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Summary. We study partial sums of a stationary sequence of dependent 

random variables of the form W , -  ~(Sk). Here S k = X  1 +. . .  + X  k where the 

X i are i.i.d, integer valued, and ~(n), n~;g are also i.i.d, and independent of 
the X's. It is assumed that the X's and ~'s belong to the domains of 
attraction of different stable laws of indices 1<c~<2 and 0 < f l < 2 .  It is 
shown that for some 8>�89 n-~WE~tl converges weakly as n ~ o o  to a self 
similar process with stationary increments, which depends on ~ and ft. The 
constant 6 is related to ~ and fl via ~5 = 1 - c~- 1 + (~ fl)- 

1. Introduction 

As a starting point for our theory consider the following simple problem of 
" random walk in random scenery ''1. Let S, =X1 + X  2 + ... + X , ,  n > 0  be simple 
random walk on 2~, starting at S o = 0, and define the random scenery ~(x), xe2g, 
as a sequence of i.i.d, random variables (independent also of the random walk), 
taking the values +1 with probability 1/2. Our problem then concerns the 
asymptotic behavior, as n--*~,  of the "cumulative random scenery" defined by 

G= (1.1) 
k ~  0 x e Z  

Here N,(x) is the number of visits of the random walk to the point x in the time 
interval [0, hi. The first sum in (1.1) exhibits W,, as the n-th partial sum of a 
stationary sequence of random variables with mean 0. Next we calculate its 
variance. 

* Supported by the NSF at Cornell University 
1 For this name we thank Paul Shields. It suggests less interaction between the random walk and its 
surroundings, than is present in the model known under the name " random walk in random 
environment"  [-ll] 
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xc2g 

x~2~ x e Z  k -  

x e ~ k = O  l=O k = O / = 0  

k = 0 / = 0  

(1.2) 

Since P[S2,=O]~(rcn ) ~ as n-~oe, one obtains the asymptotic behavior 
aa(Wn)~Constant.n~. That suggests looking for the limiting distribution of 
Wn/n ~, and finally for a weak limit of the sequence of stochastic processes 

D t - n  W,,, t>O, n =  1,2, 3, (1.3) 

where W, is defined as the linear interpolation 

W = W , + ( s - n ) ( W , + I - W , )  when n<_s<_n+l. (1.4) 

We shall show that {D~} indeed converges weakly, in C[0, ~),  to a process At, 
t>0 ,  defined by (1.5) below. Intuitively this process may be described as the 
process obtained from the random walk in a random scenery when 2g is changed 
into IR, the simple random walk {S,} into a Brownian motion {b~}, and the 
random scenery {~(x)} into a white noise process w(x), independent of {b~}. Then 
intuitively 

t 

At=Sw(b,)ds , t>_O, 
0 

which does not make sense. But imitating the last term in (1.1), and replacing 
N,(x) by L~(x), the local time at x of the Brownian motion bt, we get 

~t= ~ Lt(x)dZ(x), t>=O. (1.5) 
- o o  

This does make sense as a stochastic integral if Z(x) is a Brownian motion with 
time - o v < x < o o  (or we can use a pair of independent Brownian motions 
Z+(x), Z ( x ) ,  x > 0 ,  to write the integral (1.5) as in (1.21) below). 

The asymptotic behavior a2(W,)~const .n ~- suggests strong dependence be- 
tween remote terms of the stationary sequence ~(Sk), k>0.  Therefore it is no 
surprise that the limit process A t is not Gaussian. (As we shall see the distribu- 
tion of A t for each t is a convex combination of Gaussian distributions with 
mean 0 and variance a 2 - the probability measure governing ~2 being that of the 

integral S L2(x)dx.) On the other hand A t evidently has the following two 
- - o o  

properties: 
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(i) A t has stationary increments, 
(ii) A t is self-similar, i.e. there is an index c~>0 such that A~ is equivalent to the 

process c~At, t >O 

Under the influence of questions in theoretical physics there is presently 
great interest in finding all processes with the two properties (i) and (ii). If one 
replaces the simple random walk S, by another random walk, and the random 
scenery ~(x) by another sequence of i.i.d, random variables, and if in this new set 
up the analogue of D~' again converges, then the limit will automatically have 
properties (i) and (ii) (cf. Lamperti [12]). By carrying out this program we shall 
obtain a large class of self similar processes At with all indices of similarity 3 in 
the range � 89  ~ .  These do not seem to be contained in the lists of Lamperti 
[12J, Dobrushin [41, Dobrushin and Major [5], or Taqqu [16]. 

For the random walk we shall take the X~ satisfying 

EX~ = 0, (1.6) 
1 

P i n - ;  Sn< x] ~ F~(x), (1.7) 

where F~ is a stable distribution with index 1 <c~<2. F~ is not necessarily 
symmetric, but in view of (1.6) it has zero mean. When ~<2  its characteristic 
function must be of the form 

~0(0) = exp [ -101~(C~ + i C 2 sgn 0)] (1.8) 

7s 
for some 0<  C~ < o% IC~ ~ Ca[ < t a n ~ .  From the known characterization of the 

domain of attraction of F~ (Gnedenko-Kolmogorov, Th. 35.2 [91 or Feller, II, 
Chap. 17 [6]) it follows that, for ~<2, (1.7) and (1.8) are equivalent to (1.6) and 

lim p~ P[X~ > p] : D  1 
p ~ o 0  

lira p=P[X 1 < - p ]  =D2, (1.9) 
/ )~OC 

where 

sin t 
C 1 =(D 1 +D2) j ~g-~ dt 

o t 

C 2 =(D 1 -D2) 
1 ~ C O  S t 

o t~ dt. (1.10) 

In turn (1.6), (1.9), and (1.10) are equivalent to 

1-(J(O)~lOl~(Cl +iC2sgnO), 0 4 0 ,  (1.11) 

where ~ is the characteristic function of X 1. When c~ = 2 of course D1 = D 2 = 0 in 
(1.9) while C2=0  in (1.11). 

Concerning the random scenery {~(x)}, xe2g, we shall assume that 
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lim P { (k) < x = Ge (x), (1.12) 
n - + o o  

where Gp is stable of index 0 < fl ~ 2, and with characteristic function 

((0) = exp [ -[0[B(A 1 + iA 2 sgn 0)1 (1.13) 

for some 0 < A  1 < ~ ,  IA[ 1A21 ~tan  ~fl. Note that (1.12) and (1.13) imply 

E[~(x)] =0  if f l> l .  (1.14) 

For fl= 1 we impose an additional symmetry condition (stronger than (1.12) and 
(1.13)), namely that for some K 

tEf~(x); l~(x)l<P]i<K<c~ for all p>0.  (1.15) 

Note that just as in (1.9), if fi~e 1,2, then (1.12) and (1.13) are equivalent to 

lim pe p[{(0) > P] = B 
o~o (1.16) 
lira J P [{ (0 )  =< - p] = B 2 

for suitable B,, B 2. If f l= 1, then (1.12) and (1.15) imply 

lira pP[{(0)>p]  = lira pP[{(0)< - P ]  = I A ~  �9 (1.17) 

Finally, if ).(O)=E exp[i 0 ~(x)], then (1.12) and (1.13) are equivalent to 

1-,~(O)~101~(A~ +iAasgnO), 0 ~0 .  (1.18) 

It would be possible to weaken the above hypotheses concerning the random 
walk and the random scenery by allowing slowly varying functions in (1.7) and 
(1.12). However the computation then becomes much more elaborate while no 
new limiting processes would be obtained. 

To describe the results consider two right continuous stable processes 
{Z + (t); t > 0} and {Z_ (t); t > 0} both with characteristic functions 

g[e i~ �9 (~ 1 = exp [ -  tlOl~(A 1 + iA2 sgn 0)1. (1.19) 

Let { Y(t); t > 0} be a right continuous stable process of index ~ with characteris- 
tic function 

E[e ~~ = exp[ - t]O)~( C~ + i C 2 sgn 0)]. (1.20) 

We assume these processes to be defined on one probability space, and to be 
independent of each other. Then Z~(t) is also independent of Lt(x), the local time 
at x of Y('). Since x-*L~(x) is continuous with probability one ([2,71) and 
Z , (x )  is a semimartingale ([13] Sect. IV 15) the stochastic integrals 

o o  

= j a z  + + c , ( -  a z _  (1.21) 
0 0 

H. Kesten and F. Spitzer 
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can be defined as in [13], Chap. IV. (see also proof of Lemma 5). These integrals 
will turn out to be the proper generalizations of (1.5). 

Now let W n be the cumulative sums in (1.1) and W~ for real t > 0  the process 
defined in (1.4). Select a random walk and random scenery subject to the 
assumptions in (1.6) through (1.18), and define Z_+(.), Y(.) and hence {At} with 
the parameters ~,/~, A~, A 2, C1, C 2 in (l.6)-(1.18). Then with 

1 1 
D~=n -~ W,r, 6 = 1 ~ (1,22) 

we shall prove the 

Theorem 1.1. {Dr; t>0}  converges weakly in C[O, so) to the process {At; t>0}  
defined in (1.21). Thus this process has a continuous version which is o f  course self  
similar with index 3, and has stationary increments. 

Remarks. 1. In view of (1.22) we obtain a limiting process A t for any (5 in the 
semi-infinite interval (�89 2) .  But each 6 can in general be obtained from many 
different pairs (~,p), and in general the limiting processes are different for 
different choices of parameters. E.g. it follows from (3.1) that 

oo 

so that two processes A t can be the same only if they correspond to the same/~, 
A2/AI ,  and of course also the same c~. For f14=l this means that they must 
correspond to the same ,. F o r / q =  1, however, 6 =  1 for all c~(1, 2]. In this case 
A t has exactly the same marginal distributions as a Cauchy process tlt with 

EEe ~~ = exp { - tlOI (A ~ + i A 2 sgn 0)}. 

Indeed, assume for simplicity that the ~(x) have a Cauchy distribution. Then 
WJ(n + 1) has exactly the same Cauchy distribution for each n, quite regardless 
of the distribution of the random walk S,. Nevertheless A t cannot be a Cauchy 
process, because A t has a continuous version. We believe that A t processes with fl 
= 1 but different c~ are different processes, even though their one-dimensional 
marginals coincide. 

2. Until now we avoided discussing the situation when the random walk is 
asymptotically stable of index c~ in the range 0 < c~ < 1. The case c~ = 1 is the most 
difficult. Let fi = 2 and a = 1, in fact let {Xk} be i.i.d, symmetric Cauchy random 
variables. Then we believe that 

1 
D r -  n ~ - ~ n  W"t ~Ar  (1.23) 

where A t is ordinary Brownian motion. A similar result should hold when W, 

-i - ~(Sk), where Sk is simple random walk in the planar lattice Z2- 
0 

3. The case 0<c~< 1, however, is easy and has been treated before (see [14], 
p. 53, problems 14, 15, for the case ~(x)= __+1 with probability�89 and S, any 
transient random walk on 2g. Indeed we get, when c~< 1, fi arbitrary, 
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i [ . t ]  

Z,(t)-= n # ~ ~(Sk) ~ a stable process with index ft. (1.24) 
k = l  

Here is a sketch of the proof that the limiting characteristic function of )G(t) in 
(1.24) is e x p [ - t l O f c ( A  a +iA 2 sgn 0)] where c is a positive constant depending 
on fi and on the random walk S,. To simplify calculations we assume that the 
random scenery {(x) has exactly the characteristic function e x p [ - 1 0 f ] .  (A 
similar argument will show that the increments of )G(t) are independent in the 
limit, so that (1.24) holds.) 

We may write 

1 

x 

Eexp[i)~,(t)]=Eexp[ lOf ~n_~x Nf, tl(x)] n 

Therefore it will suffice to show that 

1 # 

r t  X 

This follows from the identity 

~ 
(1.25) 

and the fact that we can apply Birkhoffs ergodic theorem to a slight modifi- 
cation of the right hand side in (1.25). Replace Nk(x ) by No~(x ) defined as the 
total number of visits to x of a random walk S,, with time - o o  < n < 0% S o = 0, 
and {Sk, k<  - 1 }  the reversed random walk of {Sk, k >  1}. Then, in view of c~< I, 
which implies that the random walk is transient, it can be shown that the error 
due to the replacement of Nt,tl(Sk) by N~(Sk) contributes nothing in the limit. 
(See [14], pp. 38-40 for similar calculations.) The sequence N~(Sk) is stationary 
and ergodic. Hence the limit of (1.25) is 

lim - )_s N~- 1(5,,2)=tEN~- ~(0)=ct. 
n ~  Kl k =  O 

In the next section we derive some useful information concerning the 
asymptotic behavior of the sequence of occupation times N,(x), as n ~ oo. Then, 
in the last section, this information will be used to complete the proof of 
Theorem 1.1. 

2. Properties of Occupation Times 

Let Y(t) be a right continuous stable process of index ~ with characteristic 
function 
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E[e i~176 = exp [ - t] 0[~( C 1 + i C 2 sgn 0)]. (2.1) 

Then the process 

1 

n ~ SE, t~ , t > 0  (2.2) 

converges weakly in D([0, oo)) to the process Y(t), t>O, in (1.20) (see [8], 
Theorem 2, p. 480). We shall use this fact to derive the convergence in distribu- 
tion of certain functionals of the process (2.2). 

Consider the occupation times Nn(x) of the random walk, as defined in (1.1) 
and their linear interpolation 

X~(x)=N,(x)+(s-n)(N,+l(x)-N,(x)) ,  n<_s<_n+l. (2.3) 

For - ov < a < b < Go we set 

Ttn(a, b) = 1 ~ Nnt(x) �9 (2.4) 
H 1 

a < n  ~ x < b  

This is the fraction of time, during the time interval [0, n t], that the process in 
(2.2) spends in the interval [a,b). The analogue of this quantity for the process 
Y(.) is the occupation time of [a, b) during [0, t], i.e., 

-i At(a , b ) -  1Ea.b~(g(er)) d~. (2.5) 
0 

It is known [2, 7], that the process Y(.) possesses a local time Ldx ) which is 
jointly continuous in t and x, such that A~ as defined in (2.5) is a.s. equal to 

b 

A~(a, b) =S Lt(x) dx. (2.6) 
a 

The weak convergence of (2.2) to the process Y(.) implies that the distribution 
of (2.4) converges to that of (2.5). To see this we merely have to show that the 
map Y(.)  --, At(a , b) is continuous in the Jl-topology on D([0, T]) for any ~ t at 
almost all sample points of the Y-process. But if I~(.)--* Y(.) in D([0, T]) then 
([1], Sect. 14) there exist continuous increasing one to one maps 2, from [0, T] 
onto itself such that 

sup J Y,(2,(s))- Y(s)[ ~ 0 
O < s < T  

and such that each 2,, is a Lipschitz function, absolutely continuous and 
satisfying 

s up  f ,~;(~)-  II ~ 0, 

where the last sup is only over those s~[0, T] at which 2n is differentiable (but 
this only excludes a Lebesgue null set). Consequently, if A~ corresponds to Y., 
then 
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t 

A](a, b) = ~ lt,,, b)(Y,.,(s)) ds 
0 

and 

At(a, b) - ~ lt,:,,b)(Y,.,()L,,(S)) as = ~ lv,,b)(Y.(s)) 1 
0 0 

Furthermore, 

1] 
2'.(2~ l(s))- ds +OI)~.(t)-t[ ~0 .  

t 

l[a, b)(Yn(/~n(S)) d s  --~ ~ l [ a  ' b ) ( Y ( s ) )  d s  
o o 

whenever Y(s)@ a, b outside a Lebesgue null set. The latter is true for almost all 
sample points of the Y-process by virtue of (2.6). This proves the required 
continuity of the map Y(" ) --* At(a, b) and hence the convergence in distribution 
of (2.4) to (2.5). More generally, the joint distribution of 

T~(al,bi) , l<i_<k, (2.7) 

converges to the joint distribution of 

At~(al, bi), 1 <_ i < k. 

For each x e ~  we define 

(2.s) 

~(x) = inf{n > O: S, = x}. 

Lemma 1. For all xe~ ,  r>O, s>O, 

(2.9) 

P[N~(x) _>_ r] < P[Nts +11(0) > r] P[v(x) < s + 1], (2.10) 
1 

P[N,(x)>O for some x with ]x[> AsT] <g(A) for s> l, where e(A) ~ 0  (2.11) 
as A --*o% and s(A) is independent of s. 
There exists a constant C 3 > 0  such that 

V~ v v v_ 
e [ N s  . c 3  s ~, s --, oo, v = 1, 2, 3 , . . . .  (2.12) 

Finally, for some C 4 > 0  and all s> l, 
1 9 _ _  

~N~(x)  ~ c4  s 
xET/ 

Proof. One has 

I s+  11 [ s +  11 

N~(x)< ~ I[z(x)=j] ~ I[S,,=x], 
j=O m=j  

Hence 
[s+11 ( is+l] ) 

(2.13) 



A Limit Theorem Related to a New Class of Self Similar Processes 13 

Now it is clear that {z(x)=j} is measurable with respect to 

q6j=a{X~,X2 ... .  , X  j}, 

while on {z(x)=j} 

(2.14) 

2 I[S~=x]= ~ I X,=O . (2.15) 
m = j  m=O i = j + l  

The right hand side is independent of ~j and has the same distribution as 

[ s + l ] - j  

I[Sm=O]=N[.~+ ~I_j(O)< N~,+ I](O). (2.16) 
m~O 

It follows from (2.15) and (2.16) that 

[s+ 2] 

P[N~(x)~r]<= ~ P['c(x)=JlP[N[,+ll(O)~rl, 
j = O  

which is (2.10). 
As for (2.11) note that Ns(X)=O unless S, =x,  and afort ior i  [S,] > [xl, for some 

< s +  1. Thus the left hand side of (2.11) is bounded by e(A), defined as 

1 

e(A) =sup P[IS, I >As 7 for some n<s + 11 
s_>l 

1 

= sup P [  max IS,I >AsT]. (2.17) 
s > l  n < s + l  

By the weak convergence of (2.2) to {Y(t); t>0},  

1 

l i e  P [  max [Sn[ >As~l =P[sup  Y(t)>A], 
s ~  n < s + l  t<=l 

which tends to 0 as A ~ ~ .  From this one easily deduces that e(A) ~ 0 as A -+ oo, 
and hence (2.11) holds. 

Next (2.12) can be proved from the local limit theorem (see Stone [15]) 

1 

PES =O]~Csn ~, n~oo (2.18) 

either directly or as in Darling and Kac [31. (Actually P [S ,=0 1  has to be 
replaced by P [ S , e = 0 ]  unless the random walk is strongly aperiodic ([14], 
Chap. I)). 

Finally (2.13) follows from (2.18) applied to (1.2). [] 
Now we need some additional notation. Let 

0<rl(x)_-<%(x)<... 

be the successive times at which S, visits x. Thus z~(x)=z(x), and Sn=x if and 
only if n=zk(x ) for some k. For  y4=x, let 
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M~(x, y) = ~ I(S. = y) 
zj(x)<n<zj+ l(X) 

be the number of visits to y between the jth and (j + 1) st visit to x. Also let 

p(x, y) = P[M~(x, y) # 03 

= P [ S n = y  for some n such that z j (x )<n<zj+l(x)] .  (2.20) 

One easily sees from the strong Markov property that p(x,y) is independent o f j  
and a function of y - x  only. In fact ([141, Chap. II and VII) 

p(x, y) = [a(x - y) + a ( y -  x)] 1, (2.21) 

where a(.)  is the potential kernel of the random walk S,, 

a(z)= ~ { P [ S , = 0 ] - P [ S , = z ] } ,  ze~ .  (2.22) 
n= 0  

It follows that 

p(x, y) = p(y, x) = p(O, x - y). (2.23) 

Finally, define the a-fields 

where ~k was defined in (2.14). 

L e m m a  2. 

E[Mj(x,  y)l(Sj(x)] = 1, (2.24) 

E [M~(x, Y)INj(x)] < K, [1 + a(x - y) + a(y - x)]  v-1 (2.25) 

for some constant K v independent of  x, y,j. 

a(z) + a ( -  z),,~ C 6lzl ~- 1, Iz[ ~ oo. (2.26) 

Proof. Again the strong Markov property and the fact that Szj(~)=x show that 
Mj(x, y) is independent of 15j(x) and that 

kit5 "x)" [ 1 - p ( x , y )  if k = 0  
P[Mj(x ,y )=  fl A=~p(x , y ) [1 - -p (y , x ) ]k - tp (y , x )  if k>_l. 

Equations (2.24) and (2.25) are now immediate from (2.21) and (2.23). 
To prove (2.26) observe that (see [141, proof of P28.4) 

1 ~ 1 -  cos Oz 
a ( z ) + a ( - z ) = ~  ~ i - r  dO, z e~ .  (2.27) 

The result (2.26) now follows from (2.27) and (1.11) by standard asymptotic 
analysis. [] 

H. Kesten and F. Spitzer 
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Lemma 3. For some C 7 > O, independent of x, yeT/and s> 1, 
I 1 - 

E[IN~(x) - Ns(Y)[ 2] <= C 7 [-1 + a(x - y) + a ( y -  x)] s ~. 

Proof. It suffices to take for s an integer. Also we only estimate 

E{IN,(x) - N,(y)I 2 I[v(x) < v(y)] }, 

the other half, with x and y interchanged, being analogous. On the set 

{~(x) < ~ 0')}, 
Nn (x) 

N,(x)-N,(y)= E {1- ~ I[Sk--yl} 
j =  1 Tj(X) <k~ 'c j+ 1 (X) A H 

S .  (x) 

= ~ {1-a4j(x,y)}+ Z i[-&=y]. 
j =  i n<k<~:Nn + l(x)(X) 

(Recall that zj(x) < n exactly for j < N,,(x).) Moreover 

o <__ ~ l[-S~ = yJ <= MN,~(x, y). 
n < k < ~N~ +, (x)(X) 

Thus 

E {[N,(x) - N,(y)l 2 I[z(x) < z(y)]} 
(IN~,(x) 2} 

< 2 E l  j~l [1-Mj(x ,y)]  +2E{M~(xl(X,y)} 

([,+1 2} 
< 2 E {  a~* [1 -Mj(x ,y ) ]  I[va(x)<nJ 

(,+1 } 
+ 2E{j~= 1 MZ(x, y)I[zj(x)< n] . (2.29) 

By (2.24) the random variables 

[-1 - Mj(~, y)31 [~j(x) < n] 

have mean zero and are orthogonaL Therefore we can resume the estimation in 
(2.29) to get the upper bound 

n + l  n + l  

2E ~ [-1 - M~(x, y)]2 I[zj(x) <= n] + 2E ~ M 2 I[-zi(x) < hi. (2.30) 
j = l  j = l  

But conditioned on (~j(x) 

El(1 - M j ( x ,  y ) ) 2 [ ( ~ j ( x ) ]  "< E [ ( M j ( x ,  y ) ) e l ( ~ j ( x ) ]  = E[-M2(x, y)]. 

Therefore the estimate in (2.30) is bounded above by 

n + l  

4EM2(x, y) E ~ I[zj(x) < n] 
j = l  
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n + l  
= 4EMZ~(x, y) ~ P f J , ( x )  >j]  

j = l  

= 4EMZ~(x, y) EN,(x) .  

By use of (2.25) and (2.12) we complete the proof of (2.28). [] 

We need one final occupation time estimate before combining the random 
walk with the random scenery. 

Lemma 4. Le t  6 ~ c~ fl" Then 

lim s - ~  N~(x)=O in probability. (2.31) 

P r o o f  By Lemma 1 

v v - s  
E[N2(x)]  < E N ~ +  1](0) = O(s ). 

Thus, also by Lemma 1, 

P[sup s -  O Ns(x ) > 5] 
x 

I 

<P[Ns(x)>0  for some [ x t > A s ~ ] +  ~ l e-~s-V~E[N,~(x)] 
Ixl < A S ;  

L_~6+,,(I_L 
< e(A) + O(s ~ ~)). (2.32) 

c.oose suc  t at 1 cz c~/3 <0, then the last term in 

(2.32) tends to zero as s ~oo  for each fixed e and A. (2.31) now follows from the 
fact that e(A) -+ 0 as A + oo. [] 

3. The Random Scenery 

Let A t be the process defined in (1.21) by means of stochastic integrals. It follows 
from the definition of these integrals that one can write down the characteristic 
function of At, and in fact all joint characteristic functions. We now do so as a 
preliminary to the proof that they are the limits of the joint characteristic 
functions of the processes D~' defined in (1.22). 

Lemma 5. The jo in t  (k - fo ld)  distributions o f  A t are given for  distinct 
t l , t2, . . . , tk > O and 01,02, . . . , Ok elR, by 

k 

E e x p [ i ] ~ = l O j A t ~ ] = E e x p [ _  A ~ l k [~ 

~1 k V k 
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L Jlxt = ~ ~ P Oj dx~du; 
vdR u~P. + j 

OjLtj(x ) sgn k ~ ~ fl (j~lOjLt~(x))dx~dv]exp(-AlU-iA2v). (3.1)  
-oo  j = l  

Proof. By means of the Ito-L6vy representation for processes with independent 
increments (see [10], Chap. l) we can write Z+(t)=M(t)+A(t)+Ft for some 
constant F and independent processes M(-) and A(.) of independent incre- 
ments. M(-) is a martingale which has characteristic function 

E[ei~ 1 =exp[ t  ,f [e i~ 1 - i 0 y ]  vl(dy)l (3.2) 
lyl <= l 

where v 1 is the restriction of the L~vy measure of Z+ to [ - 1 ,  + 1]. The jumps of 
M(-) are precisely the jumps of Z+( . )  of size < 1. Similarly, A(t) is the sum of all 
jumps of Z+ during [0, t I of size > 1. If v 2 is the restriction of the L~vy measure 
of Z+ to 1 R \ [ - 1 ,  + lJ, then A(t) has characteristic function 

E[e i~ =exp t  ~ [e i~ 11 v2(dy). 
N>I 

One easily sees from (3.2) that M has all moments, and since it has independent 
increments 

(M,M)t=t j" y2vl(dy ) 
ryl <: 1 

(see [13], Chap. II. 20). Consequently, (see [131 Chap. II. 23) for any fixed sample 
path of the Y process on which (x,t)~Lt(x ) is continuous and has compact 
support, we have 

Lt(x ) dM(x) = lim ~ Lt(x]) [M(xT+ 1) - -  M(X~)], (3.3) 
n~oo l= O 

where the lira in (3.3) is an L 2 limit with respect to the probability measure 
governing Z+, and where 0=x~ <x'~ < are any sequences which satisfy 

lira x 7 = 0% lim max (xT+ 1 - -  X ] )  = 0. 

It is easy to see that we can then also choose x~, such that (3.3) holds as  an 
almost everywhere limit with respect to the (product) probability measure 
governing Y(.) and Z+(-)  jointly. Since A(.) changes over each finite interval 
merely by a finite number of jumps it is even easier to see that 

~L~(x)dA(x)= lira ~ L~(xT) [A(xT+l)-A(xT) ] w.p.1. 
n~c~ l=O 

Thus, for suitable x~ 

~Lt(x)dZ+(x)= lira ~ L,(x~) [Z+(xT+l)-Z+(x~) ] w.p.1. 
n ~ l = O  
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On the other hand (see (1.19)), 

1=0,1,... 

are independent with characteristic function 

exp [ -  (x~ + 1 - xf,)[Of(A 1 + iA 2 sgn 0)] 

so that 
k 

E[expi  ~, OjjLtj(x)dZ§ 
j = l  

0 = lira Eexp - xt+ 1 - x  (x~) 

k fl 

0 +iA 2 ~ ojgt(x~) sgn(j~ jLtj(xz))} ] 
j = l  a = 

~ ~ 02L,j(x)'sgn(j~O,L~(x))dx]. -iA2 o j=l 

H.  K e s t e n  a n d  F .  S p i t z e r  

By treating Z_ in the same manner as Z§ on arrives at (3.1). [] 
The next step is to show how the joint distributions in (3.1) arise as limits of 

certain joint distributions of random walk occupation times. 

Lemma 6. For any distinct tl,t 2 .... tk >=O and Ol,O 2 .... OkdR , the joint distribu- 
tion of 

k 

oJnn  (x) 
x j = l  

and 

n ~P~j~OjNntj(x) ~ sgn(j~__lOjN,,tj(x,) (3.4) 

converges, as n ~ oe to the joint distribution of 

~ O~Ltj(x)'dx 
- o o  j = l  

and 

~ j~l O3Ltj(x) flsgn (j~l OjLtj(x)) dx. (3.5) 

Proof. For simplicity we only prove that 

n-~'~ J~k 10jN~tj(x)P--* -~,~1 ~ ~ OjLtj(x) lTdx (3.6) 
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in distribution, as n ~ oQ. The method of proof is to approximate the left side of 
(3.6) by a finite combination of Tt~, of which we know that it converges in 
distribution to the corresponding combination of the A~j (see (2.4) through (2.8)). 
Then, in turn, this combination of the Atj will be shown to approximate the right 
hand side in (3.6). 

To follow this plan we define, for some small z > 0 and large M, 

i 

a(l, n) = z l n% l~2g, 
k 

T(l, n) = y~ Oj ~"~(l ~, (t + 1) ~) 
j = l  

= x ~ oj ~ N~j(y), 
/~ j= l  a(l,n)<y<a(l+l~n) 

U=U(z,M,n)=n-~B ~ i . Oj 
x < -- mvn~ .l = 

or x :> m-i tu 

V=V(z,M,n)  =z l -~  X [T(l,n)[ p. 
ItJ<=M 

Then 

N.~(x) ~- U(z, M, n)- l~--Ofl~x ~=10j V ( z , M , n )  
J 

[O<Ma(l,n)<x<a(l+ l,n) j 

- n'~[a(l + 1, n) - a(1, n)l-PtT(I, n)lPt 
) 

+ ~ {n ~- ~ [a(l + 1, n) - a(l, n)] 1-p _ z l -P}[ r(/, n)l p. (3.7) 
Ill<M 

Since 

nP-~ l ,n)-a(l ,n)]l-~-zl-~--- ,O,  

and T(1, n) converges in distribution to 

k 

Z OjA,,(lz,(l+l)r), 
j=~ 

the second sum over 1 in the right hand side of (3.7) tends to zero in probability 
as n ~ oo. We now show that the first sum over l in the right hand side of (3.7) is 
small in probability when z is small. We use the following inequality, valid for 
any a>0 ,  b > 0  

[ap_j[ < ~la-bl  ~ if f i < l  

=~fi la-b l (aP- l+b B-~) if f l > l ,  

to estimate the sum over x. We only carry out the remaining details when f i< 1. 
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For such/~ 

E{ i~=lOjN,,j(x) P-n~[a(l+l,n)-a(l,n)]-~,T(l,n)f} 

{ ~=lOjN, tj(x) B} < E - n [a(l + 1, n) - a(1, n)]- 11T(1, n)l 
J 

< E -n[a(l+l.n)-a(1, n)1-1T(l,n) . (3.8) 
J 

In turn, 

E OjN, tj(x)-n[a(l+l,n)-a(l,n)] -1 T(l, 
J 

= [a(l + 1, n) - a(l, n)]-2 E ~ Oj [N, tj(x ) - N, tj(y)] 
, < I I j= 1 a(l,n)=y<a(l+ 1,n) 

k k 

<[a(l+l,n)-a(l,n] -a ~" 0 2 • ~ E{IN,,j(x)-N,,j(Y)I 2} 
i=1  j= la ( l ,n )<y<a( l+l ,n )  

< Cs(O . 02 .... , Ok; tl, tz,..., tk) 
1 1 - -  

�9 n ~ max [ l+a(y-x )+a(x-y )] .  (3.9) 
a(1,n)<=y<a(l+ l,n) 

(The last majorization was obtained from Lemma 3.) By virtue of (2.26), the last 
member of (3.9) is dominated,  for a(l, n)<x < a(l + 1, n) and large n, by 

1_L 2- 2- 
C9n ~la(l+l,n)-a(l,n)l~-~<O~o~-In 

Combining these estimates we obtain 

1-[111 =Ma(l,n)<_x<a(l+ 1,n) 

" [ i~=lOyNmj(x) ~-n~[a(l+ l,n)-a(l,n)]-#'T(l,n)f ] } 
1 2 2  

<(2M+l)zngn-~{Cloz~- ln  ~}p/2 

< C 11(2M + 1) z I + ~-(~'- I~ (3.10) 

This completes the estimate of (3.7). 
Finally using (2.11), we observe that  for large n 

1 

P [ U(z, M, n) :4= 0] __< ~ (�89 M z (max t j) ~). 
1 

Thus for each I/> 0 we can first take M z so large that  

1 

e(�89 M r(max ty) ~) < t/, 
J 
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and then z so small that 

C11 (2M + 1) v 1 +~{=- 1) </,12. 

Then, by (3.7) and (3.10), for such z,M, and large n 

k O~N,,,(x)~ ] P[n-aa~ s V(z,V,n) >r/ <3t/. (3.11) 
11 ~ r J= 1 

Next we observe that the convergence in distribution of (2.7) to (2.8) (as 
n -~ oo) implies the convergence in distribution as n --, oe of V(r, M, n) to 

"c1-~ ~M OjA,j(Ir,(I+I) 
Ill j i 

k (1+ 1)z fl 

o, i c, ,(x)dx. 
[l[=M j= l lr 

k 
Finally, the continuity ofx  ~ ~ OjL~j(x), and the fact that L,j(-) has a.s. compact 
support imply that J= 

OjL, j(x) dx 
l <M Ir j= 1 

--4 - -ccl j=l  ~ ~ O j L t j ( x )  f l d x '  

as z--,0, M r  ~ .  Together with (3.11) this finally proves the convergence in 
distribution as claimed in (3.6), and hence Lemma6. [] 

Recall now the definitions of W~, W, and D~' in (1.1), (1.4), and (1.22). We are 
ready to prove 

Proposition 1. The finite dimensional distributions of D~ converge to those of A, as 
n ---> oO. 

Proof. By the definition of N t and W~ for t > 0 we have 

Wt-- ~ Nt(x) {(x), t>0.  (3.12) 
xffZ 

Thus 
k k 

O~D;' = n - ~  ~ OjN,,,(x)~(x) (3.13) 
j = t  x j = l  

and 

E{exp[i ~= OjD~j]}=E[~2(n-aj~= OjN, tj(x)) ]. (3.14) 

By virtue of (1,18) and (2.31) the limit as n ~oo of (3.14) equals 

2imE e x p , - ~  ~ Oj A 1 +iA2sgn ~ OjN,,j(x) , (3.15) 
t_ x~:  [j= 1 j= 1 
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provided the last limit exists. Moreover, by Lemma 6 this limit equals 

A 1 + iA 2 sgn Oj Ltj(x ) E exp - _ J= 

t } = E e x p  i ~ OjA o . [] 
kj=l 

In order to prove weak convergence of {D~; t>0}  to {At; t>0}  in C[0, oo) we 
still have to prove tightness of the family {D~}t>_o, n=1 ,2 ,3  .. . .  The necessary 
estimate is supplied by 

Lemma 7. For each T <  oo, q>0,  

lim sup lira sup P[[D~ - -  Dtn2l >__ r / ]  = O. (3.16) 
n ~  0~00<-ti,t2<-T 

Proof. Let e > 0. We first approximate D~ by a process 15[' (obtained by certain 
truncations), plus a linear function E, t such that E,  is a bounded sequence and 

g 
lira n - ,  1 < _  sup P[sup]D t - D t - E ,  t[ > ~ tl] = 2" 

n~co t ~ T 
(3.17) 

After that we show that D~' satisfies Kolmogorov's criterion' For some K o 
= K 0 ( r ) < ~  

1 2 - - -  
E { I / s t z  - j~n t l  2"~, ~ g o ( t 2  _ t l  ) c~ ( 3 . 1 8 )  

Equation (3.16) then follows from (3.17) and (3.18) by Theorem 12.3 in Billingsley 

( ' )  [1] note that 2 - - > 1  . 

1 

To obtain b~ first choose A such that e ( � 89  (see (2.11)). Then (see 
(3.13)) 

P[D'~ * n - ~  ~ 1N.t(x)~(x) 
Ixl <= An~ 

<P[N. t (x )>O for some 
1 

<~(�89 < 4 . 

for some t < T ]  

1 
[xl> A n  7 and t < T ]  

(3.19) 

Next we choose Pl and t)2 such that for all n 

1 I i 

3ANT{ 1 - P [ - P l  n ~ <  3(0) < P2 n~]}  <4 '  (3.20) 

Such (finite) Pl and P2 can be chosen, as functions of A and ~ only, by virtue of(1.16). 
Indeed, for Pl =P2 =P  the left hand side of (3.20) is for large p at most 
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4A(B 1 +Be)p -~ .  (3.21) 

For f i < l  we indeed choose Pl =02=/) .  In this case 

1 ptt~[1 

IE[~(O); I~(O)r <,o n~'flJI < (. P[l~(O)/>x] dx 
0 

1 

~(B t +Be)(1 - f i ) -  l ip  nafl] l-ft. (3.22) 

For 1 < fl < 2 the left hand side of(3.22) is also of the order O(n (' - e)/~P), now by virtue 
of(1.14) and (1.16) with a trivial modification iffi = 2 (in which case we may take B 1 
=B 2 =0  in (1.16)). I f f i=  1 we shall choose Pl and P2 such that the left hand side of 
(3.22) is at most equal to 3K. To do this we first choose p such that (3.21) is no more 
than e/4. Assume that 

1 

F-= E[~(0); I~(0)1 < p nT] < 0 (3.23) 

(the case F > 0  is handled similarly). Then take Pl =fi and p z > p  such that 

1 1 

0<E[~(0); + p n  ~ < ~ ( O ) < p z n ~ ] < 3 K .  

Since F >  - K  (by (1.15)) it suffices for this to take p z > p  such that (see (1.17)) 
1 

1 L A 1 P22~ dx  A, P2 

p n = 

We now set 
1 1 

~(x) = ~ (x) I [ -  P i n ~  <= ~(x) <= p2 n~~fl], 

and 

E, = n-  ~E[~ No(x) ~(x)] = n -  ~EfF~ N,(x)  E[~(x)3], 
x x 

and 

x 

To verify the boundedness of E, and (3.17) and (3.18) observe first that 

y, N,,(~) Eft(x)] = E[~(0)] ~ NA~) = E[~(0)3 (n t + 1). 
x x 

This, together with 

IE[~(0)] I = o [n (~-p)'~q 

in all cases, proves that E, is bounded. Also it shows that 

D t - D t - E .  t = n -  (3.24) \n! x 

By (3.19) and (3.20) 

P{~  N,t(x ) [~(x)-  ~(x)] :4= 0 for some t < T} 
x 
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1 

_<- ~ + P [#(x) 4 = ~(x) for some [xl _-< A n 7] 

1 

-4<e+ 3 A n ;  P[~(O) 4= ~(0)] <2" 

This proves (3.17). 
Finally we turn to the proof of (3.18). By definition of/5~ and the independence 

of all the occupation times N,,t(x ) from the random scenery {~(x)} we obtain 

E [(6~' -/)~'2) 2] = n- 2a ~ E [ ( N , t ~ ( x )  _ N, , ,  (x)) 2] a2 [#(x)] 
x 

< n- 2a El#2(0)] E { ~  [N,,2 (x) - N,,, (x)] 2}. (3.25) 
x 

By virtue of (1.16) 

E[~2(0)] < C12 n(2-~)/~. (3.26) 

Moreover one easily sees from the strong Markov property that for k < j  

Z [ N ~ ( x )  - N i ( x ) ]  2 
x 

has the same distribution as 

EN?_~(x) -~ 
x 

Therefore, if t~ < t  2, we obtain from (2.13) 

x x 

2 -  1- (3.27) 
< 2 C r  ] 

If ( t 2 - - t l ) n : > l  , then (3.18) follows, by combining (3.25), (3.26) and (3.27). If 
0 < (t 2 - t 1) n < 1 we must replace (3.27) by the following observation: N k + 1 (x) - N k(x) 
=0  for all but one x, namely x=Sk+ 1. For this x, Nk+l (x ) -Nk(x )= 1. Therefore, 
for k<=s~ <s2 <k  + l, 

[X~2 (x)  - N~, ( x ) ]  2 = (s 2 - s 1) 2 , 
x 

and if 0 =< (t 2 - tl) n < 1, then 

E { E  FXnt2(x) - Nnt I (x)] 2} 
x 

1 
2 - - -  

< 2(t 2 - tO 2 .2 < 2 [(t 2 -  tl) n] ~ (3.28) 

With this replacement for (3.27) we find from (3.25) and (3.26) that 
1 

-n  n 2 2 - - -  E { [ D t - D t , ]  } < 2 C 1 3 ( t 2 - t  0 ~, 

which again gives (3.18) for n(t 2 -  t 0 <  1. [] 

Proposition 1 and Lemma 7 together imply Theorem 1.1. 
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