y)] = (X, A-1 y). 

Let () be the Hilbert space Q=D(A -1) with its natural norm IIA -1.  II. Then we 
have that Q' is the completion of K in the norm HA �9 I]. It is well known that, 
since A is of trace class, d#a is a measure on Q', which is quasi invariant under 
translations by all q e Q, in fact by all q ~ Q' such that (q, A q) < oe. In this case we 
have 

fi q= - A q (2.35) 

so that #A 6 ~D(Q') namely, from (2.26) 

[[ ~A [] D = (S 11A ~ 112 d# A (~))~ = tr A (2.36) 

and 

(7r2 Q)(~) = -I[A4]I2 + t rA .  

So that with 

V=][A~[lZ-trA 

(2.37) 

we have that 

i.e. 

I[ VI[ 2 = EA [(4 A24) 2 -- 2 tr A (4 A2 4) + (tr A) 2] 

= t r A  2 + (tr A) 2 - 2(tr A) 2 + (tr A) 2, 

[I VI[ 2 = tr A 2, (2.38) 
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which is finite since A is of trace class. We see in fact that we may do with the 
weaker condition that A is a Hilbert-Schmidt operator, because (2.38) still holds 
and also in this c a s e  d#a is a measure in Q'. 

A particular example is given by the Gaussian measure corresponding to 
non interacting (i.e. free) Euclidean fields in a closed interval of R with e.g. 
Dirichlet boundary conditions, i.e. the measure with covariance ( - A  v + m2) - 1, 
where At) is the Laplacian with Dirichlet boundary conditions. 

3. The Diffusion Process Generated by the Diriehlet Operator 

We have from the previous section that the Dirichlet operator H = V* V is a self 
adjoint operator  in L2(d#) which is the limit in the strong resolvent sense of the 
operators 

H .  = Vi* V. (3.1) 

where g e is the gradient in the direction of the finite dimensional subspace R. 
The limit is to be taken over the filter of all finite dimensional subspaces. From 
the strong resolvent convergence we then have that e - t ~ R ~  e - tH strongly. 

We say that a contraction semigroup T t in L z ( d # )  is a Markov  semigroup if 
for any f ~ L z ( d t ,  t ) with f > 0 we have that Ttf  > 0. From the strong convergence 
above we get that if e - t~R is Markov, then so is e -tH. We shall now see that 
e-trI~ is Markov  if/~ ~ N1 (Q'). 

We have seen in the previous section that since R is finite dimensional PR 
extends by continuity to a continuous projection defined on all of Q' and with 
range R. We shall denote this extension still by PR' The decomposition of the 
identity on Q' given by 

I = PR + (I  -- PR) (3.2) 

gives a direct decomposit ion of Q' of the form 

Q ' = R |  • (3.3) 

where R • is the annihilator of R in Q'. Since PR is continuous on Q', so is I -  PR, 
hence for x s R  and r /~R • we have that ( x , t / ) ~ x |  is one to one and 
bicontinuous. Hence Q' and R x R • are equivalent as measure spaces. Therefore 
we may consider # as a measure on the product  space R x R • 

Let us now assume that Q' is such that the conditional probabili ty measure 
obtained on R form/~ by conditioning with respect to R l exists, We shall say 
shortly, if this is the case for any finite dimensional subspace R of Q that (Q', #) 
is regular. For  this condition of the regularity the same comment  as in Remark 2 
holds. In particular it suffices to assume that Q' is a Suslin space. 

Thus assume (Q', #) is regular and let #(xlt/) be the conditional probabili ty 
measure on R conditioned with respect to R • assumed to exist, as in Remark 2 
of Section 2. Then for any measurable set A ~ R we have that #(Aft/) is a positive 
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measurable function on R • such that, for any measurable set B in R l, 

S #(A It/) dv(tl) = #(A x B), (3.4) 
s 

where v is the projection of # on R • Let now A c R  and B c R ' .  The quasi 
invariance of # under translations by elements in (2 gives us that #(A x B) as a 
function of A for fixed B is a quasi invariant measure on R, and therefore by 
(3.4) we get that #(Alt/) is a quasi invariant measure on R for v-almost all t / eR ' .  
Thus we have 

#(Air)= j o(xl~)dx = j ~o2(x I~)dx (3.5) 
A A 

with cp(x[~) and p(xLrl) different from zero almost everywhere in the sense of 
Lebesgue. From (3.4) we now easily get 

| 

L 2 (d#) = ~ L 2 (d#(. I rl) dr(r/) (3.6) 
R • 

where the integral is taken in the sense of a direct integral of Hilbert spaces. We 
see that the operator H R of (3.1) is reducible with respect to the direct integral 
decomposition (3.6) and in fact with respect to that decomposition we have 

H R =  ~ H .  dv(tl),  (3.7) 
R • 

where H,  is the Dirichlet operator in L2(R;  d#(.It/)). Hence 

e - tH" = j e - tu" dv(~). (3.8) 
R • 

Therefore if we can prove that e -tH~ is a Markov semigroup, then e -'uR is a 
Markov semigroup. Hence we have reduced the problem of whether e -tH is 
Markov or not to a corresponding finite dimensional problem. 

Let now {X,  din} be a c~-finite measure space. Let e be a closed non negative 
symmetric form on the real L2-space L2(X, din) with domain of definition D(e) 
which is dense in L2(X, din). 

We shall say that every unit contraction operates on e if for any u~D(e)  the 
function v=(0  v u)/x 1 is again in D(e) and 

e(v, v)<e(u,  u). (3.9) 

The following theorem is proved in Section 3 of Reference [29]. 

Theorem 3.1 [Fukushima]. Let  X be a locally compact separable Hausdorf f  space 
with a Radon measure din. Let  ~ be a closed non negative symmetric form on real 
L2(X, dm) with a dense domain of  definition D(e). I f  every unit contraction 
operates on e, then the semigroup e t ~  generated by the self  adjoint operator H~ 
associated with the closed form e is a Markov  semigroup. Moreover  if  e - t ~  is a 
Markov  semigroup, then every unit contraction operates on e. 

Since H,  in (3.7) is the Dirichlet operator in R and R is finite dimensional 
and H,  is the operator associated with the Dirichlet form in L z ( R  , p(x]r/)dx) we 



18 S. Albeverio and R. Hoegh-Krohn 

have only to check that every unit contraction operates on the corresponding 
Dirichlet form. However with v = (0 v u)/x 1 we have that 

(v 'v)l--  S [Vu[Zp(x]tl)dx<=SIVu[2p(xIq)dx-=(u'u)I" (3.10) 
O < u _ < l  

Hence we see that the condition Theorem3.1 is satisfied so that e - 'n ,  is 
Markov. Thus we have proved the following theorem. 8 

Theorem 3.2. Let # ~ I ( Q ' ) ,  then the corresponding Dirichlet operator H gen- 
erates a contraction semigroup e - tn  which is Markov. 

Remark 1. This theorem has been proven under the assumption that (Q',#) is 
regular, used for exploiting the finite dimensional approximations. However the 
result holds also without the regularity assumption, see [62]. As mentioned 
before results of this form are central the work of Fukushima, continuing the 
classical work of Beurling and Deny. For  cases particularly studied in con- 
nection with quantum field theory see Section 5. 

Since e -t~, t > 0  is a Markov semigroup in Lz(d#) and e - t H l = l  we have by 
duality and the usual interpolation theorems that e - tn  is a positivity preserving 
contraction in all Lp(Q', d#), 1 <p<__ 0% strongly continuous for all 1 < p <  oe. By 
a standard technique used e.g. by Fukushima and Silverstein, selecting a dense 
separable subspace of the bounded functions in D(H ~) forming an algebra and 
taking the maximal ideal space for the uniform closure of this algebra, we can 
realize the Dirichlet form ~ Vf  Vfd#,  of which H is the associated self-adjoint 
Dirichlet operator, as a Dirichlet form on the L2(Z, d2) space over this maximal 
ideal space Z, where d2 is the measure corresponding to #. The Dirichlet form 
becomes then a regular Dirichlet form in the sense of Fukushima and to the 
corresponding Markov semigroup in L2(d2), over the compact space Z, there 
exists an associated Markov process (in fact a Hunt  process, after elimination of 
sets of zero capacity). Thus e - tn  gives always rise to a Markov process. We shall 
however remark, under a general regularity assumption on Q', that the process 
can actually be realized as the canonical process with state space Q'. Let us 
again assume that (Q', #) is regular. Then for any measurable set A in a finite 
dimensional subspace of Q we have that P(t, 4, A)=(e- tnZa)(~ ) is well defined 
and P(t, 4, ") is a positive finite measure. We extend easily by approximation 
P(t, 4, ") to a measure on Q', and we have the Chapman-Kolmogorov equation 
P(t + s, 4, A) = S P(t, ~, d~l) P(s, t/, A). P(t, ~, A) is then a transition probability 

(2' 
function. Consider now the cylinder measure on Q,tO,~) determined by the 
projective system defined by the transition probability functions and the initial 
d#. If Q' is such that a Kolomogorov type theorem applies (e.g. Q' the dual of a 
nuclear space, or a polish space, see e.g. [58]) then we get a measure space 
(X, dco) and a canonical Markov process t~4(t) ,  t e l 0 ,  oe), with values in Q', 
such that the finite dimensional distributions of 4(0 are given by above cylinder 
measure. In the usual way, the process being time homogeneous with invariant 
measure d# it is extended to a symmetric time homogeneous process for all 

8 This is the correspondent for the Dirichlet operator of Theorem 2.7 in [1] 
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t ~ R, with invariant initial measure d#, in such a way that for any f ~ L  2 (d#) we 
have 

e - , n f  = Eo f(~ (t)), (3.11) 

where E o is the conditional expectation with respect to the subalgebra generated 
by the linear functions (q, 4(0)) for qeQ. 

We have the natural inclusion L2(d#)cL2(X ,  dog) as the subspace of L 2- 
functions measurable with respect to the subalgebra generated by q.~(0). 
Moreover  the time translation ~(s)~  ~(s + t) induces in a natural way a strongly 
continuous unitary group T t in L2(X, dog), and with this notation (3.11) takes the 
form 

e - tn = E  0 T~E o (3.12) 

where Eo is the projection onto the 4(0) measurable functions, i.e. onto 
L2(d#). Let now f sL2 (d# ) ,  then of course f(~(t))=Ttf(r ~ so that 
f(~(t)) ~L2(X,  do)) and depends strongly continuously on t. 

Since #ENI(Q' )  we have that q. f leL2(d#) so that q. fi(~(t))sL2(X, do)), and 
this depends strongly continuously on t. Hence it is strongly integrable and 

i q . f l (~(z))dz~L2(X,  do)) is actually strongly differentiable with respect to t. 
o 
Consider now the real valued process 

t 

q. w(t)=q.  r  q. fl(~(z)) dz. (3.13) 
o 

We have obviously that q. w(t) is well defined for all q e Q and as a function on 
the probabili ty space (X, do9) it is linear in q. In short w(t) is a weak process on 
Q' [30-32]. We shall see that it is actually the restriction to Q of I /~  x the stan- 
dard weak Wiener process on K. 9 Consider for this 

t 

e i a q .  w(t)  = e i ~ q  �9 ~(~) . e - i~ fo q. fl (r d* (3.14) 

F rom (3.12) we get that if f 6L2(d#)  is in the domain of definition of the 
Dirichlet operator H then Eof(~(t)) is strongly differentiable in L z ( X  , d o 9 )  with 
respect to t and for all t > 0 

d 
~[ E o f (~ (t)) = - E o (H f )  (~ (t)). 

By homogeneity we therefore get that 

d 
dt  E~ f (~ (t)) = - E~ (H f )  (~ (t)t (3.15) 

9 For the standard weak Wiener process on a real separable Hilbert space K see e.g. [6-8] 
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for all s___ 0 and  t_> s. F o r  t = s the  der ivat ive  above  is the one  s ided derivat ive.  
Since e ~ q  c s D(H) we have  by  (3.14) tha t  E~ e ~q''~(~ is s t rongly  di f ferent iable  with 
respect  to  t for t > s  and  since He~q'r �9 fl(~))e i~q'r w e  have for t>s  

d 
~[ E~ei~q~'(~ -c~2 q2 EseiC"~'w(~). (3.16) 

Hence  for any  funct ion f ~ S ( R )  we get  tha t  E J ( q .  w(t)) is s t rongly  L2(X, dco)- 
different iable  and  

d 
E s f  (q. w(t))=q2 E~(A f (q �9 w(t))) (3.17) 

where  qZ=(q ,  q). By L e m m a  3.1 be low we then have tha t  q.  w(t) is the  Wiene r  
process  wi th  diffusion 2q 2 on  R. Hence  we have p r o v e n  that  w(t)/I/2 given by  
(3.13) is the  s t a n d a r d  weak  Wiene r  process  on K. W e  have thus  p roven  the fol- 
lowing theorem.  1 o 

Theorem 3.3. Let ~(t) be the Markov process given by the Markov semigroup of 
Theorem 3.2. Then ~(t) satisfies the following stochastic differential equation, with 
initial distribution d fz, 

d(q. 4) (t) = q. fi(~(t)) d t + d(q- w) (t), 

where w(t)/]/~ is the standard weak Wiener process on K. 

In  the  p r o o f  a b o v e  we m a d e  use o f  the  fo l lowing lemma.  

L e m m a  3.1. Let t/(t), t>=O be a real valued stochastic process, i.e. a real valued 
measurable function tl(t, ~o) from ([0, ~ )  • X, d2 • dog) into R, where (X, do)) is a 
probability space and 2 is the Lebesgue measure. For any measurable function ,f 
on R we define the forward derivative 

1 
(D + f)( t /( t))  = lira ~ E t I f07  (t + h) - f ( t / ( t ) ) ]  

h"~0 

where E t is the conditional expectation with respect to the subalgebra generated by 
rl(z ) for O<_z<_t, whenever this limit exists in the strong L2(X, de)) sense. 
D + f(tl(t)) is thus a function in E t L z(X, de o) whenever it exists. 

I f  for any f6S(R) ,  the Schwartz test function space we have that f(tl(t)) is 
strongly L2(X , d e3) differentiable and 

(D + f)(7/(t)) = 2 (A f )  (r/(t)), 

10 Note that about the osmotic velocity fi we only used what follows from the assumption 
/~ I (Q ' ) ,  namely q.fl(r 2. Thus, the remark in footnote 3 applies. Cases where fl is linear, 
Lipschitz continuous or smooth are considered e.g. in [3-13, 79]. One reason for our interest in 
results of above generality, with singular fi, is that in the applications to interacting quantum fields 
such cases actually arise, see Section 5 below 



Dirichlet Forms and Diffusion Processes on Rigged Hilbert Spaces 21 

then tl(t ) is a Wiener process on R with diffusion a, i.e. tl(t) is a Markov process 
and if v is the distribution of tl(O), then the distribution of tl(t) is 

(2rcat)-�89 5 e-2-~ (x-y)2 dv(y). 

Proof. Since obviously Es. Es+t=Es for s and t positive, we have by the 
assumptions of the lemma that EJ(tl( t+s)) is strongly Lz(X, dco) differentiable 
in t for t>0 ,  since E s is a strongly Lz(X, dco ) continuous projection, and 

d Es f  (tl(t + s))= E~ (2 A f ffl(t + s)) ) . (3.18) 

Therefore since A f, A2 f  ... are again in S(R) we get from (3.18) that, for all t>0 ,  

d" 
d t" E~f(tl(t + s)) = Es((�89 A"f(tl (t + s))) (3.19) 

where we must remember that for t = 0  the derivatives are the one sided 
derivatives. Now, for f e  S(R) with f of bounded support we easily get by Sobolev 
inequalities that there is a constant c such that 

II A"f I[ oo < c". (3.20) 

But then ][A"f(tl(t+s)))H~ <c" so that 

d~E~f( t l ( t  +s)) <(�89 (3.21) 

From this it follows that EJ(t l ( t  + s)) is strongly L~ (X, de)) analytic in t so that 
for all t > 0 we have 

oo n t 

EJ(t l( t  + s))= ~, M (�89 E~ A"f(tl(S)). (3.22) 
n = O  " 

Since �89 is the infinitesimal generator of the semigroup e }tA with kernel 

-!(x-y)2 ettA(x,y)=(2nt)-~e 2~ (3.23) 

we have that 

oe t n 1 

,~=o ~.. (�89 A"f(x) = (2 rc a t) -~ ~ e-2W(x-,)2f(y) d y, (3.24) 

where the sum is strongly Loo convergent. From (3.22) and the strong Loo 
convergence of (3.24) we get 

E~ f(t/(t  + s)) = (T t f )  (t/(s)), (3.25) 

where 
1 2 

(Ttf)(x) = ( 2 x a  t)-~e-ztr (x-y) f(y) dy. (3.26) 
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In par t icular  

E o f(t/(t)) = ( T t f )  (t/(0)). (3.27) 

Since T t is a semigroup  (3.27) proves  that  r/(t) is a M a r k o v  process and f rom 
(3.26) we get that  the condi t ional  dis t r ibut ion of  ~(t) given the condi t ion r/(0)= 0 
is 

(2 z: a t) -~ e-Ti(~ (x-r)2 dx. (3.28) 

This then proves  the lemma.  
In what  follows we shall also need the following l e m m a  of Frobenius  type. 11 

L e m m a  3.2. Let A be a bounded operator on an L2-space such that IIAIF < 1 and A 
is positivity preserving, i .e. f  >O ~ A  f>O. I f  1 is an eigenvalue for A, then 1 is a 
simple eigenvector if the only multiplication operators that commute with A are the 
constants. Moreover i f  1 is a simple eigenvalue, then the corresponding eigenfunc- 
tion may be taken non negative, and i f  the only multiplication operators that 
commutes with A are the constants, then the corresponding eigenfunction is positive 
almost everywhere. 

Proof Let  us assume tha t  1 is an eigenvalue of A with a cor responding  
eigenfunction go. Since A is posi t ivi ty preserving, we have, if Ilgoll =1 ,  that  1 
= (go, A go) < (I go I, A I go l) so that  I gol is an eigenfunction to the eigenvalue 1, since 
I[h[I <1 .  Hence  if 1 is simple, we m a y  take  Igol as the cor responding  eigenfunc- 
tion. On the other  hand  if 1 is not  simple, we have  at  least ano ther  one, ~, 
which is o r thogona l  to I gol. Since A is posi t ivi ty preserving, the real and 
imaginary  par ts  of  ~h will also be eigenfunctions and bo th  will be o r thogona l  to 
I go 1, so we m a y  for this reason take ~ to be real. If  ff = _ I~k[, then I gol and I~1 are 
or thogonal ,  and  if ff and I~k] are not  p ropor t iona l ,  then I01+~P are two posi t ive 
o r thogona l  eigenfunctions. Hence  if 1 is not  simple, we can always find a non  
negat ive eigenfunction v cor responding  to the eigenvalue 1 such that  the 
character is t ic  funct ion Z of its suppor t  is not  a constant.  

As a mul t ip l ica t ion ope ra to r  Z is a project ion of L2(X, d~o) on to  L2(zX,  &o). 
Obvious ly  the functions f~L2(X,  dco) such that  ]f]  < c. v for some constant  c are 
dense in the range  of  Z. Since A v = v and  A is posit ivi ty preserving we have, for 
any - c v < f < c v ,  that  - c v < A f < c v ,  so that  A takes a dense subspace of the 
range  of Z into itself. By cont inui ty  A then takes the range of Z into itself, i.e. A 
commute s  with Z. Suppose  now that  the only mul t ip l icat ion opera tors  that  
c o m m u t e  with A are the constants.  Then  1 is a s imple eigenvalue and  it follows 
f rom above  that  the characteris t ic  funct ion to its suppor t  commute s  with A. I f  
this character is t ic  function is to be constant ,  then the eigenfunction must  be 
posi t ive a lmost  everywhere,  q.e.d. 

Let  now # E ~ I ( Q ' )  and let H be the cor responding  Dirichlet  opera to r  in 
Le(Q',dp). By L~(V) we shall unders tand  the suba lgebra  of  L~(Q',d#) of 
mul t ip l ica t ion opera to r s  which c o m m u t e  with e - 'n  for all t > 0. Since L ~  (V) is a 

11 This is well known, but we give nevertheless a proof for introducing methods also used later on. 
For references to the theorem, see e.g. w of Reference [47] 
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commutative C*-algebra, we have that it is equal to all the continuous functions 
on some compact space which we shall denote V Let d v be the measure induced 
on V by the integral induced on L~(V) by d#. It is then easy to see that Lo~(V ) is 
also isomorphic with L~(V, dv). The spectral decomposition of L2(d#) with 
respect to the commutative algebra of operators Lo~(V ) is then given by 

@ 

L2(Q' , d#)= ~ L 2 (d#(" l v)) d v, (3.29) 
V 

where d#(" Iv) is the conditional probability measure conditioned with respect to 
the a-subalgebra generated by the functions in L~(V). Since all the elements in 
L~(V) commute with e -tH we have that H is reduced by the direct decom- 
position (3.29) and 

H = ~ H~ d v. (3.30) 
V 

Thus Hv is a self adjoint operator for almost all v. By the corresponding 
reduction of the Dirichlet form we get that 

(f, Hvf)v = S Vf. Vfd#(~lv). (3.31) 
Q, 

Hence we get that the Dirichlet form in L2(d#(.lv)) is closed, and the cor- 
responding Dirichlet operator is H~. We should here bear in mind that d#(~[v) is 
not necessarily quasi invariant under translations by elements in Q, but nev- 
ertheless the corresponding Dirichlet form (3.31) is closed. 

By the decomposition (3.29) we have that the only multiplication operators 
which commute with all e -tltv in L2(dp(.[v)) are the constants. Hence, by 
Lemma 3.2, 0 is a simple eigenvalue of Hr. We have thus proved the following 
theorem. 

Theorem 3.4. Let # ~ j  (Q') and let 

L 2(d#) = ~ L2(d#(" l v)) d v 
v 

be the spectral decomposition with respect to the subalgebra Lo~(V) of multipli- 
cation operators which commutes with e -tu for all t>0 ,  then #('Iv) is the 
conditional probability measure conditioned with respect to the a-subalgebra 
generated by Lo~(V) and the Dirichlet forms in L2(d#(.Iv)) are closed for almost 
all v. I f  

H = ~ U v d v  
V 

is the corresponding direct decomposition of H, then H v are the self adjoint 
operators in L2(d#(.lv)) given by the D irichlet forms in L2(" Iv)). Zero is a simple 
eigenvalue for H v and the corresponding eigenfunction is positive almost every- 
where, for almost all v. Moreover the zero eigenspace for H is the closure of 
Lo~(V) in L2(d#). 
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Proof  That the zero eigenfunction for H~ is positive almost everywhere follows 
from the fact that the only multiplication operators that commute with e -'Hv for 
all t > 0  are the constants, in a similar way as in Lemma3.2. Now obviously 
L~,(V) is in the zero eigenspace for H since it is invariant under e -tn. Suppose 
now e - ' ~ f = f  for all t, and let us assume f real. Then of course we have also 
that e - t U ( f - 2 ) = f - 2  and by the proof of Lemma3.2 [ f - 2 ] _ + ( f - 2 )  is also 
invariant. In the same way as in Lemma 3.2 we then also get that the support of 
I f - 2 I _ + ( f - 2 )  has a characteristic function which is invariant. Hence the 
characteristic function of any set of form 2, < f <  2 2 is invariant under e - '~.  But 
then f is obviously in the L2-closure of Loo(V ). This proves the theorem. 

The Markov semigroup e -tH is said to be ergodic if the only multiplication 
operators that commute with e - tn  are the constant. We see from above that this 
is equivalent with 1 being a simple eigenvalue which again is equivalent with the 
condition that if f > 0  and g>=0, then ( f  e - ~ g ) = 0  for all t implies that f = 0  or g 
=0. Take f and g to be characteristic functions for measurable sets A and B. 
Then for s < t 

Pr { ~(s )eA&~(t )~B}  = (Za, e-( t -s)n  )~B)' (3.32) 

NOW we have that if (3.32) is zero for all t, then either A or B has measure zero 
which is to say that the stochastic process ~(t) is ergodic. We also get that if {(t) 
is ergodic, then e - tn  is ergodic. 

Since in the decomposition 

e - t ~ =  ~ e -~n~ dv (3.33) 
v 

the semigroup e -tr~" is ergodic, (3.33) gives the ergodic decomposition of the 
Markov semigroup e -~n. But by what is said above we then have that 

#(A) = ~ #(A J v) d v (3.34) 
v 

is the ergodic decomposition of the measure # with respect to the action of the 
Markov process ~(t). 

Example 3.1. Let K be one dimensional, i.e. Q = K = Q' = R  (the real line) and let 
d#=(~)--~ P2(x) 2 e -xz d x  where Pz(x) is the properly normalized second Hermite 
polynomial, i.e. 

d #  =--17l:- � 89  2 - 1) 2" e - ~  dx  

and # E ~1. We then have that d#--(p2 dx,  where cp is the third lowest eigenfunc- 
tion of the operator - A  + x  2. In fact ( - A  +x2)cp =5cp so that by (2.6) 

H =  --A + x 2 - - 5  

when applied to functions of the form f .  cp with smooth f Since (p has simple 

zeros at x = _+�89 we actually find also that H = - A  o + x z -  5 in L 2 ( d x  ), where 
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A o is the Laplacian with Dirichlet boundary conditions on x = + �89 Hence 

d# = 0( - �89  x) q)2 dx + O(x + �89 O(�89 x) qo 2 dx + O(�89 x) 0 2 dx 

(3.35) 

is the ergodic decomposition of d# given by (3.33) in this case. The correspond- 
ing decomposition of H and e -~n is given by 

2 L2(dx ) = L 2 ( - ~ ,  - �89174 L 2 (-31/2, �89174 Lz(�89 , ~), (3.36) 

where in each component H = - A 0 + x 2 - 5 ,  A o being the Laplacian with 
Dirichlet boundary conditions for each component. 

We shall call the ergodic decomposition (3.34) of p with respect to the action 
of the Markov process ~(t) "the T-ergodic decomposition". Thus we have that 
the T-ergodic decomposition of # is just the decomposition of # into its 
conditional probability measures #( ' l  v) conditioned with respect to the o-- 
algebra generated by the functions which are eigenfunctions with eigenvalue 
zero for H. 

Since we know already that the Q-invariant functions are eigenfunctions with 
eigenvalue zero for H, we see that the T-ergodic decomposition is a finer 
decomposition than the Q-ergodic decomposition given in (2.24), and the 
Example 3.1 indicates that normally the T-ergodic decomposition is strictly finer 
than the Q-ergodic decomposition. 

Let now # be a Q-quasi invariant probability measure on Q'. Let Pq be the 
orthogonal projection onto q in K, and let p(x[r/) for x~PqK and qE(1-Pq)Q' be 
the conditional probability density in (3.5). We may identify PqK with the real 
line R. So that for AcPqK and B c ( 1 - P q ) Q '  we have 

# (A x B) = ~ (7 P (x I q) d x) d v (r/). (3.37) 
n A  

We shall say that # is strictly positive if p(xlq) are bounded away from zero on 
compacts in R for v-almost all q. 

Theorem3.5. I f  # is strictly positive and #~I (Q ' )  then the T-ergodic decom- 
position and the Q-ergodic decompositions are identical. 

Proof Let A ~ Q' be a subset that is measurable with respect to the a-subalgebra 
generated by the eigenfunctions corresponding to the eigenvalue zero of H. Then 
as we have seen the characteristic function )~a is an eigenfunction of eigenvalue 
zero of H. Since H=V*V we therefore have that ZA~D(V) and V)~A=0. In 
particular q. VZA =0, so that 

Iq V ZAI 2 d# =0. (3.38) 

Let n o w  q2 = 1 and XA(r with (q, r/) =0. Since 

~lq. Vfl2d#=~l (~ f--~f(xq+rl) 2p(xlrl)dx)dv(tl), (3.39) 
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we see by (3.38) and the fact that  p(xltl) is bounded  away from zero on compacts  
that  ZA(xq+rl) is independent  of x for v-almost all t/. Since q was arbi t rary  we 
have that  7~A and therefore A is invariant  under  translat ions by elements in Q. 
Hence  we have proved that  the o--algebra generated by the zero eigenfunctions is 
contained in the o--algebra of Q-invariant subsets. The other  direct ion was 
proved in Theorem 2.4. This proves the theorem. 

We recall that  a quasi invariant  probabi l i ty  measure # was said to be in ~ if 
l is an analytic vector  for re(q) for any qeQ. We have the following criteria for 
the strict positivity of #. 12 

Theorem3.6.  Let # be in ~,o, and such that n(q)". 1 is in the domain of q. K Then 
we have that # is strictly positive. 

Proof That  1 is an analytic vector  for ~(q) is by definition to say that  there are 
some r > 0 depending on q, such that  

I[n(q)"- 1 rt < r - "  n!. (3.40) 

Let  now qeQ with q 2 = l  and p(x[t/) for ( t / ,q)=0 be given by (3.37). Then  we 
have the direct decomposi t ion  

g 2 (Q', d#) = ~ g2(p(x[tl) dx) dv(tl), (3.41) 
R • 

where R • is the subspace of Q' o r thogonal  to q. This decomposi t ion  reduces 
V(tq) and therefore also ~z(q), so that  

re(q) = ~ z%(q) dv(tl). (3.42) 
R • 

We shall see that  1 is an analytic function also for rc,(q), inasmuch as 

( f  V(t q) 1) = ~ [~f(x q + ~) (p (x It/). q~ (x + t l t/) d x] d v (~) (3.43) 
R • R 

where (p(X]tl)= p(xltl) ~. 
(3.43) is analytic in t for ]tl < r ,  so let F be any smooth closed curve in the 

disk I z l <  r. Then  the integral of (3.43) with respect to t a round  F is zero. So by 
the Fubini  theorem 

[ ~f (x  q + tl) (p (X [ t/)(~ ~o (X + t[ t/) d t) d x]  d v (r/) = 0. (3.44) 
R • R F 

Since f is arbi t rary  in L2(d#) and q)(xlt /)>0 for almost  all x and v-almost all t/ 
we have that  

y ~o(x + zltl) dz=O (3.45) 
Y 

x2 These (and related) criteria find applications e.g. to quantum fields, see e.g. [66, 67] and 
Section 5 



Dirichlet Forms and Diffusion Processes on Rigged Hilbert Spaces 27 

for almost all x and v-almost all t/. Hence q~(x+zlt/) is analytic for ]z] < r  for all 
x and v-almost all t/, where r is given in (3.40). So that  ~0(z[t/) is analytic in a 
strip of width 2r  around the real z axis. 

Fur thermore  we have that 7z(q) n. 1 is in the domain  of q.  V. Using now the 
direct decomposit ion (3.42) we have 

S ]l q '  V, ~, (q)". 1 ]l 2 d v (t/) = l] q" V. rc (q)" 1 l[ 2, (3.46) 

so that, for v-almost all t/, Ilq. V, ten(q)", i I I< or. 
However 

IIqVn~,(qf" 1112=~ ((('~ 2 \ \  q)(xlr/) l /  q)2(Xltl)dx 

=~R (P(n+I)(XIt/)q)(xIr/) (P'(xlr/)q)(xlr/) (P(n)(xlr/)(p(Xlr/) 2q)Z(xlrl)dx" (3.47) 

(p(n+ a) 
NOW we have that ~L2(~02(.Iq)) for v-almost all q since 

~0 

{~o(n § 1)( x 1~]) )2 
~l!  \ ~ (~) )  q)(xl")2dxdv(tl)=lirc(q)"+alll2' (3.48) 

which is finite by assumption. Since by (3.47) and (3.46) the difference is in 
L2(cp2(xltl)dx) for v-almost all t /we  have that 

q)t(X]~]) @(n)(xln) . z 2 . . . . .  
q~(xlt/) - ~ eL2t(p tXl~ljax) (3.49) 

for v-almost all t/. Now since ~o(x[~/) is analytic in x we have that  the zeros of (p 
are isolated and of finite order. 

Suppose q~ has a zero a, so that q~(al~/)--0, then there is an n such that  

~r By (3.49) ~~ ~o(")(xltl)~Lz(dx) and since qr in a 
q~(xl~) 

~o'(xl~) 
neighborhood of a, we get that  ~ is in L2(dx ) near a. Let n be the lowest 

value such that  ~o(")(a[t/)4= 0, then ~0(xlr/)~ c ( x -  a) n near a. F rom this we get that 

' X ~0(I~)  . . . .  
~ L 2 t a x )  

near x=a, a contradiction. Hence we have that  ~o(xlt/)>0 for all x, and this 
proof  goes for v-almost all q. Since ~o(xlt/) is analytic in x, it is therefore 
bounded away from zero on compacts. This proves the theorem. 

Theorem3.7. Let # ~ I  (Q') and assume that zero is separated from the rest of the 
spectrum of H by a positive distance m > O, where H is the corresponding Dirichlet 
operator. 
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Let adrc(q)(H)=[(q),H] and let us assume that for any q~Q there is a 
constant Cq > 0 depending only on q such that 

[I(H+ 1)-~ad"Tz(q)(H)(H+ 1) ~][ =< Cq 

for all n = 1, 2, 3 . . . . .  Then for any vector v such that H v = 0 we have that 

[m+ l ~" 
II(H+ 1)~(q)"v/I <=n! t ~ e C q ]  Itvll. 

In particular we get that v is an analytic vector for ~z(q), and # is in ~ and strictly 
positive. 

Proof For any n we have the following algebraic relation 

H ~z(q)n=~(q)n H-j~= adJ ~z(q)(H) rt(q) n- j . (3.50) 

So if/-/v = 0 we get by the assumptions of the theorem that 

"(H + l ) -~  HTr(q)"v" < ~ (n) c j=l J qll(H+l)~(q)"-Jvll" (3.51) 

Let m > 0  be the separation of zero from the rest of the spectrum of H, then, 
since Hrc(q)"v is in the subspace orthogonal to the zero eigenspace and (H 

m + l  
�9 + 1 )H-  1 is norm bounded by - -  on that subspace, we have 

m 

I I ( H + l ) ~ n ( q f v l l < m + l  j (~) = lc~ [l(H+l)~Tr(q)"-Jvll. (3.52) 

Let us now assume that 

[m + 1 \k 
H(H+ 1)~(q)kv[I <=k! ~ e c ~ )  IIv[], (3.53) 

which is obviously true for k=0.  Then by (3.52) we have that 

1 o _ 

[ m + l  )k+l 
]l(H+l)~(q)k+lvl[<=~Cq---~-'e (k+ 1)! [Ivl[. 

Hence the inequality of the theorem is proved by induction. Take v = 1, then the 
inequality gives us that # is analytic and ~(q)"l is in the domain of H ~ hence 
also in the domain of q. V. This proves the theorem. 

Let dn be the normal pro measure (i.e. normal distribution) associated with 
the real separable Hilbert space K, i.e. the integral with respect to dn is defined 
for all functions on K which are continuous bounded and for which f ( x ) = f ( P x )  
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for some finite dimensional projection P, and 

S ei(X'Y) d n(x) = e -  ~(Y'Y). (3.54) 

It is well known that the integral above is not given by a countable additive 
measure on K, but however there exist suitable compactifications of K such that 
the finitely based continuous functions can be continued onto the compactifi- 
cation and the integral (3.54) is given by a countably additive measure dn on this 
eompactification. However there is no natural choice of such a compactification, 
and a class of compactifications were given by Leonard Gross in the following 
way. For  reference see [6, 7, 68, 69]. 

A seminorm p(x) on K is said to be measurable if for any e > 0  there is a 
finite dimensional orthogonal projection P0 such that, for any finite dimensional 
projection P orthogonal to Po, we have that 

dn(x)<e .  (3.55) 
p(Px)>e 

It is a consequence of (3.55) that p(x) is a continuous seminorm on K. Moreover  
Gross proves that if B' is the completion of K with respect to a measurable 
norm, then the integral (3.54) is given by a regular measure n on B'. In fact we 
have the following theorem due to Gross. 

Theorem 3.8. Let  B be the completion of  K with respect to a measurable norm. 
Then the integral (3.54) is given by a regular measure on B'. Moreover  i f  Ixl is any 
measurable norm on K, then Ixl is a continuous norm on K and if  r is the 
standard weak Wiener process on K and if  B' is the completion o f  K with respect 
to Ixl, then r may be realized as a stochastic process on B' with continuous 
paths. 

For the proof  of this theorem and more details about the Wiener process 
associated with a real separable Hilbert space see References [6, 7, 68, 69]. 
We also remark that in fact it follows from the proof  of Theorem 3.8 that the 
standard weak Wiener process on K is continuous with respect to any mea- 
surable seminorm. 

Let us now consider a Banach rigging 

B c K c B' (3.56) 

of the real separable Hilbert space K where B is a real separable Banach space 
dense in its dual B' such that B' is the completion of K with respect to a 
measurable norm on K. We shall refer to the rigging (3.56) shortly as a 
measurable Banach rigging of K. Let now # ~ I ( Q ' )  where Q c K c Q '  is the 
original rigging of K, and let q. fl(~) be the corresponding osmotic velocity, i.e. 

ire(q). 1 =�89 fl(~). (3.57) 

Let I I' be the norm in B', then since B is separable 

[qn" fl(~)l 
I/~(~)1' =sup, Iq, I (3.58) 
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is a measurable function, where {q,} is a dense countable set in Q that is dense 
in B, and I I is the norm in B. 

We then have the following theorem: 

Theorem 3.9. Let B ~ K c B '  be a measurable Banach rigging of K such that 
Q c B ~ K c B ' c Q ' .  Let l a ~ l ( Q '  ) and fl(~) and ~(t) the corresponding osmotic 
velocity and Markov process and let us assume that Ifl(~)l' is bounded, where I I' 
is the norm in B'. Then ~(t) is continuous in the B' norm, i.e., for any t and s, ~(t) 
-~(s)  is in B' and I~(t)- ~(s)l'-~0 as t-~s, for almost all paths. 

Remark. We may conclude that ~(t) is a continuous process with values in B' 
only in the case where B' has #-measure 1. 

Proof. From Theorem 3.3 we know that in a weak sense 

t 

~( t ) -  ~(s) = ~ fi(~(z)) dz + w ( t ) -  w(s). (3.59) 
s 

By Theorem3.8 we have that Iw(t)-w(s)l '  goes to zero as t ~ s ,  and the 
conclusion of the theorem then follows by the triangle inequality for the norm. 
This proves the theorem. 

Remark. A corresponding theorem for the finite dimensional case was given by 
Stroock and Varadhan in [35]. 

We shall close this section with a general result giving a sufficient condition 
for a measure to be quasi invariant. 

Let us consider again the general situation of a rigged separable real Hilbert 
space Q c K c Q ' ,  as in Section 2. We shall consider as before the splitting Q' 
= R  �9 R • induced on Q' by the decomposit ion of the identity I =PR +(I--PR), 
where R is a one-dimensional subspace of Q c K (identified with the real line) 
and PR is the continuous extension of the projection onto R to all of Q'. The one- 
to-one bicontinous map (x,q)-+xOtl,  x ~ R ,  t i eR '  permits to consider the 
measure # on Q' as a measure on R x R • We shall assume as before that Q' is 
such that the conditional probabili ty measures with respect to R" exits (which is 
e.g. the case if Q' is Suslin). Let #(xlq) the conditional probabili ty measure 
obtained on R from # by conditioning with respect to the a-algebra of the 
measurable subsets of R • Then for any measurable set B in R" and any Borel 
set A in R one has 

#(A x B)=~ #(Altl) dv(rl), 
B 

where v is the measure induced on R • by #. We shall say that a finite measure # 
on Q' is q-quasi-invariant, where q is an element in Q, if #(3 + q) is equivalent #(4), 
as measures on Q'. 

Theorem 3.10. Let Q c K c Q' be a rigged Hilbert space as in Section 2, with Q' 
such that for a probability measure # on Q' the conditional probability measure 
relative to R ' ,  in the splitting Q ' = R G R  • exists, with R c Q  a one-dimensional 
subspace of K. 
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Suppose that for qeQ and all g e F  Cco we have 

1~ [(q. V)"g] d#] <__a"n! Ilgll 0o 
Q, 

for all n = 0 ,  1, 2, ..., where II [I o~ is the supremum norm, and a is independent of  
n and g. Then # is q-quasi-invariant. 

Proof. Let  q eQ be given and let R be the one-dimensional  subspace of K 
spanned by q i.e. R={ccq}, e real. Consider  the splitting Q ' = R O R  • as de- 
scribed before the Theorem and let #(xlt/) be the condit ional  probabil i ty 
measure on R, with respect to R • and v(~/) the project ion of # on R • so that  for 
every tleQ', #(. It/) is a measure on R. Then  for any heFCco(R • 

O ' h ( ' ) =  ~ # ( "  I t / )h ( t / )dv ( t / )  (3 .60)  
R • 

is a measure on R. Let  now f e  C~ ~ (R), then f h  e F Cco (Q'). We have 

[(q- V)"fh] d#= ~ f(")(x) h(tl)d#(x , tl)= ~ f(")(x)dt~h(x). (3.61) 
R x R  • R 

By the assumption we then get 

I~f(")(x)dcL(x)l <a'n!  IIf][ co Ilhl[ co (3.62) 
R 

and thus, calling a~h ") the n-th distributional derivative of Oh: 

I[.f(x)d~")(x)l <a"n! [Ifll co Ilhll co. (3.63) 

This shows that  o-(h ") is a measure with bounded  total  variation, hence 

O(h")(X) = S dCrth"+ 1)(X') (3.64) 
--co 

with 

ItCh")(x)l < S dla~"+l)(x')l<a"n! Ilhllco. (3.65) 
-co 

This shows that a(h")(x) is actually a real analytic function of x, hence it has an 
analytic continuation,  denoted trh(Z), with z = x + i y ,  y = I m z ,  to the strip 
I Imz l<l /a .  For  fixed x we have 

co 
ah(Z)= ~ ~ (iy)" ~r (3.66) 

and the series converges absolutely, uniformly in any closed strip ]Imzt < ( l / a )  
- e ,  e > 0 .  But 

~r (X) = ~ #~")(X I t/) h(~/) dr(q), (3.67) 



32 s. Albeverio and R. Hoegh-Krohn 

with the bound  (3.65). This bound  then shows, L~(dv) being a closed space of 
cont inuous  linear functionals, that  [1 #(n)(X[.)llL,~d~) < an n !. This then implies that  
the series 

(iy)" 
.= o n T  #(")(xl ') (3.68) 

converges strongly in La(dv), for all real x and all real y with lY] < 1/a. 
Define # ( z l . ) = # ( x + i y l  .) as the L~(dv)-sum of this series. We shall now 

show that  #(z] . )  is the analytic continuat ion,  as a La(dv)-valued function, of 
#(xlt/) to the strip ] Imz l<l /a .  In fact ah(Z ) is analytic in this strip by what  we 
said above. Thus  for any smooth  closed curve F in the strip IImz] < 1/a we have 

ah (Z) d z = 0. 
/-  

Hence  

i.e. 

S dz !• (iy)n 
n=O r R ~!. #(")(xlt/)h(t/)dv(t/)=O 

dz ~ #(ztt/) h(t/) dr(t~) =0 .  
F R • 

By the Hahn-Banach  theorem this implies ~ #(zlt/)dz=O in the strong Ll(dV )- 
R • 

sense. Thus we have that  the function #(zlt/) from the strip I I m z l < l / a  into 
L~(dv) is analytic. 

In part icular  the strong Ll(dv)-derivative of #(x I t/), with respect to x exists, 
call it #(~)(x[t/), so that  

s _  Ll (dv)_  lim #(x + hl " ) - # ( x l  ")=#(1)(X I .), 
h~O h 

for all x~R .  For  any given sequence h , ~ 0  we have that  there exists a 
subsequence hnk, h k ~ oo such that  h~ 1 (# (x + hnk ] t/) -- # (x I t/)) ~ #(1)( x ] t/) as n k ~ o% 
k ~ o o ,  for all t /eR • - N ( x ,  {rig}), with v(N(x, {nk})=0. 

This shows that  #(xlt/) is differentiable with respect to x for all t / s R  • 
--g(xl{tlk}), with derivative #(1)(x I t/). Similarly we show that  #(xjt/) is n-times 
differentiable with respect to x for all t~ e R  •  with derivative #(")(xlt/), and 
with v(N(x))=O. Let  now t / ~ R •  and I~ l< l / a .  Then  by the Ll(dv )- 

a n 

analyticity of  #(zl ") in I I m z l < l / a  we have # ( x + , l  " ) = ~ . T  #(")(xl ") with the 

sum strongly convergent  in Ll(dv ). Consider  ~ ~ I#~n)(Xl 91-This is positive and 

as N increases it increases monotonical ly .  Moreove r  the limit as N ~  oo exists in 

Ll(dv  ) and is finite, hence �9 ~ I#~"~(xlt/)l < ~ for v-a.e, t/ and the exceptional  
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a n 

set can be taken independent of c~. Thus ~ ~/~(")(x I~) converges and is finite for 
n 

so that #(x+~lt/)=~.~S/l(")(xlt/),  where the sum converges for v- v-a.e. 
u  r .. 

a.e. ~ and all x ~ R ,  I~l < 1/a. Call N(x) the exceptional set. Let now {Xk}, be a 
sequence of points dense in R. Set N =  ~ N(Xk). Then for ~/~R • - N  we have by 

k 
the above that #(x)/)  is analytic at x k for any k in any circle of radius smaller 
that 1/a around x k. This implies however that #(z]~) is actually analytic in 
I Imz l<l /a ,  for all ~ in R •  Let now ~ be fixed in R •  Then by the 
analyticity of #(zl~) in ]Imzl < 1/a we have #(z[~/)=0 at most on a countable set 
M~ or /z(z]~)_--0 for all z in the strip. In both cases we have that/~(x+~,~/)  is 
equivalent with #(x]~/), as a measure on the real line R. This implies that /~(x 
+ c~ I t/) d v(t/) is equivalent with #(x I ~) d v(~) as measures on R x R • i.e. d/z ~(x, r/) is 
equivalent with d#(x, tl) i.e. # is quasi invariant with respect to translations by 
elements in R, which proves the Theorem. 

4. Weak Convergence of Measures and Diriehlet Operators 

In this section we assume that Q c K ~ Q' is a separable rigged Hilbert space as 
in the preceding section, and we also assume that Q' is such that regular 
conditional probabili ty measures exist for any probability measure on Q' and 
any splitting Q ' =  F | F ~, where F is a finite dimensional subspace of Q. 

If  # is a probabili ty measure on Q' we say that/~ is admissible if the operator 
from a dense domain V of Lz(Q' ) into K Q L z ( Q '  ) has a densely defined adjoint 
V*. In which case it is closable and the Dirichlet operator H = V* V- exists and is 
a self adjoint operator in L2(Q', d#), where lY is the closure of V. In particular we 
have that any measure in ~a (Q') is admissible. More generally we have that if 
the constants q |  are in D(V*), the domain of V*, then F C a cD(V*)  and the 
measure is admissible. 

Proposition 4.1. Le t  I~ be admissible. Then for any q~Q we have (~, q)eD(17) and 
for any f E F C  1 we have 

ff((~, q)f(~))  = q |  + (~, q) Vf(~). 

Proof. For  any real c~ we have that 1 (ei~(,.q>_l)f(~) is in D(V) and converges 
cx 

strongly in L2(Q' , dp), as c ~ 0 ,  towards (~, q)f(~),  while 

V 1- (e i~(~'q> - 1) f(~) = q | ei~(~'q>f(~)+ 1 (e i~(*,q> - 1) Vf(~) 
o~ o~ 

~ q |  (~, q) Vf(~), 

as e-~0. The closedness of ff gives then the Proposition. 

Proposition 4.2. Let q |  1 eD(V*) for all qeQ.  Then # is admissible and for any 
q E Q we have, with obvious notations, ( ~, q)  F C2 c D(H), H F C2 c D( ( ~, q)  ) and, 
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1 
defining re(q) as the symmetric operator ~ ( ( q .  V ) - ( q .  V)*) on FC l, we have 

2 
[ H, (4, q) ] =-7  7z(q), as operators on F C 2. 

l 
Remark. When # is admissible, quasi invariant and in ~I(Q'), then re(q), as 
defined in Proposition 4.2, is the restriction to F C ~ of the infinitesimal generator 
of the one parameter unitary group 

V(tq)f(~)= q)-f((+tq),  t ~ g .  
[ /  #tQ 

Proof. For any f ~ F C  1 we have by Proposition4.1 (4, q) f (~)~D(V)  and 
V(~, q ) f ( ~ ) = q |  f (~)+(~ ,  q) fff(~), thus, for any h e F C  z, 

(H h, ( . ,  q) f ) =  ~ ffh(() i f ( i ,  q) f (~) d #(() 

= ~ Vh(~) q | f(4) d#(~) + ~ fh(~) (~, q) ;f(r d#(~), 

where ( , )  is the scalar product in L2(Q' , d#). Using V * ( q |  - V f - f l ( q )  and 
the fact that (4, q) Vf(~)~D(V*) we have that the right hand side is equal to 

h(~)( - Vf  (r d#(~) + ~ h(() V*(( ~, q) lY f (~)) d#(~), 

which then shows, being a bounded continuous function of h, that 
(~, q ) F C  2 ~D(H). Since however, by the definition of 7z(q), D(rc(q))~ F C 2 we get 

then that 2 .  n(q) f ( 4 ) + H ( 4 ,  q) f(~) is well defined and equal to (( ,  q)Hf(r  
l 

Proposition 4.3. Under the same assumption as in Proposition 4.2 we have, for any 
f ~ F C  2 and q,q'~Q 

1 
e -i ~r ~> ~z(q') e i<r q>f(~) =_ (q', q)f(~) + Tc(q')f(~) 

l 
and 

e-i  <r q> H e i <~' q> f (4) = H f (r + 2 rc (q) f (4) + (q, q) f (4). 

Proof. The first relation is proven using 2n(q')--q' .  V+�89 on F C  2. To 
prove the second relation it suffices to compute, for f l , f 2  in FC 2, (ei<r , 
Hei<r using H =  V* ff and 

Vei(~- 'q) f j (r162 i(~'q) f f f j (r  j = 1 , 2 .  

Corollary. + 2 ~z(q) < H + (q, q). 

Proof .  Use the second relation of Proposition4.3 together with 

e-i(~,q) Hei(r 

Let now #t be a sequence of probability measures on Q' so that #t converge 
weakly to the probability measure # and in addition let us assume that for any 
q E Q we have that there is a C independent of l such that 

tS ((q" V) f )d#z  I<= c(S lfl 2 d#~) ~ (4.1) 
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for any f e F C  ~ Then by the weak convergence, and note that we only need 
weak convergence on FC ~, we have that 

(~ ((q. V)f)  d#) __< C(~ If] 2 d#) ~. (4.2) 

Since FC  ~ is dense in L2(d#) it follows from (4.2) that the constants 
q |  1 e D(V*)cL2(d#) .  Since obviously for any f EF C 1 we have V*q | f =(q V) f 
+ f .  V*(q| 1) we see that also FC I cD(V*)  so that 12 is admissible. Hence we 
have the following theorem 

Theorem 4.1. Let #z be probability measures on Q' converging weakly on F C ~ to 
the probability measure # such that the constants are uniformly in the domain of 
V* i.e. there is a positive constant C independent of 1 such that (4.1) holds. Then # 
is admissible and F C 1 cD(V*).  

We say that a probability measure # on Q' is analytic iff for any q s Q there is a 
positive real number aq such that 

I~ ((q' V)" g) d#[ =< aq n !]1 gll ~ (4.3) 

for any g~F C ~. 

Theorem4.2. Let #t be a sequence of probability measures on Q' which converge 
weakly on F C ~ to a probability measure #. I f  #z is an equi analytic sequence, i.e. 
for any qeQ there is a constant aq independent of l such that 

[~(q. I7)"g d#~[ <aqn! []gl[ ~, 

for any g e F C  ~, then # is analytic and, by Theorem 3.10, Q-quasi invariant. 

Proof. By weak convergence we have (4.3) and hence/2 is analytic. 
Let now # a Q-quasi invariant measure such that the constants are in the 

domain of V* hence FC~cD(V*) .  Let n(q) be the self adjoint infinitesimal 
generator of the unitary translations in the direction qeQ. It is easily seen that 

1 
re(q) is a self adjoint extension of ~ ( q .  V - ( q .  V)*). It follows from FC 1 cD(V*)  

1 
that FC ~ is in the domain of ~.(q .  V - ( q .  V)*) so that FC 1 c D(rc(q)). Especially 

1 
Z I  

re(q) 1 = - ~ ( q .  V)* 1, and therefore we have that #~N~(Q'). From this together 

with Theorem 4.1 and Theorem 4.2 we have 

Theorem4.3. Let #~ be a sequence of probability measures on Q' which converge 
weakly and the constants are uniformly in the domain of V*, then # is in ~1 (Q'). 

Let now # be an analytic probability measure on Q'. Let F be a finite 
dimensional subspace F c Q  and let F • be its orthogonal complement in Q'. 
Then Q ' = F |  ~ and let #(x]t/) be the corresponding conditional probability 
measure, where xEF and t/eF • so that d#=#(Xl~l)dv(rl), as a probability 
measure on F x F  • In the proof of Theorem3.10 we proved that #(x]t/) 
= p(xl~)dx,  where p(xl~) was analytic in a uniform complex strip [Im z l < a for 
t l~F •  NF with V(NF)=O, in the case of one dimensional F. It is easily seen from 
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the proof of Theorem 3.10 that this result also holds for any finite dimensional 
F ~ Q .  From the analyticity of #, 

[~(q. V)"g d#] N G n !  Ilgll oo, (4.4) 

it follows by taking q arbitrary in F that there is a set N F c F • of v-measure zero 
so that for any r l~F•  we have that p(xlt/) is analytic in the strip [ Imz[<~ 
for some e > 0 and z is in the complexification of F and [ [ is the norm in the real 
Hilbert space K. 

Furthermore we also have as in the proof of Theorem 3.10 that x ~ p(xlt/) is 
a strongly analytic function from F into L~(F -L, dr) which is analytic in the strip 
[Imz[ <ct. From (4.4) we also have that for any qeF 

v)"p(xl )l (4.5) 

Let now el,  ..., e k be an orthonormal  base in F relative to the inner product in K 
and let x i = ( % x  ). From (4.5) we have that 

~l(q" V)" p(x]~7)[ dx (4.6) 

is finite for v-almost all ~/. Hence we get, if necessary enlarging N)~, that there is a 
set N F of v-measure zero such that, for any r/~F • -Nr. ,  p(x]~/) is analytic in x in 
the strip ]Imz] <~  and 

j' ex~l ~x~k p(xlt/) dx (4.7) 

is finite for any n 1 . . . . .  n k. 
Especially we get that 

p(x[r/) =~..-( ~? c~ p(y l t l )dy l . . . dy  k (4.8) 
a~ 0Yl 0Yk 

with 

Ax=-{yilyi<=xj,j=l, ...,k}, 

so that 

Ip(xltt)l <I~l 2 ~  3YkO p(ylt/) dy l . . ,  dy k. (4.9) 

Hence, for any tte F • --NF, p(x 1~7) is an analytic function uniformly bounded on 
the real axis. Moreover from (4.9) we also get, by integrating with respect to t/, 
that x ~ p(xI~7) is uniformly bounded as a function from F into L 1 (F • dr), and 
in fact we also have for any q~F that 

~l(q V)" p(x117)l dv< Ca~(n + k) !. (4.10) 

From this we get in the same way as in the proof of Theorem 3.10 that there is a 
set NF~F • of v-measure zero so that for t t~F•  p(xltt) is analytic in a strip 
]Imz] <~'. By Theorem 3.10 we know that ~ is Q-quasi invariant and for y~F it 
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is easy to see that 

d#(~ + y) p(x + yltl) 

d#(~) p(x[r/) 
(4.11) 

with ~ = x O t / .  Especially we get for any q~F that 

q. fi = (q- V) In p (x I t l) (4.12) 

where fi is the osmotic velocity associated with #. We summarize these results in 
the following theorem. 

Theorem 4.4. Let # be an analytic probability measure. Then for any splitting Q' 
= F @ F  • with F finite dimensional in Q we have that the corresponding con- 
ditional probability #(xltl) given by d#(x, tl)=#(X]tl)dv(tl ) has the form #(X]tl) 
=p(x l t l )dx  where dx is the Lebesgue measure on F and x~p(x[ t l )  is a strongly 
analytic function from F into Lt(FZ, dv) which is analytic and uniformly norm 
bounded in a strip I Ira z l < a. Moreover there is a subset N r ~ F • of v-measure zero 
so that, for any tl~F -L-Ne, p(xltl) is analytic in the same strip IImz[ <~. Further 
more for any y~F we have that 

d#(~+y)  p(x+y[tl) 
d#(~) p(x]~) 

with ~ = x |  

and for any q6F we have that 

q. fl =(q- V)in p(x[t/), 

where fl is the osmotic velocity corresponding to the quasi invariant measure #. 

Let us now take a Q-quasi invariant probability measure # ~ ,  i.e. # ~ 1  
and the cyclic vector ~2 represented by the function 16Lz(d#) is an analytic 
vector for ~(q) for any q~Q. Let F be a finite dimensional subspace of Q and let 
#(x]t/) be the conditional probability measure corresponding to the splitting Q' 
= F | F I. By the quasi invariance of # it follows easily that #(x I t/) = p(xlt/) dx 
where p(xl t / )>0 for almost all x with respect to the Lebesgue measure, for v- 
almost all t/. Take now q~F and set (p(xltl)=(p(xltl)) ~, then the condition that ~2 
is analytic for n(q) is equivalent with the existence of aq >0  such that 

~l(q' V)" q~(xl~)l 2 dx dv(q)<(a'~n!) 2. (4.13) 

Since 

we see that 

~[(q.V)"p(xl t l ) idxdv(t l)< ~ (~)H(q'~7)n-s@H2ll(q'V)Sq)]] 2 (4.15) 
s~o 

so by (4.13) we have 

~l(q" V)" p(xltl)[ dx dv(tl) <(n + l)! a"q. (4.16) 



38 S. Albeverio and R. Hoegh-Krohn 

Since the right hand side is independent of F we get, for any g~FC ~ that 

l~(q" V)"g d#] <=a~(n+ 1)! Ilgll | (4.17) 

From this inequality we get the following theorem. 

Theorem4.5. I f  pE~o~ then # is an analytic measure. Moreover if #z is a sequence 
of probability measures on Q' which are uniformly in ~ i.e. for any qsQ there are 
constants aq independent of  l such that 

[[Tr(q)" f21 [1 <=a~n! 

then #l is an equi analytic sequence of  probability measures. 

We say that f ~ F C  '~ iff f ~ F C  ~ and for any q~Q there is a constant 7q>0 
such that ll(q" v)"fllo~ <=~. Since, for any q'sQ, ei<q"~FCO we see that FC ~ is 
dense in L2(d#). Let us now assume that # ~ o  then for f ~ F C  ~ we have that for 
q~Q 

[]~(q)"ff211 _-__ ~ (~)I , (q  V)~f �9 ~(q)"-~f2[I 
s = O  

s = 0  

< e. n !(max {eq, aq})". 

Hence we have seen that FC(~ is a dense set of analytic vectors for n(q). This 
gives by Nelson's theorem on analytic vectors that n(q) restricted to FC~ is 
essentially self adjoint. 

This gives us the following theorem. 

Theorem 4.6. I f  # ~  and qeQ then the restriction of n(q) to F C~176 is essentially 
selfadjoint. Moreover any f s F  C~ is an analytic vector for re(q). 

5. Applications to Two-Dimensional Quantum Field Theoretical Models 

In this section we shall apply the results and methods of the previous sections to 
quantum fields models with polynomial or exponential interactions. General 
references for the construction of the first class of models (the so called "P(cP)2- 
models") are [70, 38-43, 71], and for the second class of models [44, 45, 41]. 13 
For our applications we use the rigged Hilbert space Q c  K c  Q' with Q=  5e(R), 
K=L2(R) ,  Q'=Se'(R), where all spaces are here real, R is the real line, 5~(R) is 
Schwartz space of test functions and 5e'(R) its dual space of tempered distri- 
butions. The measure # on Q '=  5r (equipped with the a-algebra generated by 
the cylinder sets) we shall consider and which will have the properties required 
for the application of the methods and results of the previous sections is the one 

i3 Probabilistic aspects are particularly present silace the systematic use of "Euclidean methods", 
starting from [72, 73], see e.g. [74, 78] 
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obtained, by a procedure given below, from the Euclidean measure #* on 5:'(R 2) 
of the Euclidean P(q~)2-models or exponential models. We shall also describe 
below the measures #* and #. Let us first consider the simple case of the 
Gaussian measures belonging to the so called "free fields". 

5.1. The Gaussian Measures 

Let #* be the Gaussian measure on 5:'(R2), with mean zero and covariance the 
Green's function of - A + m  2 i.e. the kernel of (-A+m2) -1, where m 2 is a 
positive constant and A is the Laplacian in R 2. So that #* is the Euclidean 
invariant Gaussian measure for the Euclidean Markov Gaussian generalized 
random field (~*, ~)  over R 2, defined by 

5 ei<~*'O>d#*({*) =e-~(oa-A+'2)-*O), (5.1) 
,5c:' ( R  2 ) 

where ( , )  is the duatization between ~C:(R2) and 5:'(R2), ( , )  is the scalar 
product in L2(R 2) and t~eS:(R2). (~*,0) is the restriction to Y(R 2) of a 
generalized Gaussian random field indexed by the real Sobolev space ~_1(R2), 

2 , i12. the completion of ,~(R 2) in the norm LI(-A+m ) - ~  Denote the extension 
again by (~*, 0). 

For the introduction of the Gaussian measure #* into constructive field 
theory see [75]. 

Consider now another Gaussian measure/~o, defined on 5:'(R) and such that 

e,<~,O>d#o(~)=e-~(e,(-A+ ) o) (5.2) 
~'(R) 

for all (p~(R) ,  where ( , )  denotes the dualization between ~(R) and ~'(R) 
d 2 

and ( , )  the scalar product in L2(R), A =- 
d x  2 �9 

/~0 is the well known Gaussian measure giving the Fock space L2(~'(R), d#o ) 
for the flee quantum fields (in Schr6dinger-Segal's realization). 

Consider now the splitting R2=R|  of the Euclidean space R 2 into a 
"time component" (first component) and a "space component" (second com- 
ponent), so that for an arbitrary point y=(yO y~) we have y~ (time com- 
ponent) and y~ =x  (space component). The distributions of the form 

O(t, x)= 60(0 ~o(x)-(60 | q~)(t, x) 

with ~o~5:(R) and 60(- ) the 6-function centered at the origin are in ~ _ 1 ( R 2 ) .  

The natural identification of (~,q~) with (~*,6o| induces an isometric 
injection Jo i.e. an identification of 

L2(Z:'(R),d#o ) with L2(5:'(R2),dt~*)~Zo, 

where Z o is the a-subalgebra of subsets of cU~ generated by the distributions 
(~*, 6 o | ~o). By this identification #o can be identified with the restriction of #~ 
to X o. As already discussed in [1], Section4, Theorem4.0, #o is 5:(R)-quasi 
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invariant, in fact the Radon-Nikodym derivative for the translated measure 
d#o(4+q) ) with respect to the original one is, for any (pES~ given by 

2 • 2 ~ d~o(~ +(tg) _e_2<~,(_A+m )2~o> e-<~o,(-zl+m )=<o> (5.3) 
d~o(r 

and 

d~o(" +~ )  
d#o(.) ~Lp(SW(R),d#o) forall  l < p < ~ .  

We also have, defining 

�9 1 /  d ~ o ( 4  +~o) + 
(e"~(<~ ~o(~)  f(4 ~p) (5.4) 

for all f~L2(SW(R), d#o ) and with Y2o(4 ) =-1 in L2(S~'(R), d#o ) 

(i ~ (~o) f2 o) (4) = - < 4, ( - 3 + m2) ~ ~0 > (5.5) 

hence ~((o) f2 o ~ L  2 (~9 ~ d#o). This shows that #o E ~ (5 #'(R)). Equivalently, the 
drift coefficient rio associated with/~o defined by 

rio (~)(q)) - 2 i~((p) Q o (4) = - 2 <4, ( - A + m2) ~ (p > 

is in Lz(~'(R),d#o ). We also have easily from (5.4) and (5.5) that f2o~D(~(cp)" ) 
for all positive integers n, moreover ~o is an analytic vector for r~((o), thus #o is 
analytic. Moreover/~o is strictly positive. Let H o be the Dirichlet operator given 
by #o i.e. such that. In this section Dirichlet operators are defined with an addi- 
tional factor �89 

H 1 ( f  o f )=~VfV fd l~o  (5.6) 

for all feD(Ho) i.e. 

Hof  = -�89 A f - �89 o V f (5.7) 

for all f ~ F C  2 in L2(Se'(R), dt~o). It was shown in Theorem 4.0 of Reference [1] 
that H o coincides with the usual Fock space free energy operator i.e. H o co- 
incides, after identifying 

L2(~'(R),d#o ) with L2(Sf'(R2),d#~)c~X,o, 

with the restriction of E 0 UtE 0 to L2(SP'(R2), d#~)n Zo, U t being the unitary shift 
in L2(S~'(R2),d# *) generated by Ut(~*,30|174 The, stochastic 
equation satisfied by the Markoff process 4~ with values in 5P'(R) generated by 
H 0 is 

d4, = �89 dt+dw,, (5.8) 

where dw, is the standard Wiener process. 14 

~4 This equation is of the Orstein-Uhlenbeck type and for its probabilistic study see also e.g. [79] 
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All results of Sections 2 and 3 hold for the case of the measure #o and the 
rigging 5~(R) ~ L2(R ) ~ 5#'(R), in particular, equivalence of T-ergodicity and Q 
(i.e. 5~ Note that H o has zero as a simple isolated eigenvalue at 
the bottom of its spectrum, thus in particular #o is 5~(R)- and T-ergodic. We 
also observe for later use that one has, for any f~D(Ho) 

(e i~(~) H o e-~(~) f)(~) = (Hof)(~) + L~ f (~) + L'~ (~)f(~) (5.9) 

with L'~-=~:Qp,(-A +m2)q~), L~(~)-= ( ~ , ( - A  +mZ)go). 

5.2. The Measures for the Space Time Cut-off Interactions 

Let now P(~') be the closed subspace of Lz(SP'(R2),d#'~) generated by all 
k 

monomials I~ (~*,q~i) of degree k < n  on 5P'(R2), with ~*~Sf'(R2), (pi~Sf(R2), i 
/ = i  

=1 .. . .  ,k. Let P(')-P(--<")@ P--<('-I). The "n-th Wick power" of the field 4" taken 
with test function heLl+~(R2), 0 < ~ < 1 ,  is denoted by :~*':(h) and is by 
definition the unique element in P(") such that 

( :~*':(h), (~*,(&) =n! S.. .  ~ V I ( - A  +ma)-I(y~-x)c&(y,)dy~ h(x)dx, 
i=  1 R 2 R 2 \ i =  1 

(5.1o) 

where ( , )  is the scalar product in Lz(• '(R2),dp *) and A is the Laplacian in R 2. 
Note that the kernel ( - A  + m2) - 1 (.) is translation invariant and in L 1 (R 2) as 

a function of the difference variables. :~*':(h) is actually the strong 
L2(5~'(R2), d#*) limit as ~c -~ oe of the projection into P(') of (~*, X~* h) ' ,  where .  
is convolution and )/~ is a 3-sequence of functions in 5~(R2). For discussions of 
the construction of Wick powers, related to Ito's multiple integrals, see e.g. [80]. 

Let now u(s) be a real-valued function of the real variable s of one of the 
forms 

2m 

u(s)= ~ a s s  k with a2, ,>0 (5.11) 
k=0 

o r  

u(s) = S e ~s dv(~) (5.12) 

with dr(e) any bounded positive measure with support on (-2]//~u,2V ~)  and 
such that d v(~) = d v ( - ~). 

We shall call the case (5.11) "the P(cp)z-case" and the case (5.12) "the 
exponential case". 

Define :u:({*) as the distribution in 5f'(R 2) obtained by replacing in the 
definition of u(s), s k by :~,k:, for all k i.e. 

2m 

:u:(~*)= ~. ak:~*k: (5.13) 
k=0 
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in the P(~o)2-case and 

:u:(~*) =S:e~*:dv(cQ, (5.14) 

with 

S:e~*:dv(a) = Z 57i-:4*n:dv(a), (5.15) 
t l ~  0 t t ,  . 

in the exponential case. 
In fact one shows that the sum (5.14) converges in the strong 

L2(5~ d#~)-sense. 
As test functions h are allowed in (5.13) all h eL1 (R2) c~ L1 +~(R2) and in (5.14) 

all heLI(R2)nL2(R2). We shall use the notation 

:~:(~*)(h) 

for the evaluation of :u:(~*) on the test function h, so that 

2m 

:u:(~*)(h)= ~ ak:4*k:(h) (5.16) 
k = 0  

in the P((P)2 case and 
oo ~n 

:u:(4*)(h)=~:e'4*:(h) dr(a )=  ~ STi-:4*":(h) dv(e) (5.17) 

in the exponential case. 
We shall also write shortly U(h) for :u:(.)(h), considered as a function on 

Y'(R2). By well known estimates [72] (see also e.g. [41]) in the P((P)2 case 
U(h)eLp(S~'(RZ), d#*) for all t < p < o o  and, for h>=O, e-V(h)eLv(S~'(R2), dtt*), 
also for all t < p < o o .  In the exponential case one has [45] 
U(h)eL2(SP'(RZ),d# *) and U(h)~O, the latter whenever h=>0, thus, in this case, 
e-V(h)sL~o (cJ'(R2), d#'~) for all 1 <p  _< co. 

Thus in all cases we have that 

d#*-(  j' e-V(h)d#~)-l e-V~176 (5.18) 
fJ '(R 2) 

is a probability measure on ~'(RZ), absolutely continuous with respect to the 
Gaussian measure d#*. One calls U(h) "the space-time cut off (P(~o)z resp. 
exponential) interaction", with "space-time cut oW' h. d~* is the associated 
measure. 

5.3. The Quasi Invariant Measures and the Associated Diffusion Processes 
for the Space Cut-off Interactions 

Define, for ~EY'(R), q~Y(R),  the Wick power :~":(cp) in a corresponding way 
as we defined :4"":(~), but with 4" replaced by 4, ~ replaced by ~o and the 
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/ d e 2\ - �89  
covariance ( -  A + ma) -1 replaced by I -  d-~-x2 + m ) . For notational convenience 

d 2 
we shall write in this subsection A for ~-~x 2. Thus :~":(cp) is the space Po (') 

k 

=Po--<~ 1)@Po <=C'), with Po (=<") the closed linear span of the nonomials I-I (r 
k<n in L2(Sa'(R),d#o), such that i= 1 

i=1 R R i = l  

where ( , )  is the scalar product in Lz(6e'(R), d#o ) and ( , )  is the dualization 
between ~ ( R )  and 5e'(R). Define :v:(~) in the same way as :u:({*), formulae 
(5.13) resp. (5.14), but with ~ replacing 4" i.e. 

2m 

:v:(~)= ~ ak:{k: (5.19) 
k=O 

resp. 

:v:(g)=S:e=r c~)=.~o S~-.v~~ c~" :{":d#(c~). (5.20) 

One shows that the evaluation :v:(~)(g) of :v:(~) on the test function g in 
LI(R)~L~+~(R ) resp. LI(R)~L2(R ) yields functions in Lp(Sa'(R),d#o) for all 
1 =<p< oo resp. in L2(Sa'(R), d#o), and that the sum in (5.20) is convergent in the 
strong L2(Se'(R),d#0)-sense. We write also Vg for :v:({)(g). One has that, for 
g>0 ,  e -v" has the same Lp-properties as e -v(h) i.e. e -v" is in Lp(~'(R), d,uo) for 
all I N p < oo in "the P(~o)2-case" (5.19) and for all 1 < p < Go in the "exponential 
case" (5.20). One calls 1/~--:v:(g) "the space cut-off (P(q0)2- resp. exponential) 
interaction", with "space cut-off" g. For g > 0  as above define Hg on 
D(Ho)c~D(Vg ) in L2(~'(R), d#o ) by 

Hg=Ho+ I~. (5.21) 

From now on we shall always assume g>0 ,  and geL,(R)c~LI+~(R ) with 
0 <  e < 1 in the P(cp) 2 case resp. e=  1 in the exponential case. 

It is known that Hg is essentially self-adjoint on D(Ho)c~D(Vg ). Call also H~ 
its unique self adjoint extension. H~ is lower semibounded in the P(~0)2 case resp. 
positive in the exponential case, with simple isolated lowest eigenvalue Eg. Call 
fag the eigenvector in L2(5~'(R), d#o ) to the infimum of the spectrum of Hg, so 
that 

Hg f2g = Eg fag (5.22 a) 

with Hg>Eg. One has fag(r and fag~Ll(6e'(R), d#o). Define the 
measure d#g on 5e'(R), equivalent to d#o, by 

d#g (4) = fa~ (~_) d#o (~). (5.22 b) 

Lemma 5.2. #g is a 5a (R)-quasi invariant measure i.e. #g ~ ~o(Se'(R)). 
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Proof. From the Definition (5.22) we have 

d# (0 =- + = + d#o(  + 

for any (p ~ 5~(R). Thus from (5.3) 

d#~.~. 0~(~ +~o) e_Z<~,(_~+,.~)~_O> e_(O,(_~+~)~e > 

which is strictly positive #o 

Lemma 5.3. Let ~(cp) be as in (5.4). Then on D(Ho)c~O(V~) we have 

e~(~)Hge - ~ )  = H  o +L~  + L~ + ~e  (5.23) 

where 

Vg ~ ~- e ~(~ Vg e -i~(~). (5.24) 

For any f~D(Vg) one has 

(V g ~  )(0 = :v :(~ + ~o)(g) f ( 0  = (Vg f ) ( 0  + (Rg, ~, f ) ( 0  (5.25) 

with 

(Rg,~f)(~)= ~ a~ ~ :~-~: (g~o J) (5.26) 
k=O 

in the P(rp)2-case and 

(Rg, ~ f)(~) = ~=o ~ ( ~ .  ~=~v~;] : ~ 2 ~ - ~: (g 02 J) d# (e) (5.27) 
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in the exponential case. ~ ,  Rg ~, e-:~,~ are in L~(SP'(R), dpo ) for all 1 <=p< Go, in 
the P(cp)z-case, and Vg ~, Rg, ~ ~ L2 (of (R), d #o), e-R~. ~ ~ Lp(5~ (R), d #o) 1 < p < oe in 
the exponential case. 

Proof. (5.23) follows from (5.9) and the fact that  V~ is a multiplication operator  in 
L2(SZ'(R),d#o ). (5.25), (5.26) come from the Definition (5.24) of Vg r and the 
Definitions (5.19), (5.20) of Vg. The L v estimates are analogous to the ones for V~, 
e -Vg, q.e.d. 

Set now, on D(Ho)C~D(Vg), 

HI--- + (5.28) 

with 

Hg -= H o + L ~] + L~. (5.29) 

Then we have, by Lemma 5.3: 

H I  = e ~(~') Hg e - i'~('p) (5.30) 

on D(Ho)~D(I~). 
The following Lemma is an immediate  consequence of L e m m a  5.3. 



Dirichlet Forms and Diffusion Processes on Rigged ttilbert Spaces 45 

Lemma5.4. For any real t, Htg ~ is n times strongly d~ferentiable on D(Ho)C~D(Vg ) 
with respect to t, and we have on D(Ho)r~D(Vg), for the strong derivatives at t=O: 

d" 
( - - H  '~] = :v~"):( - L ~ ,  L~2 --2L~, (5.30) 
\dt" g lt=o .)(g(p")+/9,, /L~ 

and L~,-0 for n > 3 and :v("): (Q(f)  is defined as :v:({)(f) but with the function v 
replaced by its n-th derivative, so that, in the P(qO2-case 

2 m  

:v~"):(-)(g (p") = ~ a k k ( k -  1)... ( k - n +  1):~k-n:(-)(g(p ") (5.31) 
k = n  

and 

.r (g&) = ~ ~ ~k k ( k -  1)... ( k - n  + 1): ~k-,:(.)(g &)d#(~) 
k ,= n 

in the exponential case. 

Define recursively ad" A (B) as [A, B] for n = 1 and a& A (B) = [A, ad"- 1 A (B)]. 

Lemma 5.5. On D(H~) we have 

i"ad"n(q))(Hg)= : v("):(.)(g (pn) + L~ 

Proof From Lemma 5.4, (5.30), we have for any OsD(Ho)c~D(Vg ) and any 
@~DQt(~o)) 

i((rc ((p) ~, Hg ~) - (Hg ~, ~ (q0 ~)) = (cb, (: v (*):(g ~o) + L~) #0- (5.32) 

From known "local perturbations" bounds (":qSJ:-bounds") in the P(qo)z-case 
([81, 82]) and an elementary consequence of Ho<Hg for exponential interac- 
tions, we have 

n (~,0) 2 -_ C(Hg+D), (5.33) 

where C and D are constants independent of g. 
This then gives D (re (q~)) ~ D (H~) hence, for ~ ~ U (H~), Hg ~ E m (H~) = D (~z (q~)), 

thus the first term on the left hand side of (5.32) can be written i(@,rc(qo)H~O). 
Then from (5.32) we also get rc(q~)0ED(H~), and thus the statement of the lemma 
for n = l .  The rest follows by applying repeatedly adrt(qg) to :v(1):(.)(gcp)+L~ 
and observing that 

[in(p), :v("):(')(gp")]= :v("+l):(')(g~0 "+a) and [i~z(~o),L~]=L~+ 1. 

LemmaS.6. #g is in .~o i.e. 1 is an analytic vector in L2(5~'(R),d#g) for ~g(p), 
where 

�9 d # g ( { + ( p )  
(e'~(o)f)(O=]/dd--~g(~) f(~ +(P), 

for all feL2(5~'(R),d#g). Equivalently f2g is an analytic vector for ~(~o) in 
L2(~'(R), d#o). 
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Proof From Lemma5.5 we have, since Y2g~D(H~), f2geD(n(q~)), hence 
#eO~I(SP'(R)). Now Hg-Eg has zero as the infimum of its spectrum, separated 
from the rest of the spectrum by a positive distance m* > 0, independent of g (see 
[38, 39] resp. [45]). Now by the local perturbation estimates quoted above we 
have 

_+ (: v("): (g q~') + L~.) _-< C; (/-Ig - Eg + 1) (5.34) 

where C o is independent of g. 
Introducing this into the formula of Lemma 5.5 we have 

[I(He-Eg+ 1) - i a d "  rc(rp) (Hg) (Hg - E g +  1)--~11 < C$ (5.35) 

for all n = 1, 2, 3 . . . . .  Then by the proof of Theorem 3.7 we have 

/m* + 1 
l l (Hg-Eg+ 1)a-rc(q~)" Ogli < n! ~ m , - e  Co)'. (5.36) 

In particular we get that f2g is an analytic vector tbr re(go) in L2(Sf'(R),d#o ). 
Using now the unitary equivalence of L2(Y'(R),d#g) and L2(Sf'(R),d#o) given 
by f ~ f 2 g f  we finish easily the proof. 

Let now Hu~ be the Dirichlet operator given by the measure #g. Then we have 

Lemma 5.7. 

for any ~ in the linear hull of 

F C 2 g2g w (zc(~o) D(H2)) ~ (e i':(o) F C 20g). 

Proof If O~FC 2 f2g then the statement follows by the fact that the assumptions 
of Theorem3.4 in Ref. [1] are satisfied. Let now O=zc(rp)h, with hsD(H}). 
Consider for f e F C  2 the scalar product (fOg,(Hg-E~)rc(cp)h) in L2(Sf'(R),d#o), 
well defined by Lemma 5.5, and equal to ((Hg-Eg)ff2g, n(q))h), hence, by what 
we have just proven, also to (f2g H,~f, ~(~o)h). This then yields 

(f, ~22 l(Itg - Eg) re(go) h)g = (I-I~,f, f2g ~ rc(ep) h)g, 

where ( , )g  is the scalar product in L2(Sa'(R), d/q), which then proves the lemma 
for 0 of the above form. Let finally f l e F C  2, then by the fact that we have 
proven the lemma when O~FC 2 f2g we have 

( H.~f, ei':~(~~ f l)~ = ((Hg- Eg) f f2g, e":(~~ f l f2g). 

But e~(~ f2g~D(Hg) by Lemma 5.3, hence the right hand side is equal to 

(fOg, (Hg -- Eg) er A f2g) = (f, f27 ~ (Hg - Eg) e~(~) A Y2g)g, 

which proves the lemma. 
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Remark. In the case of the (~04)2 interactions we have ([83]) D(Hg)= 
D(Ho)c~D(Vg), hence, by Theorem 3.5 in Reference [1], Hg-Eg  is equal to 
the isomorphic image of/-U in L2(Se'(R),d#o ) under the isomorphism mapping r 

L2(Y'(R), dl~g) onto L2(SP'(R), d#o), where H F is the Friedrichs extension of #g 
HugI F C 2. 

Lemma 5.8. On F C 2 

i" ad n n (qo) (Hug) = : v(n) : (g q0") + L~ (5.37 a) 

Moreover one has 

(Hg -- Eg) n (rp) n (2g = (2g Hug 021 zt (cp)" f2g. (5.37 b) 

Proof. By Lemma 5.5 we have, for any fl ,  f2 ~ F C 2 ,  

( -- i) (((Hg - Eg) f l ,  7c (cp) f2) - (TZ (~0) f l ,  (Hg - Eg) f2)) = ( f l ,  (: v(1): (g cp) q- L~) f2), 

(5.38) 
where the scalar product is the Lz(~'(R), d#o ) one. By Lemma 5.7, 

((Hg -Eg)f~, ~c(~0)f2)=(L, E2g H.~ f2~ -1 ~(~o)f2). (5.39) 

On the other hand by Lemma5.5 (Hg-Eg)f2eD(Tc((p)). Thus by Lemma 5.7, (Hg 
- Eg) f2 = H,g f2 ~ D (~ ((p)), hence 

(re (qo) f l, (Hg - Eg) f 2) = (A, ~ (~o)(Hg - Eg) f 2) = (A,  ~ ((r Hug f 2). (5.40) 

Introducing (5.39), (5.40) in (5.38) we have then 

( -  i) ((fl, E2gHu,(2;1 ~(~0) f 2 ) -  (fa, 7c((p) Hug f2)) = (fl, (: v(~): (gcp) + L']) f2). (5.41) 

This proves then 

( - i) [Hug, rc ((p)] = : v(1):(g (p) + L3 (5.42) 

on F C 2. Applying repeatedly ad 7c ((p) to both sides of (5.42) we have then (5.37 a). 
We shall now prove (5.37 b) by induction with respect to n. By Lemma 5.7 we have 

(Fig - Eg) rc(~o) E2g = f2g Hug f2[ a ~(~o) Og, (5.43) 

thus (5.37b) holds for n =  1. 
Suppose now it holds for n = 1, 2 . . . .  , k. 
Using the algebraic relation (3.50) we have, since (Hg-Eg)f2g =0, 

_ k ~ l  (k +. 1) adJrc(q))(Hg_Eg)Tz(q))k_J E2g" (5.44) (Hg-Eg)~(~~ = j=~ J 

On the right hand side only terms of the form 

const. ~((p)i (Hg-Eg)  ~(9)l ~g with i = 0  . . . .  , k+  1, /=0,  ..., k 

enter, and using the induction hypothesis we rewrite them as const. 
7c(q))iQgHu~Q~lTC((p) l (2g. Using now (.50) again we get the right hand side of 
(5.44) to be equal to ~2g H,g Q~- ~ ~(9)k+l f2g, which proves (5.37 b). 



48 S. Albeverio and R. Hoegh-Krohn 

Lemma 5.9./~g is strictly positive. 

Proof This follows easily by conditioning from the fact that (2g>0#0-a.e. 
Another way of proving it is to observe that from (5.36) and (5.37) we have 

/m* + 1 C ~" [!(H,g+l) f2glrc((p)"g2glle<n! ~ -~T- ,  e ~o], (5.45) 

where il llg is the norm in L2(J'(R),d1~g). 
But 2Hug = V* Vin L 2 (~'(R), d#g), hence (5.45) shows that f2~ -1 n(q0)" flgeD(V), 

thus rCg((p)nl~D(V), where 1 is the function identically one in L2(~'(R),d#g), 
which, by the proof of Theorem 3.6 gives the strict positivity of #g. 

Let fi~(~)((p) be the drift coefficient (osmotic velocity) associated with the 
quasi invariant measure #g i.e. 

fi~ (4)(e) -- (2 i ng (~o). 1) (~), (5.46) 

where 1 is the function identically one in L2(Y(R),  d#g). We shall now summa- 
rize the main results on #g and the related quantities in the following 

TheoremS.1. The measure #g for the space cut-off P((fi)2 and exponential in- 
teractions is a 5~(R)-quasi invariant measure on 5~'(R) which is in ~ (i.e. s is an 
analytic vector for ~z(~o)), hence in particular analytic, and strictly positive. Any 
f~FC~2g is an analytic vector for ~((p) and ~z(q)) is essentially seIf-adjoint on 
FC~2g. The associated Dirichlet operator H, coincides with Hg-Eg on the 
domain D, where D is the linear hull of FC ~qg, n(q~)D(H~) and n((p)"~2g, n 
= 1, 2, ... (the coincidence is to be interpreted as the fact that the image of H~ 
-Eg~D by the natural isomorphism of Lz(5r and L2(5~'(R),d#g) is 

On D(H)) resp. FC 2 we have for all n = t ,  2, ... 

i" ad" n ((#) (/~g) = : v("): (g q~") + L~, 

where lqg stands for H e resp. H;~ . H~ generates a Markoff process r with values 
in S'~'(R) which solves the stochastic differential equation 

1 ~" d~, =-~ fig(~) dt+dwt, 

in the sense of Section 3. 

Remark. In fact all results of Sections 2, 3, 4 hold. 

5.4. Removal of the Space Cut-off 

Lemma5.11. For the exponential interactions (5.20)and for the "weak coupling 
p((p)2-interactions (i.e. those given by (5.19) with sufficiently small coefficients ak) 
one has, for any g>0,  Ilgl]~<l with s u p p g c [ - l , l ] ,  I>0: 

llflg(')(q,)ll~- ~ lfl~(r162 < Co, 
~'(R) 

where C o is independent of g. 
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Proof. By (5.45) it suffices to estimate II~(~)GIIo, where 11 b[o is the norm in 
L2(~ ' (R) ,d#o  ). By Lemma5.5 we have 

( - i) [Hg - Eg, re(q))] f2g = : v(~):(g ~o) ~g + L~ Og. (5.47) 

Noticing that (Og, [zc(qo), Hg-Eg] f2g) = 0  we have that (gg--Eg)-1 is well defined 
on [zc(q~),Hg-Eg] Og, orthogonal to f2g. We have thus, for any C>0 ,  

G(~)  ~2g = -(Hg-Eg)-l(Hg-Egq-C)(Hg-Egq-C)-l[~(~),Hg]~-2g. (5.48) 

From the fact that Hg-Eg  has a strictly positive gap mg between zero and the 
rest of its spectrum ([38, 39] resp. [44], [45]) and that mg is bounded below by 
m in the exponential case ([44, 45]) as well as by a positive constant independent 
of g for the weak P(cp)2-case [38, 39], we obtain that ( H g - E g +  C)-~(Hg-Eg)  -~ 
is bounded uniformly in g. Therefore 

[[Tc(cp)g2gl[o~Cl ll(Hg-Eg+C)-l[rc(q)),Hg](Hg-Eg+C)-lQg[[O, (5.49) 

where C~ is a constant that depends only on the function v(s) giving the 
interaction and C. But by Lemma 5.5 we have 

i [rc(cp),Hg](Hg-Eg+ C) -~ Og=(:v(a):(gcp)+L~)(Hg-Eg+ C) -~ (2g, (5.50) 

hence by the local perturbations estimates (5.33) we have that the right hand 
side of (5.49) is bounded uniformly in g. This together with (5.45) completes the 
proof of the lemma. 

LemmaS.12. For any fleLv(SP'(R),d#o), l < p < o G  f2ffFC 2 we have that the 
scalar product in L2(SP'(R), d#o ) 

(L G,e "'~g ~gG G) 

is twice differentiable with respect to t >=0 and one has 

~ t ( f  l d  (2g, e t(u~ E~,)f20g) = ( f l  (2g, e-t(ng-lZg)(Hg-- Eg)f  20g) 

d 2 
at2 (A G, e t(~,g ~g~f2 G)=(A G, e-'"~"-~g~(G-G)2L G)" 

Both the first  and second derivatives are bounded uniformly in g and t. 

Proof. The existence of and the expressions for the derivatives follow from 
FC 2 f2gCD(Hg), which holds by Lemma 5.7. The bounds follow from 

]le-'(u.-Eg)[I <1 and (Hg-Eg)FC2f2g=f2gH.gFC 2 

which yields, for f 6 F C 2, II ( H~ - Eg) f Qg II = II H. .  f II~, which, by 2 Hug = - A  - f ig V 
on F C 2, H.g being the Dirichlet operator given by #g, is �89 times 

II - A  f - f i g .  V f I[ < I[ - A f II o~ + ~ ll/3gffo;)llg sup I[~o i. V f ll co, 
j = l  J 
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where {<p j} is an orthonormal basis for the base of the FC 2 function f. However 
the right hand side is bounded uniformly in g, since f eFC 2 and the bound on 
Ilfio(~oj) llg given by Lemma 5.11 holds. 

Here II 11oo is the L2(5:'(R),d#o)-norm, q.e.d. 
Let now Z 0 be the a-subalgebra of Y'(R 2) generated by the functions 

({*, 6o | <p), with (pe~(R). We can identify d#g with a measure d#* INo, using 
the identification of 

L2(5:'(RZ),d#*)C~Zo with L2(~9:'(R),d#o) 

given by (~*, 6 o | ~0)+-+((, (p). By the Feynman-Kac-Nelson formula one proves 
then, using the spectral Theorem and the fact that Hg has a simple lowest 
eigenvalue, that d#xT| converges weakly to d#* as T ~ ,  where Zr is the 

* is the measure characteristic function of the time interval [ - T ,  T] and d#xT| 
(5.18) for the space-time cut-off interactions. It has also been shown for the 
exponential interactions (5.14) and for the "weakly coupled" P(q))2 interactions, 
i.e. the interactions (5.13) with sufficiently small coefficients ak, that the measure 
d#zT| converges weakly o n  o<:'(R 2) as T~oo  and g ~ l ,  where g is the 
characteristic function of the space interval I - L ,  L] so that g ~ l  means L--* oo. 
This result was obtained by Glimm, Jaffe and Spencer [-38-39] in the P(cp)2-case 
and by ourselves in the exponential case [45]. Let d#* be the limit measure on 
5:'(R2). This measure is invariant under the transformation induced in 5:'(R 2) 
by the Euclidean transformations in R 2. #* is called the Euclidean measure for 
the models considered. 

One has also that d#* is the weak limit of the measures d#* as g--*l. 
We shall now associate to the measure #* on 5:'(R 2) a measure # on 5:(R). 

Consider first the P(cP)2 interactions. Split again R 2 as R| then # will be a 
measure on 5:(R) of the space variables x and is defined by 

e i<r176 d#({)= lim 5 e i<r d#*({*), (5.51) 
~,~ ' (R)  n ~ m  ,5/~" ( R  2 ) 

where 0,  is a sequence of functions in 5:'(R 2) convergent in the 5: '(R)|  5:(R)- 
sense to the element c50| in R_I(R2). That the limit on the right hand side 
exists and gives a continuous positive definite function on 5:(R) has been shown 
in [39, 77], so that # is precisely, by Minlos Theorem, the measure associated 
with this function. 

In the case of exponential interactions the existence of # follows from [45]. 
We shall call # the restriction of #* to the o--algebra of time zero fields for 

the P(~b)2- resp. exponential interactions. It has also been proven, [38, 39] resp. 
[45], that # is the weak limit of #g as g--,1. 

The moments 
n 

s("~(~l ..... 0.) =5 H (~*, 0,> d#* r 
i = l  

of the measure #* (" Schwinger functions") yield, by an analytic continuation in 
the time variables, [38, 39] resp. [45], the Wightman functions of a relativistic 
quantum field theory [84, 85]. Let Hph be the infinitesimal generator of the 
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unitary strongly continuous representation of time translations in the Hilbert 
space ~ph of these Wightman models. We can consider L2(Se'(R),d#) as a 
subspace of ~ph, by identifying 

n n 

[I(~*,3o| with I~(~,r 
i = 1  i = 1  

n 

and thus with I ]  (~,  ~bi} f2ph, where f2* is the function 1 in LE(Z~'(R), d#*), Q is 
i = l  

the function 1 in L2(5~ dp), ~(~ph is the eigenvector to the eigenvalue zero of 
Hph in ~ph, (~,  q~} is the time zero Wightman field. 

We shall now give some consequences of the results of the preceding sections 
to the case of the measure #. Combining the above results with Propositions 4.1- 
4.3 and the results of Sections 2 and 3 (observing that ~ ' ,  being the dual of the 
nuclear space 5~ satisfies all assumptions) we have the following Theorems 
5.2, 5.3 and 5.4: 

Theorem 5.2. # is admissible and J ( R ) |  F C l c  D(V*). Moreover # is ~(R)-quasi 
invariant and analytic, hence has the properties given in Theorem 4.4. Furthermore 
# is in ~I(SP'(R)) i.e. the function identically one in L2(~ ' (R) ,d#)  is in the domain 
of ~z(q)). 

Proof. The admissibility and the fact that 3 ~ ( R ) |  *) follow from 
Theorem4.1, its assumption being satisfied by Lemma5.11 and the weak con- 
vergence of #g. By (5.35) and Theorem 4.5 we have that the #g are equi analytic, 
hence by Theorem4.2 # is analytic and by Theorem 3.10 # is ~(R)-quasi in- 
variant. Furthermore from Theorem 4.3 we have, by the equi analyticity of #g 
and Lemma 5.11, that # is in ~1 (~'(R)). Since # is an SP(R)-quasi invariant 
measure the correspondent Dirichlet operator is well defined, by the results of 
Section 2, and we set 

H=�89 

We have 

o n  F C  2. 

Theorem5.3. For any f> f2 in FC 2 we have 

(f~, H, gf2)g ~ (f~, H f2), 

where ( , )g is the scalar product in L2(SP'(R),d#g) and ( , )  is the scalar product in 
L2(5~'(R), d#). Moreover 

(f~, H fz)=(f~ f2ph, Hph f20ph)vh, 

where ( , )ph is the scalar product in :gfph. 

Proof. By the weak convergence of the Schwinger functions we have that 
(fl~2g, e-'(Hg-E~)f212g)O converges as g ~ l  and from the construction of 
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( ~ h ,  g2ph, Hph) we have that the limit is (flf2ph, e-tHPhf2f2ph). The uniform 
bounds on the derivatives (Lemma5.12) gives the convergence of the first 
derivatives at t = 0  to (f~ ~2ph, Hph.~ ~2ph)p h. On the other hand, by Lemma 5.7, 

(f~ g2g, (Hg-  Eg) f2 g2g)o =(f l ,  Hu,f2)g =�89 V f~ . V fz dpg. 

By the weak convergence of #g to # we have 

lim(fl,tI.~f2)g=�89 V f 1 �9 Vf2 d#, 
g ~ l  

and the Theorem is proven. Again by the results of Sections 2, 3, 4 we have 

Theorem $.4. For the weak coupling P(~0)2 models and the exponential models the 
Euclidean measure #* restricted to the a-algebra generated by the time zero fields 
defines a measure # on 5~'(R) which is a 5QR)-quasi invariant admissible analytic 
measure in ~I(Y'(R)), with respect to the nuclear rigging 5~(R)~L2(R)c ,~ ' (R) .  
L2(,Y'(R), d#) carries an irreducible representation of the Weyl canonical com- 
mutation relations, with the function 1 as a cyclic vector for the fields (~, qo), 

E 5r (p 6 Sf(R) and in the domain of the canonical conjugate momentum ~r(rp). 
The self-adjoint positive Dirichlet operator H = I V * V  in n2(d#) given by # 
coincides as a form on the dense domain F C 2 x F C 2 in La(d#) with the restriction 
of the infinitesimal generator of time translations of the corresponding Wightman 
models. Moreover H is the limit, as a form on F CZx F C 2, of the Dirichlet 
operators H**, ,for the space cut-off interactions. On F C 2 one has the operator 
equalities i[H, (~, q~)] =n(cp) and e -i(Go) H ei<r =H +n(~o)+�89 # is the 
invariant measure of a Markov diffusion process ~(t) with state space ~ ' (R)  
solving, in the weak sense, the stochastic differential equation 

d~(t) = �89 dt + dw(t), 

with initial distribution d#, where fl is the osmotic velocity to # and w is the 
standard Wiener process associated with the rigged Hitbert space. 

Remark. It is clear from the method of proof and the fact that the : ~ :  bounds 
are available also in these cases that corresponding results hold for the P(~0)2 
models with Dirichlet boundary conditions and zero as an isolated eigenvalue of 
the Hamiltonian Hph (the simplicity of this eigenvalue is not needed, although it 
is known [42, 87]). By the local perturbation bounds coming from the positivity 
of the interaction one sees that also the exponential interactions with Dirichlel 
boundary conditions, considered in [45, 41], can be covered. Further results on 
the circle of problems discussed in Section 5 are given in Reference [88]. 

Appendix 

We first prove that the following formula 

q. V ER f = En q" Vf + E R((fi. q -- ER fi" q) f )  (1) 
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holds for all f~D(q .V)c~L~(Q' ,d lz ) ,  all q~Q, where E R is the conditional 
expectation with respect to the a-algebra 2~ R and ft. q is defined by (2.7). Let # ~  
be the restriction of the measure # to the a-algebra Z R. Then we have, for any f 
as above and any h which is 2;R-measurable and d#zR-integrable: 

S h(~)(ER q" Vf)(~) d#~R(~)= ~ h(~)(q. Vf)(~) d#(4). (2) 
(2, Q, 

Recall now that for any g~D(q.  V)c~L~(Q',d#) we have 

((q. V)* g)(3) = - ((q" V) g (4 ) -  fi" q(4) g(4)). (3) 

This implies if h~D(q.  V) c~L~(Q',dp) that the right hand side of (2) is equal to 

- y ((q- V)h)(4)f(~) d#(4) - ~ ft. q(4) h(4)f(4) d#(4). (4) 
(2' (2' 

But consider now the first term in this formula. Since q. Vh is Ia-measurable 
and E R is self-adjoint on L2(Q', d#), since it is a projection, we have 

(q. Vh)(4)f(4) d # ( 4 ) -  ~ ER(q" Vh)(4) f (4)  d#rR(4) 
(2" (2, 

= ~(q" Vh)(4)(ERf)(~)d#~R(4). (5) 
(2' 

Suppose now f is such that E R f s D ( q .  V)nLoo(Q',d#).  Then we can again use 
formula (3) to obtain that the right hand side of (5) is equal to 

- ~ h(4)(q. V)(ERf)(4 ) d#x~(~) - S h(4)(fi, q)(ERf)(~ ) d#x~(~). (6) 
(2' (2" 

Again using that h is ZR-measurable and E R is self-adjoint we have that the 
second term in (6) can be written in the form 

h(~)(ER(fl, q))f(~) d#xR(4 ) = ~ h(4) ER(ER(fl" q)f)(4)  d#z~(4), (7) 
(2' (2' 

Thus the first term of (4) is equal by (5), (6) and (7) to 

h(4)(q. V)(ERf)(4) dl~xl~(~) - ~ h(~) ER(ER( fl �9 q) f)(~) d#xR(4). (8) 
(2' (2" 

The second term of (4) can be written, by the fact that h is ZR-measurable and 
E R is self-adjoint as 

- ~ h(~) ER( fl �9 q f ) (~ )  d#(~). (9) Q, 

Thus from (3), (8) and (9) we have that the right hand side of (2) is equal to the 
sum of (8) and (9), which then proves the formula (1) integrated with respect to 
h(4) d#z~(~ ). Since however the set of h for which this integrated formula has 
been shown to hold are the d#z -integrable functions we have that, in particular, 
(1) holds in the sense of L2(Q', d#z~)-functions , whenever f is the domain 

D o = { f~D(q .  V)c~Lo~(Q', d# ) lERfeD(q .  V)}. 
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H o w e v e r  the  r igh t  h a n d  side o f  (1) exists  for  all  f~D(q. V)nL~(Q',d#). T h e  

o p e r a t o r s  q .  V a n d / ~ . q  be ing  c losed,  E R b e i n g  a p r o j e c t i o n  in L2(Q',d#zR), a n d  
D(q.V)~L~(Q',d#) be ing  dense  in L2(Q',d#), we h a v e  tha t  for any  

feLz(Q',d#xR), (q. V)ERf . c o n v e r g e s  s t rong ly  in L2(Q',d#z~) w h e n e v e r  f, sD o 
a n d  f , , - -*f  s t r ong ly  in L2(Q',d#x~). Since  ERf,~ERf a n d  q - V  is c losed,  this 

t h e n  imp l i e s  t h a t  ERfeD(q. V) a n d  (1) ho ld s  for al l  feD(q. V)~L~(Q',d#), 
w h i c h  is w h a t  we w a n t e d  to  p rove .  T o  p r o v e  L e m m a 2 . 1  it suffices to  o b s e r v e  

tha t  (1) imp l i e s  n o w  t h a t  ERf c o n v e r g e s  to f s t r ong ly  in the  g r a p h  n o r m  of  q .  V. 

M o r e o v e r  we  see eas i ly  tha t  D(q. V)~L~(Q',d#) is dense  in D(q. V) in the  g r a p h  

n o r m ,  w h i c h  t h e n  c o n c l u d e s  the  p r o o f  o f  L e m m a 2 . 1 .  
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