Z. Wahrscheinlichkeitstheorie 4, 69-73 (1965)

Extension to Markov Processes of a Result by A. Wald about the Consistency of the Maximum Likelihood Estimate

By

George G. Roussas*

Summary. In this note the proof of the consistency of a maximum likelihood estimate (MLE) obtained by WALD in [7] in the case of independent and identically distributed random variables is extended to the case of Markov processes.

There is an extensive literature about the existence of a MLE and its consistency, most of which includes the assumption of the existence of derivatives of the densities with respect to the parameter involved. (See, for example, [2] and other references cited there.) Even under the rather strong assumption of pointwise differentiability of densities, and other additional regularity conditions, the problem of existence and consistency of a MLE has not been solved satisfactorily. (See, for example, [1], [2], [4], [6].) On the other hand, there have appeared papers like [3], where the consistency of a MLE is proved for processes with dependent random variables, and without the usual differentiability assumptions. The conditions used in the present paper are, however, of a different nature from those imposed in [3], and also are slightly different from WALD's assumptions in [7]. To our knowledge, a proof of consistency of a MLE under conditions similar to the ones used here has not appeared in the literature.

I would like to take this opportunity to thank Professor L. LECAM for a number of remarks in connection with this paper.

1. Introduction, notation and assumptions

We consider a measurable space $(\mathscr{X}, \mathscr{A})$ and for each $\theta \in \Theta$ let P_{θ} be a probability measure on \mathscr{A} . It is assumed that for every $\theta \in \Theta \{X_n, n \geq 0\}$ is a Markov process defined on the probability space $(\mathscr{X}, \mathscr{A}, P_{\theta})$. In fact, without loss of generality, we may assume that $(\mathscr{X}, \mathscr{A})$ is the infinite Cartesian product $\prod_{i=0}^{\infty} (R, \mathscr{B})$ of the Borel real line (R, \mathscr{B}) , and P_{θ} is the probability measure induced in \mathscr{A} by a set of transition probabilities $p_{\theta}(\cdot, \cdot)$ defined on $R \times \mathscr{B}$, and a probability distribution $p_{\theta}(\cdot)$ on \mathscr{B} , according to Kolmogorov's Consistency Theorem. In such a case the process $\{X_n, n \geq 0\}$ will be taken to be the coordinate process, and then it will be a Markov process with initial distribution $p_{\theta}(\cdot)$ and (stationary) transition probabilities $p_{\theta}(\cdot, \cdot)$.

We denote by $P_{n,\theta}$ the restriction of P_{θ} to the σ -field $\mathscr{A}_n = \mathscr{B}(X_0, X_1, \ldots, X_n)$, $n \geq 0$, and we will assume in the following that the probability measures $\{P_{n,\theta}, \theta \in \Theta\}, n \geq 0$ are absolutely continuous with respect to one another. Therefore, for any $\theta, \theta' \in \Theta$ we will have $[dP_{0,\theta'}/dP_{0,\theta}] = q(X_0; \theta, \theta')$, $[dP_{1,\theta'}/dP_{1,\theta}] = q(X_0, X_1; \theta, \theta')$, and if we set $q(X_1 | X_0; \theta, \theta') = [q(X_0, X_1; \theta, \theta')/q(X_0; \theta, \theta')]$ we will then have for the joint measures $P_{n,\theta'}, P_{n,\theta} : [dP_{n,\theta'}/dP_{n,\theta}]$ $= q(X_0; \theta, \theta') \prod_{j=1}^n q(X_j | X_{j-1}; \theta, \theta')$. Clearly, $[dP_{n,\theta'}/dP_{n,\theta}]$ is well defined except possibly on P_{θ} -null sets for all $\theta \in \Theta$. In what follows, we will always work outside

^{*} Prepared with the partial support of the National Science Foundation, Grant GP-10.

of these null sets, although we will not always point it out explicitly. Actually, we will fix an arbitrary $\theta^* \in \Theta$, and the various likelihoods will be formed with respect to P_{n,θ^*} . In doing so we will find it convenient to write $f(X_0; \theta)$ and $f(X_0, X_1; \theta)$ instead of $q(X_0; \theta^*, \theta)$ and $q(X_1 | X_0; \theta^*, \theta)$, respectively.

The following set of assumptions will be used in various places in this paper. Assumptions. (A1) Θ is a compact metric space with metric d.

(A2) For each $\theta \in \Theta$ the Markov process $\{X_n, n \ge 0\}$ is stationary and metrically transitive (ergodic).

(A3) The probability measures $\{P_{n,\theta}, \theta \in \Theta\}$, $n \ge 0$, are mutually absolutely continuous.

(A4) For each $x \in R \sup \{f(x; \theta); \theta \in \Theta\}$ is finite.

(A5) For any $x, y \in Rf(x, y; \theta)$ is upper semi-continuous (u.s.c) in θ .

(A6) For each $\theta \in \Theta$ there is a neighborhood $W(\theta)$ of θ such that for any open set V with $\theta \in V \subset W(\theta)$ the sup $\{f(x, y; \theta); \theta \in V\}$ is $\mathscr{B} \times \mathscr{B}$ -measurable.

(A7) Let $h(x, y; t, \theta) = \log[f(x, y; \theta)/f(x, y; t)]$. Then for each $\theta \in \Theta$ there exists an open set $W^*(\theta)$ such that $\theta \in W^*(\theta) \subset W(\theta)$, with the property that $|\int h(x, y; W^*(\theta)) dP_{1,\theta}| < \infty$, where $h(x, y; W^*(\theta)) = \inf\{h(x, y; t, \theta); t \in W^*(\theta)\}$.

(A8) For any $\theta_1, \theta_2 \in \Theta, \theta_1 \neq \theta_2$ implies $\int |f(x, y; \theta_1) - f(x, y; \theta_2)| dP_{1,\theta} > 0.$

2. Main result

In formulating the main result of this paper the concepts introduced below will be needed.

Definitions. Any mapping $\hat{\theta}_n = \hat{\theta}_n(X_0, X_1, \dots, X_n)$ on \mathscr{X} into Θ which is \mathscr{A}_n -measurable is called an *estimate*. An estimate $\hat{\theta}_n$ such that $\sup\{f(X_0; \theta) \prod_{j=1}^n f(X_{j-1}, X_j; \theta); \theta \in \Theta\} c \leq f(X_0; \hat{\theta}_n) \prod_{j=1}^n f(X_{j-1}, X_j; \hat{\theta}_n)$ is called a *quasi-maxi*mum likelihood estimate (q-MLE) with coefficient $c \in (0, 1]$. For c = 1 we get a MLE in the usual sense. The estimates $\{\hat{\theta}_n\}$, n > 0 are consistent at $\theta \in \Theta$ if $\hat{\theta}_n \to \theta$ in P_{θ} -probability, as $n \to \infty$, and they are strongly consistent if $\hat{\theta}_n \to \theta$ a. s. $[P_{\theta}]$, as $n \to \infty$.

Remark. It is customary to define an estimate $\hat{\theta}_n$ the way we did above, i. e., as an \mathscr{A}_n -measurable map of \mathscr{X} into Θ ; and in this paper we use this definition of an estimate. Sometimes, however, as in the case of a *q*-MLE with coefficient c < 1, there may be nonmeasurable maps of \mathscr{X} into Θ . In such cases the probability measure P_{θ} is to be replaced by the inner probability measure $P_{*,\theta}$ in proving consistency. Such a proof would be rather long and uninteresting, and we choose not to present it here.

Theorem. Under assumptions (A1) to (A8), quasi-maximum likelihood estimates $\{\hat{\theta}_n\}$ with coefficient $c \in (0, 1]$ are strongly consistent at $\theta \in \Theta$, i. e.,

(3.1)
$$\hat{\theta}_n \to \theta \text{ a. s. } [P_{\theta}], \text{ as } n \to \infty, \theta \in \Theta$$

The proof of this theorem will follow after we formulate and prove three lemmas.

We denote by θ_0 the (unknown) true value of the parameter, and let θ and t vary over Θ . By (A7) we have $h(X_0, X_1; \theta, \theta_0) = \log[f(X_0, X_1; \theta_0)/f(X_0, X_1; \theta)]$. Then the following result is easily established, namely.

Lemma 1. As $n \to \infty$, $\limsup 1/n \sum_{j=1}^{n} h(X_{j-1}, X_j; \hat{\theta}_n, \theta_0) \leq 0$. Proof. We have $[f(X_0; \theta) \prod_{j=1}^{n} f(X_{j-1}, X_j; \theta)] c \leq f(X_0; \hat{\theta}_n)$. $\prod_{j=1}^{n} f(X_{j-1}, X_j; \hat{\theta}_n)$ for all $\theta \in \Theta$. Dividing both sides by $f(X_0; \theta_0) \prod_{j=1}^{n} f(X_{j-1}, X_j; \theta_0)$, and taking logarithms, we get $\log[f(X_0; \theta)/f(X_0; \theta_0)] - \sum_{j=1}^{n} h(X_{j-1}, X_j; \theta, \theta_0) + \log c \leq \log[f(X_0; \hat{\theta}_n)/f(X_0; \theta_0)] - \sum_{j=1}^{n} h(X_{j-1}, X_j; \hat{\theta}_n, \theta_0) + \log c \leq \log[f(X_0; \hat{\theta}_n)/f(X_0; \theta_0)] - \sum_{j=1}^{n} h(X_{j-1}, X_j; \hat{\theta}_n, \theta_0) - \log[f(X_0; \hat{\theta}_n)/f(X_0; \theta_0)] \leq -\log c$. Dividing throughout by n and letting $n \to \infty$ we get, by means of (A4), $\limsup 1/n \sum_{j=1}^{n} h(X_{j-1}, X_j; \hat{\theta}_n, \theta_0) \leq 0$, as was to be seen.

Now we define $H(\theta)$ by $H(\theta) = \mathscr{E}_{\theta_0}[h(X_0, X_1; \theta, \theta_0)] = \int \log[f(x, y; \theta_0)/f(x, y; \theta)] f(x, y; \theta_0) dP_{1, \theta^*}$, and then the following lemma is true;

Lemma 2. With the above notation, $H(\theta) \ge 0$ and $H(\theta) = 0$ if and only if $f(x, y; \theta) = f(x, y; \theta_0)$ a. s. $[P_{1, \theta_0}]$.

Proof. We use the inequality $\exp(z) \ge 1 + z$, $z \in R$, and $\exp(z) = 1 + z$ if and only if z = 0.

Replacing z by $\log[f(x, y; \theta)/f(x, y; \theta_0)]$ we get $[f(x, y; \theta)/f(x, y; \theta_0)] \ge 1 + \log[f(x, y; \theta)/f(x, y; \theta_0)]$, and equality holds if and only if $f(x, y; \theta) = f(x, y; \theta_0)$. Then

(3.2)
$$[f(x, y; \theta)/f(x, y; \theta_0)] - 1 - \log [f(x, y; \theta)/f(x, y; \theta_0)] \ge 0,$$

with equality holding if and only if $f(x, y; \theta) = f(x, y; \theta_0)$. But $\int [f(x, y; \theta)/f(x, y; \theta_0)] dP_{1, \theta_0} = \mathscr{E}_{\theta_0} [f(X_0, X_1; \theta)/f(X_0, X_1; \theta_0)] = \mathscr{E}_{\theta_0} \{\mathscr{E}_{\theta_0} [f(X_0, X_1; \theta)/f(X_0, X_1; \theta_0)] | X_0 \} = \int [f(x, y; \theta) dP_{0, \theta^*}] \cdot dP_{0, \theta_0} = 1$. Therefore, integrating both sides of (3.2) with respect to P_{1, θ_0} we get the required inequality.

An application of the Ergodic Theorem gives

(3.3)
$$1/n \sum_{j=1}^{n} h(X_{j-1}, X_j; \theta, \theta_0) \to H(\theta) \text{ a. s. } [P_{\theta_0}], \text{ as } n \to \infty$$

This relation will be used in the following.

Lemma 3. For any neighborhood $U = U(\theta_0)$ of θ_0 there exists a $\delta = \delta(U(\theta_0)) > 0$ such that, as $n \to \infty$, $\lim \inf [\inf \{1/n \sum_{j=1}^n h(X_{j-1}, X_j; \theta, \theta_0); \theta \in U^c\}] > \delta$ a. s. $[P_{\theta_0}]$.

Proof. For $t \in U^c$ let $V_k(t) = \{\theta; d(\theta, t) < 1/k\}$. Then for k large enough $V_k(t) \subset W(t)$, and hence, $\sup\{f(x, y; \theta); \theta \in V_k(t)\}$ is measurable by (A6). We set $h(x, y; V_k(t)) = \inf\{h(x, y; \theta, \theta_0); \theta \in V_k(t)\}$. Then from the measurability of

sup $\{f(x, y; \theta); \theta \in V_k(t)\}$ and the definition of $h(x, y; \theta, \theta_0)$ it follows that $h(x, y; V_k(t))$ is measurable. Clearly, $h(x, y; V_k(t))$ does not decrease as $k \to \infty$. On the other hand, the u. s. c. assumption (A5) of $f(x, y; \theta)$ in θ implies the u. s. c. in θ of $\log[f(x, y; \theta)/f(x, y; \theta_0)]$, and this, in turn, implies the lower semicontinuity (l. s. c.) in θ of $h(x, y; \theta, \theta_0)$. Therefore, $h(x, y; V_k(t))$ converges to $h(x, y; t, \theta_0)$, as $k \to \infty$. To summarize: For k sufficiently large $h(x, y; V_k(t))$ is measurable, and as $k \to \infty$, $h(x, y; V_k(t)) \to h(x, y; t, \theta_0)$ non-decreasingly.

For k large enough it is also true that $V_k(t) \subset W^*(t)$ and hence $h(x, y; V_k(t))$ is measurable and also bounded below by the integrable function $h(x, y; W^*(t))$, according to (A7). Therefore, the FATOU-LEBESGUE Theorem ([5], p. 125) applies and gives $\int h(x, y; V_k(t)) dP_{1, \theta_0} \rightarrow \int h(x, y; t, \theta_0) dP_{1, \theta_0}$ as $k \rightarrow \infty$. Equivalently, $\mathscr{E}_{\theta_0}[h(X_0, X_1; V_k(t)] \rightarrow H(t) > 0$, as $k \rightarrow \infty$. Thus, for every $t \in U^c$ there exists an open set $V_k(t)$ containing t, and a positive integer N(t) such that $\mathscr{E}_{\theta_0}[h(X_0, X_1; V_k(t)] > 1/2 H(t)$ for k > N(t). Take U to be open. Then U^c is closed, hence compact. So there is a finite number of sets $V_k(t)$ covering U^c . Let them be $V_k(t_i), i = 1, \ldots, m$. Thus, if $k > N = \max\{N(t_i), i = 1, \ldots, m\}$ we see that $\mathscr{E}_{\theta_0}[h(X_0, X_1; V_k(t_i)] > \delta > 0$, where $\delta = \min\{1/2 H(t_i), i = 1, \ldots, m\}$. Now, for every $\theta \in U^c$ there is an i such that $\theta \in V_k(t_i)$. Then $h(x, y; \theta, \theta_0) \ge h(x, y; V_k(t_i))$.

Next, as $n \to \infty$, $1/n \sum_{j=1}^{n} h(X_{j-1}, X_j; V_k(t_i)) \to \mathscr{E}_{\theta_0}[h(X_0, X_1; V_k(t_i))] > 1/2 H(t_i)$ for k > N. Therefore, as $n \to \infty$,

$$\liminf[\min\{1/4\sum_{j=1}^{n}h(X_{j-1},X_{j}; V_{k}(t_{i})); i=1,\ldots,n\}] > \delta \text{ a. s. } [P_{\theta_{0}}].$$

But

$$\liminf \inf \left[\inf \left\{ 1/n \sum_{j=1}^n h(X_{j-1}, X_j; \theta, \theta_0); \theta \in U^c \right\} \right] \ge$$

 $\liminf_{i} [\min \{1/n \sum_{j=1}^{n} h(X_{j-1}, X_j; V_k(t_i); i = 1, ..., m\}], \text{ as } n \to \infty.$

That is,

$$\liminf[\inf\{1/n\sum_{j=1}^n h(X_{j-1}, X_j; \, \theta, \, \theta_0); \, \theta \in U^c\}] \geqq \delta \text{ a. s. } [P_{\theta_0}], \quad \text{as} \quad n \to \infty \, .$$

This completes the proof of the lemma.

Lemma 1 and Lemma 3 taken together imply that for n sufficiently large $\hat{\theta}_n$ will lie a. s. $[P_{\theta_0}]$ in $U(\theta_0)$. In other words, $\hat{\theta}_n \to \theta_0$ a. s. $[P_{\theta_0}]$, as $n \to \infty$, and this concludes the proof of the theorem.

3. Extension

Assumption (A1) includes compactness of the metric space Θ . In practice, however, there occur interesting problems where Θ is locally compact, but not compact. We assert that under this weaker assumption about Θ the result still holds true. In fact, the compactness of Θ was used only in proving Lemma 3. If we merely assume that Θ is locally compact, Lemma 3 is still true, provided we take U^c to be the complement of U with respect to a compact neighborhood $C(\theta)$ of θ , where U is an open neighborhood of θ contained in $C(\theta)$. This is all we needed from Lemma 3, together with Lemma 1, to establish the Theorem.

References

- BASU, D.: An inconsistency of the method of maximum likelihood. Ann. math. Statistics 26, 144-146 (1955).
- [2] BILLINGSLEY, P.: Statistical Inferences for Markov Processes. The University of Chicago Press (1961).
- [3] KRAFT, C.: Some conditions of consistency and uniform consistency of statistical procedures. University of California Publications in Statistics 2:6, 125-242 (1955).
- [4] -, and L. LECAM: A remark on the roofs of the maximum likelihood equation. Ann. math. Statistics 27, 1174-1176 (1956).
- [5] LOÈVE, M.: Probability Theory, 3rd ed., Princeton, N. J.: Van Nostrand 1963.
- [6] NEYMAN, J., and E. SCOTT: Consistent estimates based on partially consisted observations. Econometrica 16, 1-32 (1948).
- [7] WALD, A.: Note on the consistency of the maximum likelihood estimate. Ann. math. Statistics 20, 595-601 (1949).

Mathematics Department San Jose State College, San Jose 14, California

(Received November 16, 1964)