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Summary. We compute the expected values of certain random variables 
associated with a random process of manifolds in R" by inserting certain 
general formulas of integral geometry into the definition of the moment 
measures of a point process. 

1. Introduction 

Increasing interest in stochastic processes of geometric figures has arisen re- 
cently in view of their applications and their connections with geometry. 
Berman [1], Coleman [2], Fava and Santald [3], and Parker and Cowan [-8] 
are some of the authors who have dealt with problems closely connected with 
the subject of this paper. 

In this article we show how some previous results concerning processes of 
geometric figures in the plane and in three dimensional space can be studied in a 
unified manner in the more general context of R", by taking into account certain 
invariants linked to each manifold, namely, the integrals of mean curvature and 
the Euler-Poincar6 characteristic. This is done by inserting some general for- 
mulas of integral geometry into the definition of the moment measures of a 
point process. 

Acknowledgement. We are deeply indebted to Klaus Krickeberg for helping us to 
overcome several flaws in our original manuscript. In particular, we are indebted 
to him for the general outline included in Sect. 4 and for drawing our attention 
to his paper [6]. 

2. Geometric Preliminaries 

All manifolds appearing in the sequel are assumed to have a finite simplicial 
decomposition and the symbol Z(Z) is used to denote the Euler-Poincar6 
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characteristic of S. Recall that the Euler-Poincar6 characteristic is a topological 
invariant which has the value zero for the empty set, and for a compact 
manifold S" of dimension n which has a finite simplicial decomposition with e~ 
simplexes of dimension i, equals 

Z ( S " ) = ~ o - e l + . . . + ( - 1 ) "  %. 

That is, )((S") can be computed simply by counting the simplexes in any 
simplicial decomposition of S". For  instance, for a simplex of dimension n or 
equivalently, for a topological ball D" in R", we have z(D")=I  and for 
a topological sphere S"-I=OD" in R" we have ) ( ( S " - 1 ) = 1 - ( - 1 )  ". For  a 2- 
dimensional torus T in R 3 we have z (T)=0 .  In general, for a closed surface 
2;2 of genus g (i.e. a compact .manifold of dimension 2 homeomorphic to a 2- 
dimensional sphere with g handles) we have )(($2)=2(1-g) .  If 2:" is composed of 
m disjoint compact manifolds S "i of dimension n, then )~(2:")=Z(2:"l)+Z(S "2) 
+. . .  +z(z"m). 

Concerning the Euler-Poincar6 characteristic from the point of view which is 
of interest in Integral geometry, see Hadwiger [5], Lefschetz [7] and Groemer 
E4]. 

With reference to the integrals of mean curvature Mi(Z) ( i=0,1 . . . .  , n - l )  
they are well defined for hypersurfaces of class C 2 in R" in terms of their 
principal curvatures, see [10] or [5]. For compact manifolds of dimension n in 
R" (which will be called "bodies") the integrals of mean curvature refer to the 
boundary #S". For  manifolds of dimension less than n - 1  and for non smooth 
manifolds, the integrals of mean curvature have to be computed by the familiar 
device of considering the integrals for the parallel set to a distance e and letting e 
tend to zero [10]. 

For the ordinary space, n=3,  the following cases are of interest: (a) 2:3 
=convex polyhedron; then Mo(2:3)=Mo(O2;3)=surface area of Z3, M1(s 
=Ml(#S3)=(1/2)2;(z-c~i)ai, where a i are the lengths of the edges and c~ the 
corresponding dihedral angles, the sum being extended over all edges of 2; 3. (b) 
2;2= convex plate of area f and perimeter u; then M o = 2f, M 1 = 0z/2)u, M 2 = 4~z. 
(c) 2:1 =linear segment of length s; then M0=0 ,  Mt=~s, M 2 = 4 ~ .  

Throughout the paper, we shall denote by 

2re(k+ 1)/2 
O k -- r((k + 1)/2) 

the surface area of the k-dimensional unit sphere sk; thus 0 o = 2 ,  O 1 =2re, 0 2 
=4~,  0 3 =2~  2, etc. 

By R" we mean the n-dimensional euclidean space. 

3. Processes of Manifolds in R". Processes of Bodies 

Let us consider in R n a random process of compact manifolds, the location of 
each manifold being given by a point H lying in it and an orthonormal n-frame 
composed of the origin H and a set of orientation vectors u,_ 1 .. . .  ,ul,  where u k 
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is a point of the k-dimensional unit sphere S k, while the shape of the manifold is 
given by an element p of a certain probability space (6, Q), where ~ is a locally 
compact Hausdorff space with a countable base which we call the shape space, 
in such a way that two manifolds of the family which have assigned the same 
value of p are congruent. 

We assume that the manifolds of a given realization can be enumerated 
according to the distance of the corresponding point H to the origin and that 
this enumeration is measurable (for two or more points at an equal distance a 
systematic method for continuing the enumeration is chosen). 

We shall also assume that (for an arbitrary realization) our process can be 
decomposed into n + 1 mutually independent processes, namely, 

(i) the points H corresponding to the different manifolds of the realization, 
which form a point process in R" with the property that the expected value of 
the random variable N(A)=number  of points H within the Borel set A c R "  is 
invariant under translations in R" and finite if A is bounded. 

(ii) for each fixed k, the unit vectors u k corresponding to the different 
elements of the realization, which we assume to be mutually independent and 
uniformly distributed on the unit sphere S k, with density duk/Ok, where du k 
stands for the area element of Sk(k = 1, 2 . . . . .  n - -  1). 

(iii) the sequence of values of the "shape parameter" p corresponding to the 
different elements of the realization, which we assume to be mutually inde- 
pendent and distributed in ~ according to the same probability law Q. 

Finally, we assume that if V(p) is the volume, Mi(p)  the i-th integral of mean 
curvature and Z(P) the Euler-Poincar6 characteristic of a manifold which has 
assigned the value p of the shape parameter, then the mean values 

E(V)  = ~ V(p) Q(dp), E (Mr  ~ Mr Q(dp) (i = 1, 2 . . . .  , n -  1), 

E()) = ~ Z(P) Q(dp) 

are all finite. 

4. The Mathematical Model 

We recall that a point process (more precisely its law P) in a locally compact 
second countable Hausdorff space Z is a probability measure in the space ~ of 
all point measures in Z, i.e., locally finite sums of 6-measures. Denoting by #| 
= # |  ... |  the h-fold product of # E ~ ,  the h-th moment measure of P is the 
mixture 

v(h) = ~ #| P(d#)  

provided that this exists as a locally finite measure in Z h, in which case P is 
called an h-th order process. Explicitly, this means that the functional defined on 
d/t by 

(~)(#) =/~| ( # ~ / ) ,  (1) 
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where f is a Bore1 function on Z h such that (1) exists for every g~d/Z (for 
example, f bounded with compact support o f f > 0 ) ,  is a random variable on the 
probability space (J{, P) and 

V(h)(f) = ~ #| P(d#) =E(~)) .  (2) 

A point z~Z such that #({z})>= 2 is called a multiple point of the realization 
#. In this paper we shall be dealing exclusively with simple processes, that is, 
processes having almost surely no multiple points. Accordingly, every re- 
alization #, except for a set of P-measure zero, can be identified with its support 
(a countable set without accumulation points), each point of which carries a 
mass equal to one. 

I f f  is a function on Z h of the tipe described above, then ~)(#)=/x|  is the 
sum of the values f ( z l ,  z2,.. . ,  Zh) over the set of all h-tuples (zl, z2,...  , zh) formed 
from the "points" of the realization/x. We consider two particular cases: 

(a) h=  1; then ~r is the sum of the values f (z)  over the set of all 
points z of the realization #; 

(b) h = l  and f =  1A=the indicator function of a bounded Borel set A c Z ;  
then ~A(/x)= ~l~(/x)=/~(A) is the number of points of/x falling into A, and 

v(1)(A) = E(~A) =- ~ #(A) n(dlx) 
~a 

is the average number of such points, i.e., v (~) is the intensity measure of P. 
Returning to the random process described in the preceding section, since 

each manifold of the family under consideration can be identified through a one 
to one correspondence with the ordered set z=(H,u,_  1, ...,ua,p), mathemati- 
cally we are dealing with a point process in the locally compact space Z = R "  
x S"- ~ x ... x S 1 x ~ and the assumptions we made in that section imply that 

the first moment measure v (~) of this point process is given by 

'1 
v(1)(dz)- 0 ,_ 1... 01 dH du,,_ 1.-. dul Q(dp) (3) 

where 2 is a positive constant and dH=dx  1 ... dx, is the volume element of R". 
Let us prove this fact. 

Recalling that N(A) denotes the number of points H within the Borel set 
A c R" and taking into account that EN(.) is a measure in R", our hypothesis (i) 
of Sect. 3 entails the equation 

EN(A) =,1 V(A), 

where ,t is a positive constant and V(A) the volume of A. 
Let us consider a rectangular set A x B ~ Z ,  where A c R "  is bounded, B 

= B,_ 1 x . . .  x B 1 x B 0 with B k c S~(k = 1,2 .. . .  , n - 1 ) ,  B 0 c ~ and all sets involved 
are Borel sets. To compute the conditional expectation of the random variable 
~A• (see notation above) given that N(A)=m, let us write z 1, . . . ,z  m to denote 
those points of the realization whose projections on R" fall into A. Setting zj 
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=(Hi ,  o)s), where HsmA and cojeS n- 1 x ... • S 1 • ~, we have 

~" --1B((.O1)+." + 1 B((-Om). CaA x B - -  

Hence, taking expected values 

E(~_A • BIN(A) = m) = m Pr { ooj~B}, 

that is 

E ( ~  =IN(A)) = N(~) j" dun_ ~ du~ 
B 0._1 ""01 Q(dp) 

and taking expectations again in the last equation, we get 

'E;AxB = v(1)(A • B ) = )  V(A) d u n _  l . . .  - 

B On--1 "'" O1 

2 
- - O n  1 "'" O1 A x B  ~ dHdu" -* ' "du lQ(dP)  

which proves our assertion. 

Remark. For  brevity of notation, we shall occassionally use the symbol dz 
instead of the strictly correct ones r or dr 

For  our next computations it is of the utmost importance to observe that the 
measure (3) can be written in the form 

2 
dv (~) dKQ(dp) (4) 

0,_1 ... 01 

where dK =dHdu,_  1 ... dul is the so called kinematic density of integral geome- 
try [10, Chap. 15] which, as is well known, is the unique density, up to a constant 
factor, which is invariant with respect to the euclidean motions of R n. 

5. Mean Values of  Intersections 

Assuming first that all the manifolds z of our family as well as the set A c R n are 
bodies, we regard the function f defined on Z by the formula f ( z ) = z ( A ~ z  ). 
Then, the random variable ~I which we call X(A) is the sum 

X(A) = F~ x(A ~z) (5) 

where summation extends to all bodies z of the realization. 
To compute the expected value of (5) we have the formula 

EX(A) = v(1)(f) = ~ f dv (1~ = ~ z(A ~z) dz 

- - O n _  l . . .  0 1 ! Q(dP) ~ Z(A~z)dK" 
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On the other hand, according to the kinematic fundamental formula of 
integral geometry [10, formula (15.36)], the value of the last integral on the right 
hand is 

01"'" On-- 2 IOn-1 Z(A) W(p) -Jv On_ 1 Z(P) V(A) 

+(1/,) i+1 i=0 

Hence 

I- 
 X(A) [z(A) E(V) + E(X) V(A) 

+(1/nOn--1) i= 0 (i+ 1) Mi(A) E(M'-r (6) 

Since the Euler-Poincar6 characteristic of a convex body equals one, if we 
assume that all the bodies involved in the present context are convex, then X(A) 
represents the number of bodies of the realization which intersect with A and 
formula (6) becomes 

_ n~2 y/ 
EX(A)=2[ V(A)+E(V)+(1/nOn 1) i=0 ( i+  1) Mi(A)E(Mn-i-2)] (7) 

Let us consider some particular cases of (7): 

(a) For  n = 3, the integrals of mean curvature of an arbitrary convex body K 
are Mo(K)=F(K)=surface area of K and Ml(K)=M(K)=integral of mean 
curvature of the boundary of K, so that in this case we have 

EX(A) = ;~[V(A) + E(V) + (1/4 re) F(A) E(M) + (1/4re) M(A) E(F)] (8) 

where F = F(,o) is the surface area of any body of the family which corresponds 
to the value p of the shape parameter  and E(F) = ~ F(p) Q(dp). 

(b) For  n = 3, if each manifold z is a convex plate we may consider it as a 
flattened convex body, and we only have to insert the values F = 2 f = t w i c e  the 
are of the plate and M = (~z/2)u, where u = u(p) is the perimeter of z, to get the 
formula 

EX(A) = 2 IV(A) + (1/8) F(A) E(u) + (1/2 n) M(A) E(f)] .  (9) 

(c) For  n =  3, suppose that each manifold z is a linear segment of length s 
= s(p). If we think of each segment as the limit of a narrowing convex plate, we 
may insert the values u=  2s and f =  0 in the above formula and we obtain 

EX (A) = 2 V (A) + (2/4) F(A) E(s). (10) 

(d) For  n=2 ,  the integrals of mean curvature of a plane convex set K are 
M o(K ) = u(K)= the perimeter of K and M I(K ) = 2~z, thus 

EX(A) = 2I f (A)  + E(f) + (1/27z) u(A) E(u)] (11) 
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where f=f(p) is the area and u = u(p) the perimeter of z, while f(A) denotes the 
area of A. 

(e) For  n = 2  and each z a linear segment of length s =s(p), by inserting in (11) 
the values f = 0  and u=2s, we obtain 

EX(A) = ; f (A)  + (;/~z) u(A) E(s) (12) 

in agreement with [-8]. 
Once more we emphasize that for the validity of the last formulas (7) . . . .  , (12) 

all the manifolds involved must be convex. 
Turning back our attention to a process of (not necessarily convex) bodies in 

R' ,  we fix a number  q in the set { 1 , 2 , . . . , n - i }  and consider the function f 
defined on Z by f(z)=Mq_ l(Ac~z), where A is some fixed body. Then (y is the 
random variable Yq_ I(A) defined by 

~_ I(A)= ~mq_ I(A ~z) (13) 

with summation extended over all bodies z of the realization (we complete the 
definition by writing M~_ 1(0) = 0). 

To compute the expected value of (13), we have 

E Yq_ l (A)= ~ f dv(1)= S M q_ l (Amz) dz 
2 

-0 ._1. . .  O~ S Q(dp) ~ Mq_ ~(Amz)dK. 

On the other hand, the formula (15.72) of [10] gives for the last integral the 
value 

o._ 2... o i [o._ 1M~_ I(A) V(p) + 0._ 1 V(A) M~_ l(p) 

n--2 02n-h--qOh 
q (n-q)Oq -1 ~ Mh+q-,,(A)M,-2-h(P)], 

On--q-1 h=n-q (h'J-1)On-hOh+q-n 

where, for q = 1, the last sum must be deleted. It follows from here that 

Y~_ I (A) = ~ [M~_ 1 (A) E(V) + V(A) E(M~_ 1) E 

q;1) 
q O,--~-q51h=~-q (h+l)O,_hOh+o_, M"+q-'(A)E(M'-2-h)] " (14) 

We consider two particular cases of the preceding relation for n = 3: 

1. q = l .  Then Yo=~Mo(Amz)=total surface area of all sets Amz; Mo(A ) 
=F(A) = surface area of A;Mo(p)=F(p)= F = surface area of z, and formula (14) 
yields 

EYo(A ) = 2[F(A) E(V) + V(A) E(F)]. 
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In particular, if the manifolds are plates with area f=f(p),  then Yo(A) 
=2V2(A)=twice the total area within A of all plates z which intersect with A, 
and we only have to write V=0, F = 2 f  in the last relation to get EV2(A ) 
=2V(A) E(f). 

2. q=2.  Then YI(A)=~MI(Ac~z) and we obtain 

E Y~ (A) = 2 [M ~ (A) E(V) + V(A) E(M~) + (re2/16) F(A) E(F)]. 

6. Manifolds of Dimension Less Than n 

Let A =A q be a q-dimensional compact manifold in R" and let us suppose that 
all manifolds z are compact manifolds of dimension r, where r<n and r+q 
- n  >0. We shall denote by ar(M ~) the volume of the r-dimensional manifold M ~. 
For  a manifold M of dimension zero, ao(M) denotes the number of points of M. 

If f is the function defined on Z by the formula f(z)=a~+q_,(A c~z), then ~y 
(see the definition in section 3) is the random variable 

where the summation extends over all manifolds z of the realization. Its 
expected value is 

EV~+q ,(A) = E((r = v(1)(f) = ~ at+ q_ ,(A~z) dz 
2 

! Q(dp) S  z)dK. 
O,_ O1 1 - "  

Now, the formula (15.20) of [10] gives for the last integral on the right hand 
the value (0,... 01) O~+~_,(Oq Or)- 1%(A) a~(p), where o-r(p)= a~(z). Hence 

EV~+q_,(A) = 2 O, O~+q , aq(A) E(a~). (15) 
0 90~ 

If r + q - n  = 0, then V o denotes the number of intersection points of A with 
the manifolds of the realization. 

Formula (15) contains many particular cases which may be useful in practi- 
cal situations of the type encountered in stereology. Let us consider some 
examples. 

(a) I f  q=n, we get EV~(A)=2V(A)E(ar), where V~(A) denotes the total r- 
dimensional volume within A of all manifolds z which intersect with A. Recall 
that the manifolds z have dimension r. 

(b) If n = 3, q = 2, r = 1 (A is a surface of area F(A) and z are curves of length 
L(p)), then Vo(A ) denotes the number of intersection points of A with the curves 
of the realization, and (15) gives EVo(A ) = (2/2) F(A) E(L). 

(c) If n=3,  q--2, r=2 ,  (15) gives EVI(A)=(2/4)uF(A)E(F), where VI(A ) is the 
total length of the intersections of the surface A with the surfaces of the 
realization (of area F--F(p)). 
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7. Mean Values of Multiple Intersections 

Suppose that all manifolds z of our process have the same dimension r. We shall 
make an additional assumption concerning the structure of the h-th moment  
measure of P, namely, we assume that if A 1 A2, . . . ,A  h are disjoint Borel sets in 
R' ,  then we have 

Ef  N(A 1)... N(A,,)~ = EN(A 1)... EN(Ah). (16) 

For  example, (16) is satisfied in the case of the Poisson process as defined in 
the next section. 

Recalling that ai(M i) denotes the volume of the i-th dimensional manifold 
M i and assuming that q + r h - n  h > 0, we wish to compute the expected value of 
the random variable 

W ( i )  = E Oq + rh- nh( A OZ1 (3... (3Zh) 

where A is a compact q-dimensional manifold and summation extends over all 
sets {z 1 . . . .  , Zh} formed by h different elements of the realization. 

To this end, we start by considering the mappings n 1 and n 2 defined on Z h 
by (H, u,_ 1 . . . .  , u 1, p) ~ H and (H, u,_ 1 . . . . .  u I, p) ~ (u,_ 1 . . . .  , ul) respectively. 

Let D l be the closed subset of Z h formed by all points (z> z 2 . . . . .  Zh) such that 
n l(zl) = n i(z ) for some pair of indexes i and j such that 1 <=i<j < h and similarly, 
let D 2 be the closed subset of Z h formed by all points (Zl,. . . ,  Zh) such that ZC2(zi) 
=n2(z )  for some pair of different indexes i and j. We write D = D 1 u D  2 and 
define the function f on Z h by 

=~aq+rh_nh(A(3zi(3...(3Zh) outside D 
f ( z l ' " " Z h )  (0  on D. 

It is clear that almost surely 

W(A)-!~(h) 
- h !  ~f ' 

the factorial in the denominator  accounting for all permutations. 
We postpone the proof  of the following facts: 

(a) The restriction of v (h) to the open set Z h - D  equals the restriction of the 
h-fold product r174174162  to the same set; 

(b) v(1)|174 

Taking them for granted, the computat ion runs as follows: 

=h-1 ~ fd(v(1)| ~ f ( z1 '  "'Zh)dZ* dZh 
�9 Z h _ n  "'" " h ! z  h . . . . .  
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where dz i = r = 2(O,_ 1 ... O1)- 1 dK i Q(dpi) ' i=  1, 2 . . . .  , h. Hence 

2h 

E W(A) - h ! (01 . . .  On_ 1) h ~ Q(dp 1) "''~ Q(dph) 

• ~ aq + rh- nh( A C~ Z 1 ~ " "  ~ Zh) dK 1"" dKh" 

Now, the formula (15.22) of [10] gives for the last integral the value 
(01 . . .  0 , )  a O q +,a_ ,h(O q oh )-  1 aq(A) ar(p , ) . . .  a~(Ph), where a,(pi ) = a~(zl). Therefore 

2h h 
O, Oq+~h_,h aq (A) [E(a,)] h. (17) W(A)-h ! O.Or 

Next, we give the proof of (a) and (b) in the case h = 2. 
Let U I = A  1 x B  1 and U2=Az• where A 1 and A z are disjoint bounded 

open sets in R n, while B, and B 2 a r e  rectangular subsets of S n- 1 • ... • S 1 • ~. 
To compute the conditional expectation of y(2) given that N ( A 1 ) = m  and ~ U  1 X U2 

N(AE)=p,  let us write z j=(Hj ,  c@ and Zk=(H~,co~) to denote the points of the 
realization # such that H j e A  1 (1 <=jNm) and H~eA2(1 <k<p) .  Then 

(~•  v2(#)-- (v~(#) ~v~(/~) = { 1B~(O1)+.'. + 1B~(C0m)} { 1B~(O'0 

+. . .  § l~(cop)} -- 1B~(co~) 1,~(Cok). 
j = l k = l  

Hence 

E(~} x v2tN(A 0 =m, N(A2)=p)=rap Pr(B 0 Pr(B2) 

where Pr(B)--~ (O,_ 1... O1)- 1 dun_ 1 ... dul  Q(dp). That is 
B 

E ( ~  • v21N(A1), N(A2) ) = N(A 0 N(A2) Pr(B1) Pr(B2). 

Taking expected values, we get 

v(z)(u1 • U2) = E(~(v2~ • v2) = E(N(A 1) N(A2)) Pr(B0 Pr(B2) 

= {EN(A 1) Pr(B1)} {EN(A2) Pr(B2)} 

~--- V(1)(U1) v(1)(U2) = V (1) (~ V(1)(UI x U2) 

which proves (a). 
As for (b), we may assume without loss of generality that each manifold z is a 

point in R n, so that Z =R" and D i becomes the diagonal of Z 2. 
If E is a bounded subset of DI, let E'= {z: (z, z)eE}. Then, from the fact that 

r assigns the value zero to each set consisting of a single point, 

V(1) (~ v(1)(E)-~-~ v(1)(Ez) v(1)(dz)= ~ v(1)({z}) v(1)(dz)=0. 
E' 

Hence v(1)| and similarly for D 2. Thus v(1)| and the 
proof of (17) is complete. 
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Examples. 1. Assuming that n = 3 and that each z is a surface, we may consider 
two particular cases: 

(a) q=3 ,  h=2 .  Then W(A) represents the total length within A of all 
intersections of two different surfaces of the realization and its expected value is 

E W(A) = (7c 22/8) V(A) [E(f ) ]  2 

where f=f(p)  denotes the surface area of z. 
(b) q = 3, h = 3. Then W(A) becomes the number of intersection points within 

A of every three different surfaces of the realization and its expected value is 

E W(A) = (n 23/48) V(A) [E( f ) ]  3. 

2. Assuming that n = 2 and that each z is a linear segment of length s(p), we 
consider the case q=2 ,  h = 2 ;  then W(A) is the number  of segment-segment 
crossings within A, and we get the result of Parker and Cowan [8]: 

E W(A) = (22/~) F(A) [E(s)] 2, 

where F(A) denotes the area of A. 

8. Processes of Poisson of Convex Manifolds 

If  in addition to the previously stated hypothesis, the point process (i) of Sect. 3 
satisfies the following two conditions: 

(a) For  every finite set of disjoint Borel subsets of R n, say {A1,A2, ...,Ak}, 
the random variables N(A,),..., N(Ak) are mutually independent, 

(b) For  every bounded Borel set A cR  n, P{N(A)=m} =[2V(A)]"(m !)-1 exp 
( - 2  V(A)) (m = 0, 1, 2,...) then we say that our process of manifolds P is a Poisson 
process of intensity 2. 

In this section we assume that both (a) and (b) hold and that the arbitrary set 
A as well as the manifolds z are convex. 

Under these assumptions, it is easy to see that the random variable X(A) 
= t h e  number  of manifolds which intersect with A has a Poisson distribution 
with the expectation given by (7). Calling D the distance from the origin to the 
nearest manifold of the process, if we take for A the ball of radius r centered at 
the origin, then P{D > r} =P{X(A)= 0}. But for this particular A, we have 

V(A)=(O n 1/n)r ~, Mi(A)=On_ir"-i-~(i=O, 1,.. . ,n-1) 

so that the expected value of X(A) is the number  

t n ni__~o i + 1  

Hence, under the Poisson assumption, 

P{D > r} = e x p ( -  0) 
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with 0 given by (18). I t  follows f rom here that  the p robab i l i t y  densi ty  funct ion of 
the r a n d o m  var iable  D is 

[ n-2 / n - - l '  n i l  
2 e x p ( - 0 )  O,_,r"-l+i~=o l i + l ) E ( M , _ i _ 2 l r - - 2  , r > 0 .  

F o r  the o rd ina ry  space (n = 3) we have  three possibi l i t ies :  

(a) Each  mani fo ld  z is a convex body.  Then Mo(z)=F(p)=surface area  of z, 
Ml(z)=Ml(p)=first integral  of  mean  curva ture  and O=214nra/3+E(V) 
+ E(M i) r2 + E(F) r]. 

(b) Each  mani fo ld  z is a convex plate.  Then  Mo(z)= 2f, where f= f (p )=  area  
of z; Ml(Z)=(n/2)u, where u=u(p)=perimeter of z and  0=214nr3/3 
+ (n r2/2) E(u) + 2rE(f)]. 

(c) Each  set z is a l inear  segment  of length  s=s(p). Then Mo(z)=Mo(p)=O, 
M t(z ) = M l(p ) = n s and ~b = 2 [4n  r3/3 + 7c r 2 E(s)]. 

References 

1. Berman, M.: Distance distributions associated with Poisson processes of geometric figures. J. 
Appl Probability 14, 195-199 (1977) 

2. Coleman, R.: The distance from a given point to the nearest end of one member of a random 
process of linear segments. In Stochastic Geometry. Ed. Harding and Kendall pp. 192~-201. New 
York: Wiley 1974 

3. Fava, N., Santal6, L.A.: Plate and line segment processes, J. Appl. Probability 15, 494-501 (1978) 
4. Groemer, H.: Eulersche Characteristic, Projectionen und Quermassintegrale. Math. Ann. 198, 

23-56 (1972) 
5. Hadwiger, H.: Vorlesungen tiber Inhalt, OberNiche und Isoperimetrie. Berlin-Heidelberg-New 

York: Springer 1957 
6. Krickeberg, K.: Moments of Point-processes. Stochastic Geometry. Ed. Harding and Kendall, 

pp. 89-113. New York: Wiley 1974 
7. Lefschetz, S.: Introduction to Topology. Princeton University Press 1949 
8. Parker, P., Cowan, R.: Some properties of line segment processes. J. Appl. Probability 13, 96- 

107 (1976) 
9. Santal6, L.A.: Integralgeometrie 5, Exposes de G6om6trie. Paris: Hermann 1936 

10. Santal6, L.A.: Integral Geometry and Geometric Probability, Encyclopedia of Mathematics and 
its Applications. Reading, Mass.: Addison-Wesley 1976 

Received February 24, 1978; in revised form March 17, 1979 


