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1. Introduction 

Imagine n cards, labled 1 through n, face up on a table. Suppose card 1 is at 
the left, card2 is next, and so on, with card n at the right of the row. By a 
random transposition, we mean the following operation: Two integers L and R 
are chosen independently and uniformly between 1 and n (so L = R  with 
probability l/n). The cards labled L and R are transposed (if L = R  no transpo- 
sition is made). If many transpositions are made; the row of cards will tend to 
appear in random arrangement. The problem is: How many transpositions are 
needed until the permutation is close to random? 

More formally, a random transposition is modeled by a probability mea- 
sure T on the symmetric group S n: 

T(e) = 1In if e is the identity 

T(r)=2/n 2 if r is a transposition (l.1) 

T(.) = 0 otherwise. 

The result of k random transpositions is modeled by the convolution of T with 
itself k times. This will be denoted T *k. The uniform distribution on S, is 
denoted by U, so 

U(~)= l /n!  for all ~eS,,. (1.2) 

As a measure of the distance between T *k and U, we use variation distance: 

[ I r *k -g l l  = ~ r*k(~) - 1 ~  =2max l r*k (A) -U(A) l .  (1.3) 
~ e Sn I~ A ~ Sn 

The main result implies that if k is larger than �89 T *~ is close to 
uniform: 

Theorem 1. Assume (1.1)-(1.3). Let 

c=c(k, n ) -  k -  �89 l~ (1.4) 
n 
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Suppose that n> 10 and c>0.  Then there is a positive constant b such that 

IIr*k-UH<be -2c. 

Theorem 1 is proved in Sect. 3 using the tools of group representations. A 
better upper bound which permits explicit computation of the constant b is 
described at the end of Sect. 3 and in Remark 1 of Sect. 5. Some needed 
background and technical lemmas are in Sect. 2. In Sect. 4 we show that the 
group theoretic approach yields an explicit formula for the eigenvalues of the 
transition matrix of the associated markov chain. 

A lower bound for the variation distance is given by 

Theorem 2. Assume (1.1)-(1.4). Then, for all k, as n tends to infinity 

[]T*k--u][ > 2 (!--e-~-2C) +o(l). 

Theorem 2 is proved at the end of this section. The lower bound is useful if 
c<0 .  

Remarks. The problem studied here arose from two independent sources. The 
first source involved computer generation of a random permutation. The usual 
algorithm for generating a random permutation goes as follows: Choose a 
random integer U 1 uniformly between 1 and n, then transpose U 1 and 1. At 
stage j, choose a random integer Uj uniformly between j and n, then transpose 
Uj and j. It is not hard to show that the distribution of the permutation at 
stage n - 1  is exactly uniform. A proof and discussion is on pages 124-126 of 
Knuth (1969). The algorithm uses n - 1  transpositions. One of us had a pro- 
grammer who used the measure T *k to generate random permutations. It is 
not hard to see that for n > 2, T *g is never exactly uniform (c.f. Remark 3, Sect. 5). 
A discussion arose about how large k should be to make T *k approximately uni- 
form. Theorems 1 and 2 imply that k must be larger than 1/2 n log n. 

A second source for this problem is a paper by David Aldous. Aldous 
(1980) gives bounds on the length of time that a Markov chain takes to 
approach its stationary distribution. For  the chain arising in Theorems 1 and 
2, he gave c l n < k < c 2  n2 and conjectured that k=O(nlogn)  was the right 
number of transpositions. Further remarks and references are in Sect. 4. 

We finish this section by proving the lower bound given in Theorem 2. The 
argument, due essentially to Charles Stein, is useful in producing a set A ~ S  n 
where the maximum difference between T *k and U is large. The set A consists 
of all permutations with one or more fixed points. 

Proof of Theorem 2. We get a lower bound on the variation distance between 
T *k and the uniform distribution U by considering the set A of all per- 
mutations with one or more fixed points. Under U, the chance of one or more 
fixed points is well known under the name of the matching problem. The 
results of Sect. IV.4 of Feller (1968) imply 

U (A) = 1 - 1/e + O(1/n !). (1.5) 
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To bound T*k(A), consider the process for generating T *k described in the 
introduction. This was based on making random transpositions 
(L I, R1)...(Lk, Rk). Let B be the event that the set of lables {L i, Ri}f= 1 is strictly 
smaller than {1, 2, 3, ..., n}. Clearly A~B. The probability of B is the same as 
the probability that if 2k balls are dropped at random into n boxes, one or 
more of the boxes will be empty. The argument for Theorem 3 of Sect. IV.2 of 
Feller (1968) implies that the probability of B equals 

1 - e - ~ - ~ " + o ( 1 )  uniformly in k, as n~oo .  

Using the definition of c at (1.4) we have 

T*k(A) > 1 - e-~- ~ + o(1). (1.6) 

Using (1.5), (1.6), and the definition of the variation distance at (1.3), 

t] r*k -- UII _-> 2 f T*k(A) - g(A)r ~ 2(r*k(A) - U(A)) 

> 2 ( 3 - e  ~--~) +o(1). 

Acknowledgement. We thank David Aldous, Joseph Deken, Richard Durrett, Leo Flatto, Ed 
GiIbert, Larry Shepp, Charles Stein, and Sandy Zabell for helpful discussions. 

2. Preliminaries 

Theorem 1 is proved by considering the problem as a random walk on the 
permutation group and using the analogue of Fourier analysis - representation 
theory. A slick introduction to linear representations of finite groups is Serre 
(1977). We use this reference whenever possible. A readable comprehensive 
treatment of representation theory is Curtis and Reiner (1962). A recent mono- 
graph on representations of the symmetric group is James (1978). 

Let P~ and P2 be functions on a finite group G~ We write P2 * P~ for their 
convolution. Thus for 7eG, 

P2 * P1 (~') =- ~ P2()'t/- 1) Pj (~) �9 

A representation p of G is a homomorphism of G into the group of invertible 
linear maps of a complex finite dimensional vector space V. We write dp for the 
dimension of V and think of P(?) as a dp x dp matrix. The representation p is 
irreducible if V admits no p(G) invariant subspaces other than {0} or V. Two 
representations p and rc are equivalent if there is a matrix M such that 
Mp(?) M - 1 =  re(),) for all 7~G. If P is a function on G and p is a representation, 
define 

P(P) = ~ no7) P(~). 
rt~G 

The transform p(P) is the analog of the Fourier transform. It converts con- 
volution into multiplication: 



162 P. Diaconis and M. Shahshahani 

Lemma 1. I f  P1 and P2 are two functions on G and p is a representation, then 

P(P2 * P1)= P (P2) P (P1). 

Proof. 

p (n2 * nl) = ~ p (7) P2 * nl (7) = ~ p (~) ~ P2 (7 ~- 1) P1 (~) 
7 7 tl 

----- s {2 P( 7t]- I) p2(7 n- 1)} p(t/) P~(~)---- {~, 0(7) P2(7)} {~ p(t/) PI (t/)} 

=p(P2)p(P1). I7 

Let G be the set of irreducible representations of G. We sometimes regard 
p(P) as a matrix valued function from G. The next two results show how 
knowing p(P) for p*G gives information about P. We write IG I for the number 
of elements in G, Tr [ .]  for trace, and , for complex conjugate transpose. 

Lemma 2. Plancherel formula. 

Inversion formula. 

2 1 
IP(t/)[ =~-~ ~ d p  Tr [p(P) p(P)*]. (2.1) 

rIEG pEG- 

1 
P(r/) = ~  ~ d p  Tr [p(r/)* p(P)J. (2.2) 

p e g  

Proofs of (2.1) and (2.2) are in Section (6.2) of Serre (1977) or Theorem (28.43) 
of Hewitt and Ross (1970). For a finite group G, G is also finite. More 
precisely, Corollary 2 of Sect. 2.4 in Serre (1977) gives 

Lemma 3. 

Z d~--IGI. 
peG 

In particular, if G = S,, the symmetric group on n letters, 

E~ d~-~ - ,~ ! (2.3) 
pESn 

Therefore, for every irreducible representation p of S n 

dp < ] ~ .  . (2.4) 

The following useful characterization of an irreducible representation is 
proved in Sect. 2.2 of Serre (1977). 

Lemma 4. Schur's lemma. A representation p of G is irreducible if and only if 
every  d o x d o matrix M that satisfies M p ( 7 ) = p ( y ) M  for all 7~G is a constant 
multiple of the identity. 

Two elements 7, t/ in G are conjugate if there is an c~eG such that c~7c~ 1 
=17. This is an equivalence relation. Equivalence classes are called conjugacy 
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classes. The character Zo of the representation p is the function from G into the 
complex numbers: 

Zo(7) = Tr [p (?)]. 

It follows from the properties of the trace map that equivalent representations 
have identical characters and that characters are constant on conjugacy classes. 
Section 2.3 of Serre (1977) shows that a representation p is determined by its 
character. The following consequence of Schur's lemma is crucial in the proof 
of Theorem 1. 

Lemma 5. Let G be a finite group. Let p be an irreducible representation of G. 
Let P be a function from G into the complex numbers which is constant on each 
conjugacy class. On the i-th conjugacy class, let Pi be the value of P, n i the 
cardinaIity of the i-th conjugacy class, and Zi the value of zp(" ). Then 

p (P) = CI where C = 1 P~ n, Z~. (2.5) 
dp 

The sum in (2.5) is over distinct conjugacy classes. 

Proof Let Mi denote the sum of p(q) as t/ranges over the i-th conjugacy class. 
By hypothesis, 

P (P) = Z P(7) P (7) = Z ~ M,. 
7 i 

The matrix M i satisfies p (n )M ip (n -1 )=M i  for all n~G,. Thus Schur's 1emma 
gives M~ = C i I for some real number C~. Taking traces, 

Tr (Mi) = n i Zi = Ci dp. 

This proves (2.5). B 

Corollary 1. Let T be the probability measure on S~ defined by (1.1). Let p be a 
representation of S,. Write Zp(r) for the character of p at any transposition ~. 
Then 

p ( T ) = ( ! 4  n - 1  )~P(r)~I. (2.6) 
n d o ] 

Proof T is constant on conjugacy classes, putting mass 1/n at the identity, and 

2/n 2 on each transposition. There are (~)transpositions and the character of p 

at the identity is d o. The result follows from Lemma 5. D 

Remark. Corollary 1 and Lemma 1 reduce the problem of approximating 
p(T  *k) to a problem about approximating a product of real numbers. 

Representation theory of the symmetric group S, has been a subject of 
intensive study by Frobenius, Young, and others. We next summarize the facts 
we need. By a partition 2 = ( 2 1 , 2 2  . . . . .  •m) of n we mean a sequence, 
2~>22> ... >2,. of positive integers with n = 2 t  + ... +2,,. There is a one-to-one 
correspondence between irreducible representations of S, and partitions of n. 
While the exact construction is not needed, the notion of Young diagram will 
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be useful. To every partition 2 there corresponds a Young diagram. The first 
row of the diagram contains 21 squares, the second row contains 22 squares, 
and so on. For example, the diagram corresponding to the partition (5, 3, 1, 1) 
of 10 is 

The following is well known; see Corollary 8.5 of James (1978). 

Lemma 6. The dimension d~ of the representation corresponding to the partition 
2 is the number of ways of placing the numbers 1, 2, ..., n into the Young diagram 
of 2 such that the entries in each row and column are increasing. 

Combining Lemma 6 and (2.4) we get 

Corollary 2. The dimension dx of the representation corresponding to the partition 
2 satisfies 

d~ <= 21 

Proof. The first row of any of the arrangements of Lemma 6 can be chosen in 

n )  For each choice of first the number of of at most 21 ways. row, ways 

choosing the remaining rows is smaller than the largest dimension of an 

irreducible representation of S,_~.  By (2.4) this is at most ~ ! .  [~ 

The conjugacy classes in S, are also in one-to-one correspondence with 
partitions of n. The partition 2 corresponds to the eonjugacy class of all 
permutations with cyclic decomposition 

(n l ,  n2,  . . . ,  n~l) (n~l + 1 . - -  n~l+ ~ ) . . .  ( n ~  +...  + ~ _  ~+ 1.- .  n,)  

where (n~, ..., n,) is a permutation of (1, ..., n). In particular, transpositions 

form a single conjugacy class with (~) elements. 

The value of the characters of S, are integers. Formulas for the characters 
at irreducible representations were obtained by Frobenius. These formulas are 
given in modern notation by MacDonald (1979). Ingham (1960) contains an 
accessible proof of the following special case. 

Lemma 7. The character of the irreducible representation of S, corresponding to 
the partition 2, evaluated at a transposition ~ satisfies: 

r n  

)~z(z) _ 1 =~a [(2j - j )  (2 i - j  + 1)--j(j - 1)]. (2.8) 
d~ n(n-  1) j= 
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We need the notion of the conjugate of a representation. If 2 is a partition, 
the Young diagram of the conjugate partition 2' is the transpose of the Young 
diagram of 2. Thus, if 2=(5, 3, 1, 1), 2' =(4, 2, 2, 1, 1) has diagram 

I I 

Two representations are conjugate if the corresponding partitions are con- 
jugate. 

Lemma 8. Let p and p' be conjugate irreducible representations. Then 

d o = d o, (2.9) 
and, for any transposition 

z~(~) = -z~,(~).  (2.10) 

Proof. Lemma 6 implies (2.9) while (2.10) is a special case of results in Sect. (6.6) 
of James (1978). [3 

Because it appears in (2.6), the ratio Ze(v)/dv will be in constant use in what 
follows. Define 

r(~) = X~(~)/d~. (2.111 

We will use Frobenius' formula (2.8) to prove a monotonicity property of r(o ). 
Toward this end we introduce a partial order on partitions of n. Let 2 
=(2, ,  ..., 2m) and 2'=(2;,  ..., 2~,,) be partitions of n. Define 2 _ 2 ' i f  m<m'  and 
/~1~21, 21q-22=21@* 2 . . . .  21-}-...-~)~m~21@...@2m. This partial ordering is 
used in James 0978). An extensive discussion of the ordering is in Marshall 
and Olkin (1979). We need the following characterization of the ordering. For 
two partitions 2, 2' of n, say that 2 is obtained from 2' by a single switch if for 
some indices a < b, 

2j=25 for jeea or b 

2 ,=2 '  a + l  and 2 b=2~,-1. 

Lemma 9. Let 2 and 2' be partitions of n. Then z ~ if and only if there is a 
finite sequence of partitions of n: 

2 = 20 ~_~_21 t:>22... ~_2 j= 2', 

such that 2 i is obtained from 2 i+ ~ by a single switch for all i. 

Proof. This is a restatement of a basic result due to Muirhead on majorization 
in integers. It is proved in Sect. 5D of Marshall and Olkin (1979). D 

The basic monotonically result can now be stated. 

Lemma 10. Let p and p' be irreducible representations of S, corresponding to 
1::> partitions 2 and 2'. I f  2 _ 2 ,  then r(p)>=r(p'). 
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Proof Because of Lemma 9, we need only consider situations where 2 is 
obtained from 2' by a single switch. The proof is then a straightforward 
computation from Frobenius' formula (2.8). Suppose that the switch involves 
indices a < b. There are two cases: 

Case 1 2~ = 1 

Case2  2 ;>1.  

In Case 1, formula (2.8) shows that r(p)-r(p') equals 1In(n-t) times 

{(2~ t - a )  G +  t - ( a -  1)) -  a ( a -  t)} 
- {(2o- a) G - ( a  - t)) - a ( a -  t )+(1  - b )  (1 - ( b -  t ) ) - b ( b  - 1)} 

= {(2, + 1) z - (2 a + 1) ( 2 a -  1)} - {22 - 2 , ( 2 a -  1) + 2(t - b)} 

=(22,  + 1 ) - ( 2 a -  1) + 2 ( b -  1) 

= 2 ( 2 , + b - a ) > 4 > 0 .  

In case 2, a similar computation shows that r(p)-r(p') equals 1/n(n-1) times 

2{(2,--2b)+(b--a)}>2>O. [3 

We make use of Lemmas 7-10 to get bounds on r(p). 

Lemma 11. Let (22, ..., 2,,) be a partition of n satisfying 

22 < n/3. 

Let p be the corresponding irreducible representation, Then 

t (n 2 20 ) 
r(P)--< n(n -i5 3n 

Proof Let b denote the smallest integer greater than or equal to n/3. 

n 
b = ~ + e  where O<e_<z. 

Let 2 '=(b,  b, n-2b) with p '  the corresponding representation. Clearly 2'>__2, 
and so r(p')>r(p). Using formula (2.8), r(p') equals 1In(n-1) times 

b(b-1)+(b-1) (b-  2)-  2 +(n-  2b -  2) (n-  2b -  3)-6. 

Straightforward algebra shows that the last displayed expression equals 

n 2 
---+ 6(e 2 + e ) -  3 n. 
3 

Putting e = 2/3 gives the asserted upper bound. [] 

Lemma 12. Let (2> ..., 2m) be a partition of n satiffying 

n 
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Let p be the corresponding irreducible representation. Then 

r(p)_<n(n_ 1~-- ~ ~--n. 
Proof. Let b denote the smallest integer greater than or equal to n/2. 

n 
b = ~ + e  where 0<e<�89 

Let 2'=(b, n-b)  with p' the corresponding irreducible representation. Clearly 
2 _ 2  and so r(p')>= r(p). Using formula (2.8), r(p') equals 1/n(n-1) times 

b(b - l) + ( n -  b - 1)(n - b  - 2 ) - 2 .  

Straightforward algebra shows that the last displayed expression equals 

n 2 n 2 

~ - - 2 n + 2 e + 2 e z  < ~ - - n .  

Lemma 13. Let (2 a . . . .  ,2,.) be a partition of n satisfying 

n ~1 >~. 

Let p be the corresponding representation. Then 

1 
O<r(P)<n(n_l) { 2 t ( 2 a - 1 ) + ( n - 2 t - 1 ) ( n - 2 1 - 2 ) - 2 }  �9 

Proof Let p' be the irreducible representation corresponding to (2 a, n - 2  0. 
Clearly 2'_>2 and so r(p')>r(l). Now use formuly (2.8) to get the asserted 
upper bound. For the lower bound, consider p" the irreducible representation 
corresponding to 2"=(21, 1, 1, ..., 1). Clearly 2____2", so r(p")<r(p). Now formula 
(2.8) shows that r(p") equals 1/n(n-1) times 

n--.~l 

21(2 t - 1)+ ~ {(1 --j)(2--j)-j( j--  1)} 
j = 2  

=2~(21-1)+ 2 (n -21 ) ' ( n -2a ) (n -2~  + l)+ 2. 

The last displayed expression is positive because 

2 ~ > ( n - 2 1 + 1  ) and 2 1 - 1 > n - 2  a. ~1 

The proof of Theorem 1 requires a bound on the number of partitions of n. 
Chapter 3 of Ayoub (1963) contains a detailed discussion of the asymptotic 
behavior of the partition function. We only require the following bound, given 
as Eq. (2.1) in Chap. 3, Sect. 1 of Ayoub (1963). 

Let (n) be the number of partitions of n. Then 

p(n) =< exp [~ (~n)-~]. (2.12) 
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3. Proof of Theorem 1 

We first derive a convenient 
Plancherel formula. 

Lemma 14. Assume (1.1)-(1.3), then 

][T*k--UH<{~'d2(!+n--lr(p))2k} 

The sum in (3.1) is over non-trivial irreducible representations p. 

Proof. The Cauchy-Schwarz inequality yields 

/ 1 \23~ 

The Plancherel formula (2.1) gives 

P. Diaconis and M. Shahshahani 

bound to the variation distance by using the 

(3.1) 

( 1)2 
n ! ~  T*k(rc)--~ -. =~]dpTr{p2(T *k-U)}, 

p 

the right-hand 
representation, 
vial irreducible representation, Schur's lemma implies p(U)=0. Lemma 1 and 
Corollary 1 yield 

P(T*k)= (1-+n-- l r(p)) n 

sum is over all irreducible representations p. At the trivial 
p ( ~ ) - l ;  p(r*k)=p(U)=l so p(r*k--U)=O. For any non-tri- 

or <m and 21 

n n 
Outer zone.)~l> ~ or m>~. 

n <n and m<=~ Mid zone. <21 =2 

n n 
Inner zone. '~1~-- and m < -  

3 - 3  

This completes the proof of (3.1). I~ 

The proof of Theorem 1 proceeds by bounding the sum on the right side of 
(3.1). The argument involves several zones defined using the two parameters 21 
and m of the partitions (21,  . . . ,  ~m)" 

Tr(p2(T *k-  U))=dp ( l + n - 1  r(p)] 2k 
\n n / " 

Hence, for any non-trivial irreducible representation p, 
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Since 2<21 +m<n+ 1, these zones can be pictured as parts of a triangle: 

n/2 

n/3 
m  mid 

n/3 n/2 
21 

Bounds for the Inner Zone. Note that the inner zone is empty unless n>9 .  
Lemma 11 implies that for p in the inner zone, 

1 n - 1  1 1 2 0  2 1 
-+n n r(p)=<~+n2 3 n<5" 

Using Lemma 8 and Lemma 11, for any p in the inner zone, 

1 n - 1  1 1 2 0  4 1 
- +  r(p)> n2 4--> - - -  n n 3 3 n 3" 

Now use (2.3) to argue that the sum over the inner zone of 

d2 ~ n +1 n-n l r(p) 2k 

is at most 
(�89 (3.2) 

This error term tends to zero exponentially fast if k>�89 logn. We discuss this 
carefully at the end of this section. 

Bounds for the Mid Zone. Using Lemmas 8, 10, and 12 shows that for p in the 
mid zone 

1 n - 1  r(p) ~+ <=�89 
n 

Next use (2.7); for p in the mid zone, suppose n/3<21 <n/2. 

n 

Because of (2.9), this same bound holds if p satisfies n/3<m<n/2. Combining 
bounds, we see that for p in the mid zone 

l + n - 1  r(p) 2k do 2 =< 4"({) 2'` n2./3. 
n n 
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Using (2.12) to bound the number of partitions, the error from the mid zone is 
at most 

e ~(z"/3# 4"(�89 2n/3. (3.3) 

Again, this error tends to zero exponentially fast if k > �89 log n. 

Bounds for the Outer Zone. The argument for the outer zone is complicated. 
We proceed by breaking the outer zone into three disjoint zones. 

n < n 
ZoneI. ~ < 2 1 = . 7 n  or ~<m<.7n 

Zone lI. .7n<m<n 

Zone 111.. 7n < 21 < n -  1. 

The representation corresponding to 21 =n  is the trivial representation which 
does not appear in the sum (3.1). 

Bounds for Zone I. We first argue that for all p in Zone I, 

l + n - l r ( p )  < 5 8 + . 2 q  4 (3.4) 
n " n n 2" 

To show (3.4), first suppose that p satisfies n / 2 < 2 1 < . 7 n .  Let b denote the 
smallest integer larger than . 7 n, so 

b=.7n+e where 0_<~<_ 9 .  

Let 2' =(b, n-b)  with /9' the associated irreducible representation. Since 2'___2, 
we have r(p')>r(p). Formula (2.8) gives r(p') as 1/n(n-1) times 

b(b- 1) + ( n - b -  1) ( n - b -  2 ) -  2. 

The last displayed expression equals 

(. 7n) 2 +( .  3n) z +2(e 2 +e) +n( .  8 e -  1.6). 

This last expression can be bounded above by setting e = 1, giving 

n 2 [ . 5 8  .8n ~-n4~] " 

Since Lemma 13 implies r(p) is positive, the inequality (3.4) follows. 
For p in Zone I with n/2<m< .7n, Lemmas 8 and 13 imply that (3.4) holds. 
Next, Corollary 2 shows that for p in Zone I satisfying n/2 <21 <. 7n, 

= 21 

with [ . ]  denoting greatest integer. The same bound holds if n/2<m<.7n 
because of Lemma 8. Combining bounds and using (2.12) to bound the number 
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of partitions, the error from Zone I is at most 

e=({"'~ 4" [2] , (. 58 + @ + n4--g) 2k (3.5) 

Again, this error term tends to zero exponentially fast when k > in  log n. 

Bounds for Zone II. For .7n<m<n, Lemmas8 and 13 imply that r(p) is 
negative and bounded below by - 1 / n ( n - 1 )  times 

m(m- 1) + ( n - m -  1) ( n - m - 2 ) -  2 

=nZ + 2m2-  2mn + 2rn- 3n. 

Suppose first that r(p)< -1In, Then, for n > 4, 

1 n - 1  [ < 1 _ 2 m + 2  + 2 - - -  
~+~7- ~(p) 

__<1_2m_+2 _ _  
n n 

m 4 
/~2 n 

The restriction n > 4  insures that the right-hand inequality is positive. Using 
the elementary inequality 1 - x < e  -x and raising the last displayed inequality 
to the 2k-th power gives 

1 n-ln <exp - 2 k  - 2 \ n !  n3.j 

For the dimension, Lemma 8 and formula (2.7) give 

(• ) tln-m 

Let n - m  =j so 0 < j <  .3n. Rewrite inequality (3.6) in terms of j  and multiply by 
the bound for d~ to get that the general term in Zone II is bounded above by 
e- 4k/, times 

'exp{2 [2 -2('t 2] } ~. n n +2j  logn . 

Since k > (n/2) log n, the exponent in the last displayed expression is larger than 

exp{2;21~ 1 
There are at most p(j) irreducible representations for each value ofj. It follows 
that the error term summed over Zone II is bounded above by e-'~k/n times 

.3n 
j~o ~ exp {2j2 l~ (3.7) 
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The bound (3.7) was derived under the assumption 
- 1In < r(p) < 0, then 

nl + n -  l r(p) < (1) 2k 

and the general term is bounded above by 

P (J) n2j- 2k. 
j~ 

that r(p)< -1/n. If 

It is easy to see that for any j the j-th term in (3.7) is larger than p(j) times the 
term last displayed. Thus (3.7) bounds the error for Zone II. We will show that 
the sum (3.7) is bounded for all n. Hence the error from Zone II tends to zero 
like e -~k/". 

Bounds for Zone III. Throughout this zone, r(p) is positive so that increasing 

r(p) increases - l -+n-1  r(p). Lemma 13 implies that r(p) is smaller than 
n n 

1/n(n- 1) times 

, ~ 1 ( , ~ 1  - -  1)+(n-21 - -  1) (n-21-2)-2  
= 2 2 + ( n - 2 0 2 - 3 n + 2 2 1 .  

Thus 

;+ 1 n-ln --< 1 - ~ - ~ ( n - 2 0 .  

Write j = n - 2 1 ,  so l < j <  .3n. Making this substitution and using 1-x<=e -x 
leads to 

nl+n-l~- r(p) < e x p { - Z J + Z n  ~n/(J~2 _ 2 ~-j .  j 

In this notation, the bound (2.7) for the dimension yields 

n2J 

Combining bounds, and multiplying by p(j) to account for the number of 
distinct representations with a fixed value of j, gives p(j)/j! times 

Next write k=  n- logn+cn. The term in the exponent is 
2 

2 log n j ( j _  1 ) -4cn  [J - [j_.]2 + j ]  
n \n/ n2J" 
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Calculus arguments show that 

n \ n /  n z - -  n 

Thus, we have that the error summed over Zone III is bounded above by 

e_4C;3"p(j) { logn} (3.13) 
exp 2 j 0 - 1 )  n 

To complete the proof of Theorem 1 it only remains to collect the error 
bounds. 

From (3.2) (�89 

From (3.3) e '~(~")~ 4"(1)2kn 2"/3 

[2] 2 4\2k 
From (3.5) e '~'~")~4" n [ ( . 5 8 + n + n ~  ) 

e_4Cj "3" p(j) [ . . . .  log }. From (3.13) .~1 ~-.T exp~ z jU-1)  n n 

We now show that the sum of these bounds is smaller than Be -2c for some 
universal constant B, provided c >0 and n > 10. First, 

~) n!<= <e-2Cn<=e -4c. 

Next, the term from (3.3) equals 

exp {~(~n)}+n log4+(2-1og2)n l o g n - 2 c n  Iog2}. 

The term in the exponent which does not involve c tends to -oo  as n tends to 
infinity because 2/3<1og2. Thus the last displayed expression is bounded 
above by B1e-4fl Next consider (3.5). The term (.58+ .2/n+4/n 2) is smaller 
than 1 for all n>4. When n=10, it is 0.66 and numerical computation shows 
(. 66) 2~" <e -4c for n> 10. Next observe that 

�9 2 4 \" l~  

is bounded and tends to zero as n tends to infinity. This shows that the error 
term from (3.5) is bounded above by B 2 e-4~. 

For (3.7) and (3.13) we must show that 

J = ~  ~ It/ ~ 3'  
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Using Stirling's formula and the inequality lbr p(j) given in (2.12), 

pU) 
j--i- = exp [ - j  logj + O (j)]. (3.14) 

Now consider the sum broken into three parts: 

Part 1. O<j__<t/m/log n. Then, the exponential term in S(n) is bounded above by 
e 2, and p(j)/jI sums to a finite limit using (3.14). For Parts 2 and 3 of the sum, 
express the general term as 

exp{jl~ logn (3.15) 

Part 2. 1/n[lo~gn<j<n/logn. Then, the term in square brackets in the last 
display is bounded above by 

2 1(1 loglogn~ C 1 ~ 1 flog!ogn~ 
l o g n - 2 \  - ~ogn -] +~  \ = - ~ + 0  \ logn ] '  

This is bounded and tends to -1 /2 ,  so the sum over Part 2 is bounded for all 
n. 

Part 3. n[logn<j<3n. Then, the term in square brackets in (3.15) is bounded 
above by 

. 6 -  1 logn ]+0 i o ~  = - ' 4 + O  \ logn / '  

Thus the sum over Part 3 is bounded for all n. Using this, the error from (3.7) 
is bounded above by Bae-4C/n 2. The error from (3.13) is bounded above by 
B 3 e -4C. Theorem 1 follows by using the bounds just derived in (3.1). F, 

4. Markov Chains 

A random walk on a finite group can be analyzed as a discrete Markov chain. 
In this section we show that the eigenvalues of the associated transition matrix 
are determined by the eigenvalues of the Fourier transforms at irreducible 
representations. In the walk determined by the probability T of (1.1), the 
transition matrix has an eigenvalue )> corresponding to each irreducible repre- 
sentation p. Using the notation of Sect. 2, 2p=(1/n+(n-1)/nr(p)). The multi- 
plicity of 2 o is do z. 

Let G be a finite group of order [Gl=g. Let Xl, X2,...,xg be an en- 
umeration of the elements of G. Let P be a probability measure on G. The 
transition matrix M of the random walk determined by P is a g x g matrix with 
i,j entry the probability of xj in on step starting from xi: 

Mij=P(xix~ 1). 



Generating a Random Permutation with Random Transpositions 175 

Theorem 3. Let p be an irreducible representation of the finite group G. Let P be 
a probability measure on G. Let C o denote the set of eigenvalues of the linear 
map p (P). Then 

The set of eigenvalues of the transition matrix M equals (4.1) 

p 

I f  the eigenvalue 2 occurs with multiplicity m(2, p) in p(P), (4.2) 
the multiplicity of 2 in M is 

d e m(2, p). 
p 

When P is constant on conjugacy classes, the eigenvalues can be given more 
explicitly. 

Corollary 3. Let G be a finite group, P a probability measure on G which is 
constant on conjugacy classes, and M the associated transition matrix. Then, 
there is an eigenvalue 2 o of M corresponding to each irreducible representation p 
of G. 

Pi ni )~p 

where the sum is over distinct conjugacy classes. On the i-th class, Pi denotes the 
the value of the character 7~0. The value of P, n i denotes the cardinality, and ZR 

eigenvalue 2p occurs with multiplicity d~. 

Corollary 4. Let M be the transition matrix of the probability T defined in (1.1). 
Then M has eigenvalues 

1 + n - 1  r(p)) with multiplicity d 2 
n n 

where r(p) is defined by (2.11). 

Theorem 3 and the corollaries are proved at the end of this section. 

Remarks 1. From Corollary 4, the second largest eigenvalue of the transition 
matrix corresponding to the probability T of (1.1) is (1-2/n).  Just using this, 
the usual Perron-Frobenius argument gives k>>n 2 log n as a rate for con- 
vergence to the uniform distribution. To get a result like Theorem 1 all the 
eigenvalues must be used. 

2. Theorem 3 was discovered in an interesting way. Joseph Deken began 
computing the eigenvalues of the transition matrix corresponding to T in 
closed form using the MIT Macsyma system. For n smaller than 10, the 
second largest eigenvalue was (1-2/n).  This suggested a connection between 
the two approaches and led to Theorem 3. 

3. When the group G is a cyclic group, the transition matrices are cir- 
culants. Corollary 3 suggests an interesting generalization of circulants that we 
hope to pursue elsewhere. 

The argument for Theorem 3 proceeds by giving several equivalent ways to 
define the transition matrix M. We begin with a coordinate free version of M. 
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Let L(G) denote the space of complex valued functions on G, The probability 
P defines a linear map from L(G) into L(G) by convolution: For f~L(G) and 
x~G, let 

P . f  (x)= ~, P(xy-  1)f(y). 
y ~ G  

Choose as a basis for L(G) the functions 6~eL(G), defined by 

fii(xj) = 6ij (Kroneeker delta). 

An easy computation gives 

P * cSi = 2 Mij cSj. (4.3) 
J 

Thus M is the matrix corresponding to convolution with P. Consider next the 
vector space rE(G) with basisx~ 1 <i<g. Defining multiplication in the obvious 
way, r  becomes an algebra, the group algebra of G. Let QsC(G) be defined 
by 

Q = ~. P (x j)xj. 
J 

Left multiplication by Q defines a linear map from (I;(G) into ~7(G). We now 
show that M is the matrix of this map with respect to the basis xj. Indeed, 

Q x i = ~, P (xj xs l) xs 
J 

and 
(P , 6t) xj = ~ P(x i x -  ') 61(x ) = P(xj x[- 1). 

x 

In view of (4.3), (P,  c3i)xj =Mzj. This proves the claim. Finally, the left regular 
representation rc of G assigns a linear map of (I;(G) into itself to each xeG via 

(x) xj = x xj .  

Recall that we write rc (P)=~ P(xj)rc(xj). With this notation we can state the 
basic lemma. J 

Lemma 15. The following four g x g matrices are identical. 
(1) The transition matrix M. 
(2) The matrix of the linear map P , :  L(G)-~ L(G) with respect to the basis 6j. 
(3) The matrix of the linear map given by left multiplication by Q with 

respect to the basis x i of C(G). 
(4) The matrix of the linear map 7r(P)with respect to the basis xj of ~(G). 

Proof We have already shown that (1), (2), and (3) are identical. We now show 
that (2) and (4) are identical. Take the rc transform of (4,3) to obtain 

~(P) ~(6i) = ~ Mij ~((~j). 
J 

Using rc(~)= rc(x~) we obtain 

re(P) ~(xi) = ~ Mij re(x j). (4.4) 
J 
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Let H be the space of linear operators on the vector space C(G) and define 

V= u(e(G)) = H. 

Define a representation (9 of G on V by 

(9(:0 ~(y) = ~(x) ~(y)= ~(x y). 

Then for all x~G (resp. f~L(G)) we have the following commutative diagram 

r  ~ , v 

~(f) e (f) 

r  ~ , V 

Indeed, the image of y belonging to (E(G) is n ( f )  ~z(y) via either route. In 
particular, the matrix of ~(p) with respect to the basis {x j} is identical to the 
matrix (9(/)) with respect to the basis {~(xj)}. In view of (4.4), the latter is M. 

Proof of Theorem 3. As in Sect. (2.4) of Serre (1977), the vector space r can 
be decomposed as a direct sum of invariant subspaees 

r  = @  V s. 
P 

The terms are indexed by irreducible representations p. The subspace Vp is 
itself a direct sum of dp copies of the subspace Wp which is isomorphic to the 
vector space Wp' corresponding to p. Serre shows that the regular repre- 
sentation 7c restricted to any of the W o is equivalent to the representation p. It 
follows that the eigenvalues of ~(P) acting on W o are the same as the eigen- 
values of p(P). D 

Proof of Corollary 3. When P is constant on conjugacy classes, the linear map 
p(P) was shown to be a constant times the identity in Lemma 5. 

5. Final Remarks 

1. Better Bounds and Small n. The bounds used at the end of Sect. 3 have been 
reasonably crude. For  numerical computation, direct use of n and k in one of 
the preliminary inequalities in each of the five zones involved in the proof of 
Theorem 1 gives much tighter bounds. For  n<10,  the values of Zp(r) and dp are 
given exactly in Littlewood (1958). These can be used directly in (3.1). 

2. Different Measures. While limited, the approach used in this paper can be 
used to get bounds for some other measures on S n. The measure T assigns 
much larger probability to the identity than to any transposition. The method 
of proof allows a similar analysis for the probability measure Tp where Tp(id) 

for t an pos t ons If does not con er e 
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to the uniform distribution since T *k (even permutations)= 1 when k is even. 
The problem is quite sensitive to the choice of p. For  example, let p be chosen 
to make the chance of any transposition equal to the chance of the identity 

( p = l / [ l + ( ~ ) ] ) .  Then, it may be shown that k m u s t  be chosen as n2C~ 

where Cn--, o% in order to have convergence to the uniform distribution. 

3. Other Approaches to Proof. The problem discussed in this paper is a special 
case of a classical problem. How many times should a deck of cards be 
shuffled until it is close to random? The classical texts of Poincare, Doob, and 
Feller each devote several pages to this problem. They use the methods of 
discrete Markov chains, approximating the second largest eigenvalue of the 
transition matrix. We have discussed this in Sect. 4. 

Shuffles very similar to the shuffle of Theorem 1 are attacked by direct 
combinatorial methods in Robbins and Bolker (1980). As an example of this 
approach in our problem, notice that the permutation resulting from k random 
transpositions will be even if and only if the number of times L~ :t: R~ is even. 

The chance of this is easily seen to be 1 (1  + ( -  1)k ( 1 - ~ f ) .  This proves our 

earlier remark: the measure T *k is never exactly uniform except when n--2. As 
a second example, Bob Bell (personal communication) has shown that the 
chance that card 1 is in position 1 after k transpositions equals 1/n+ 
[(n - 1)/n] (1 - 2/n) k. 

There is some literature on the rate of convergence for random walk on a 
compact group. See Bhattacharya (1972), Heyer (1978), and Major and Shlos- 
man (1979). These approaches give convergence in very general situations. 
They do not seem particularly aimed at accurate rates in special problems. For 
example, the main inequality of Major and Shlosman (1979) - their Lemma 1 - 
in connection with our results in Sect. 2, results in an upper bound for the 
variation distance between T *k and U which suggests k>> g/2 log n is needed. 

As mentioned in the introduction, Aldous (1980) and, independently Dur- 
rett (personal communication), used coupling techniques to show that k>>n 2 
was sufficient for the problem treated in Theorem 1. A theorem of Griffeath 
(1976) implies that some coupling method exists which gives the optimal rate. 
It seems that this maximal coupling must be fairly complex. 

We mention two other approaches. Aldous (1980) and Diaconis, Flatto, and 
Shepp (1980) have used the method of stopping times - find a time t such that 
the distribution of t transpositions is exactly uniform - in some shuffling 
problems. Reeds (1980) has an ingenious approach which leads to rates of 
convergence for shuffling methods close to real riffle shuffling. 
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