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Extension to ~Iarkov Processes of a Result by A. Wald 
about the Consistency of the Maximum Likelihood Estimate 

By 

GEo~G~ G. R o u s s A s *  

Summary. In this note the proof of the consistency of a maximum likelihood estimate 
(MLE) obtained by W ~ D  in [7] in the case of independent and identically distributed ran- 
dom variables is extended to the case of Markov processes. 

There is an extensive literature about the existence of a MLE and its consistency, most of 
which includes the assumption of the existence of derivatives of the densities with respect to 
the parameter involved. (See, for example, [2] and other references cited there.) Even under 
the rather strong assumption of pointwise differentiability of densities, and other additional 
regularity conditions, the problem of existence and consistency of a MLE has not been solved 
satisfactorily. (See, for example, [1], [2], [4], [6].) On the other hand, there have appeared 
papers like [3], where the consistency of a MLE is proved for processes with dependent random 
variables, and without the usual differentiability assumptions. The conditions used in the 
present paper are, however, of a different nature from those imposed in [3], and also are 
slightly different from WALD'S assumptions in [7]. To our knowledge, a proof of consistency of 
a MLE under conditions similar to the ones used here has not appeared in the literature. 

I would like to take this opportunity to thank Professor L. LECA~I for a number of remarks 
in connection with this paper. 

1. Introduction, notation and assumptions 

W e  consider a measurab le  space (W, d )  and  for each 0 ~ O le t  Po be a proba-  
b i l i t y  measure  on ~/ .  I t  is assumed t h a t  for every  0 ~ O {Xn ,  n ~ O} is a Markov  
process  defined on the  p robab i l i t y  space (W, ~/ ,  Po). I n  fact ,  wi thou t  loss o f  

genera l i ty ,  we m a y  assume t h a t  ( s  d )  is the  infini te Car tes ian p roduc t  ~ (R, ~ )  
i=0  

of  the  Borcl  real  l ine (R, ~ ) ,  and  Po is the  p robab i l i t y  measure  induced  in d b y  a 
set of  t r ans i t ion  probabi l i t i es  Po (', ") defined on R • ~ ,  and  a p r o b a b i l i t y  distr i-  
bu t ion  Po (') on ~ according to  Ko lmogorov ' s  Consis tency Theorem. I n  such a case 
the  process {Xn ,  n ~ O} will be t a k e n  to  be the  coord ina te  process, and  then  i t  
will be a Markov  process wi th  in i t ia l  d i s t r ibu t ion  Po (') and  (s ta t ionary)  t r ans i t ion  
probabi l i t i es  Po (', "). 

W e  denote  b y  Pn,o the  res t r ic t ion of  Po to the  a-field d n  ~- :~ (Xo, X~ . . . .  , Xn),  
n ~ 0, and  we will assume in the  following t h a t  the  p robab i l i t y  measures  
{Pn, o, 0 ~ 0}~ n ~ 0 are  abso lu te ly  cont inuous  wi th  respect  to one another .  
Therefore,  for a n y  0 , 0 ' c O  we will have  [dPo, o,/dPo, o] =- q(Xo; O, O')~ 
[dP1, o'/dP1, o] = q (Xo, X1; O, 0'), and  i f  we set q (XI  I Xo ; O, 0') = [q (Xo, X1; O, 0'/ 
q(Xo;  0, 0')] we will then  have  for the  jo in t  measures  Pn, o', Pn, o : [dPn, o'/dPn, o] 

= q (Xo ; 0, 0') ~ q (Xj I Xj-1 ; 0, 0'). Clearly, [dPn, o'/dPn, 0] is well  defined except  
]=1 

poss ib ly  on P0-null  sets for all 0 e O. I n  wha t  follows, we will a lways  work  outs ide  
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of these null sets, although we will not always point it out explicitly. Actually, 
we will fix an arbitrary 0* e O, and the various likelihoods will be formed with 
respect to Pn,o*. In doing so we will find it convenient to write /(X0; 0) and 
[ (X0, X1; 0) instead of q(X0; 0", 0) and q (XI[ X0; 0", 0), respectively. 

The following set of assumptions will be used in various places in this paper. 

Assumptions. (A1) O is a compact metric space with metric d. 

(A2) For each 0 e 0 the Markov process {Xn,  n ~ 0} is stationary and metri- 
cally transitive (ergodie). 

(A3) The probability measures {Pn, o, 0 e O}, n ~ O, are mutually absolutely 
continuous. 

(A4) For each x e R sup{/(x; 0); 0 e 0} is finite. 

(A5) For any x, y e Rf(x ,  y; O) is upper semi-continuous (u.s.c) in O. 

(A6) For each 0 e 0 there is a neighborhood W (O) of 0 such that/or any open set 
V with 0 e V c W(O) the sup{/(x, y; 0); 0 ~ V} is ~• 

(A7) Let h(x, y; t, O) ~ log[/(x, y; O)//(x, y; t)]. Then for each 0 e 0 there 
exists an open set W*(O) such that Oe W*(O) c W(O), with the property that 
I ]h ( x , y ;  W*(O))dPl, ol < r W*(O))=inf{h(x ,y ; t ,O); teW*(O)} .  

(A8) Forany01, O~ e O, 01 =~ 02implics ~l/(x, y; 01) - - / ( x ,  y; 02)l.dPl, o > O. 

2. Main result 

In formulating the main result of this paper the concepts introduced below 
will be needed. 

Definitions. Any mapping 0n = 0n (X0, X1 . . . . .  Xn) on W into O which is 

~/n-measurable is called an estimate. An estimate 0n such that  sup{](X0; 0) 
n n 

H / ( X j - I :  X]; 0); 0 @ O} c ~ f(X0; On)~f(Xj-1, X]; On) is called a quasi-maxi- 
j=1 ]=I 

mum likelihood estimate (q-MLE) with coefficient c e (0, 1]. For c = 1 we get a MLE 

in the usual sense. The estimates {On}, n > 0 are consistent at 0 e 0 ff 0n -~ 0 

in P0-probabflity, as n - ~ ,  and they are strongly consistent ff On --~ 0 a. s. [ Po], 
aS n --> oo. 

R e m a r k .  I t  is customary to define an estimate On the way we did above, 
i. e., as an tin-measurable map of:~ into O ; and in this paper we use this definition 
of an estimate. Sometimes, however, as in the case of a q-MLE with coefficient 
c < 1, there may be nonmeasurable maps of :~ into O. In such cases the probabi- 
l i ty measure Pc is to be replaced by the inner probability measure P, ,  0 in proving 
consistency. Such a proof would be rather long and uninteresting, and we choose 
not to present it here. 

Theorem. Under assumptions (A 1) to (A8), quasi-maximum likelihood estimates 

{0n} with coefficient c e (0, 1] are strongly consistent at 0 ~ O, i. e., 

(3.1) On-->Oa.s.[Po], as n--->c~,OeO 

The proof of this theorem will follow after we formulate and prove three 
lemmas. 
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We denote by 00 the (unknown) true value of the parameter, and let 0 and t vary 
over O. By (A7) we have h(Xo, X1; 0, 0o) = log[J(Xo, X1; Oo)//(Xo, Xz; 0)]. 
Then the following result is easily established, namely. 

Lemma 1. As n -+ oo, lira sup 1 / n ~ h ( X j - 1 ,  X~; ~ ,  0o) G O. 
j = l  

n A ~t 

Proo/. We have [/(X0; O)[.[/(Xj-1, Xj;  O)]c ~ /(Xo; On). ~-[/(Xj-~, Xj; On) 
j=l ]=i 

ft 

for all 0 e O. Dividing both sides by /(Xo; Oo)]-I/(Xj-i,  Xj; 0o), and taking 
]=1 

n 

logarithms, we get log [/(Xo ; 0)//(Xo ; 0o)] -- ~ h (XI-1, Xj; 0, 0o) + log c =< 
]=1 

n 

log[/(Xo; On)//(Xo; 0o)] -- ~ h ( X j - i ,  Xj; On, 0o) for all 0 e O. This will be 
j = l  

true, in particular, for 0 = 00, i .e. ,  ~ h ( X j - 1 ,  Xj; On' 00) -- log[/(X0; On)/ 
j = l  

[(Xo; 00)] =<- -- log c. Dividing throughout by  n and letting n -+ oo we get, by 

means of (A4), lira sup 1 / n ~ h ( X j - 1 ,  Xi; 0n' 0o) ~ 0, as was to be seen. 
j = l  

Now we define H(O) by H(O) ~ ~oo[h(Xo, X1; 0, 0o)] ---- flog[/(x, y; 0o)/ 
/(x, y; 0)]/(x, y; Oo)/(x; Oo)dPl, o*, and then the following lemma is true; 

Lemma 2. With the above notation, H(O) > 0 and H ( O ) ~  0 i/ and only i/ 
](x, y; O) = / ( x ,  y; 0o) a. s. [Pl, Oo]. 

Proo/. We use the inequality exp (z) > 1 + z, z ~ R, and exp (z) ---- 1 + z if  
and only if z = 0. 

Replacing z by log[/@, y; O)//(x, y; 0o)] we get [/(x, y; O)//(x, y; 0o)] > 1 + 
+ log [/(x, y; 0)/[ (x, y; 0o)], and equality holds ff and only ff [ (x, y; 0) = / (x, y; 0o). 
Then 

(3.2) [/(x, y; O)//(x, y; 0o)] --  1 -- log[/@, y; O)//(x, y; 0o)] > 0, 

with equality holding if and only if ](x, y; O) -=/(x, y; 0o). But f[](x,  y; 0)/ 
/(x, y; 0o)] dPi, oo = #Oo [/(Xo, X1; 0 ) / / (Xo ,  Xi ;  0o)] = #Oo {~oo [/(Xo, Xi ;  0) / 
/ (Xo, X1 ; 0o)] ]Xo} ---- f [/(x, y ; 0) dPo, o*]" dPo, Oo = 1. Therefore, integrating both 
sides of (3.2) with respect to P1, oo we get the required inequality. 

An application of the Ergodic Theorem gives 

(3.3) 1 / n ~ h ( X j - 1 ,  Xj;  O, 0o) -+H(O) a. s. [Pool, as n -> oo. 
j = l  

This relation will be used in the following. 

Lemma 3. _For any neighborhood U = U (0o) o] Oo there exists a ~ = 6 ( U (0o)) > 0 
n 

such that, as n -> 0% lira inf [inf{1/n ~ h (Xj_~, Xj; 0, 0o); 0 ~ U~}] > ~ a. s. [Poo]- 
j = l  

Proo]. For  t ~ U c let Vk(t) = {0; d(O, t ) <  1/k}. Then for k large enough 
V~(t) c W(t), and hence, sup{/@, y; 0); 0 E V~(t)} is measurable by (A6). We set 
h(x, y; V~(t)) ~- inf{h(x, y; 0, 0o); 0 e Vk(t)}. Then from the measurability of 
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sup{/(x,  y; 0); 0 ~ Vk(t)} and the  definition of h(x, y; O, 00) it  follows t h a t  
h (x, y; V~ (t)) is measurable.  Clearly, h (x, y; V~ (t)) does not  decrease as ]c --> c~. 
On the other  hand,  the  u. s. c. assumpt ion  (A5) o f / (x ,  y; 0) in 0 implies the  u. s. c. 
in 0 of  log [/(x, y; 0)//(x, y; 00)], and this, in turn,  implies the lower semicont inui ty  
(1. s. c.) in 0 of h(x, y; 0, 00). Therefore,  h(x, y; V~(t)) converges to h(x, y; t, 0o), 
as k --> cr To summarize  : For  k sufficiently large h (x, y; Vk (t)) is measurable,  and 
as k --~ r h (x, y; V~ (t)) --~ h (x, y; t, 00) non-decreasingly.  

For  k large enough it  is also t rue  t h a t  V~(t) r W*(t) and hence h(x, y; V~(t)) 
is measurable  and  also bounded below b y  the  integrable funct ion h (x, y; W* (t)), 
according to (A7). Therefore,  the FATou-LEBESGUE Theorem ([5], p. 125) applies 
and  gives f h(x, y; V~(t) )dPl, oo --~ S h(x, y; t, Oo)dPl, oo as k ~ c~. Equivalent ly ,  
O~oo[h(Xo, X1; Vk(t)] --->H(t) ~ 0, as k --> oo. Thus,  for every  t ~ U c there exists 
an open set Vk (t) containing t, and a posit ive integer N (t) such t ha t  #00 [h (X0, X1 ; 
V~(t)] ~ 1/2 H(t) for k ~ N(t). Take  U to be open. Then  U c is closed, hence 
compact .  So there is a finite number  of sets Vk(t) covering U c. Let  t h e m  be 
V~(t~), i = 1, ..., m. Thus, if  /c > N = max{N(t i ) ,  i = 1, . . . ,  m} we see t h a t  
5~00[h(X0, X1; Vk(tl)] > (~ > 0, where ~ : min{1/2H(ti), i : 1 . . . . .  m}. Now, for 
every  0 e U c there is an i such t h a t  0 e V~ (t/). Then h (x, y; 0, 00) ~ h (x, y;  V~ (t~)). 

n 

Next ,  as n -> c~, 1/n ~ h (Xj-1, Xj; V~ (ti)) --~ #Oo [h (Xo, X1 ; V~ (t~))] > 1/2 H (t~) for 
i=1 

/c ~ N.  Therefore,  as n -~ c~, 

n 

] iminf [min  {1/4 ~ h (X~-l,  Z t ;  Vk (ti)); i = 1 . . . . .  ~b}] > (~ a. s. [Boo]- 

But  
j=l 

n 

liminf[inf{1/n ~ h(Xj-1, Xj; O, 0o); 0 ~ Uc}] >= 
j=l  

n 

l im in f [min{1 /n~h(X j_ l ,X j ;  V ~ ( t i ) ; i =  1 . . . . .  m}], as n - - ~ .  
T h a t  is, ]=1 

n 

l im in f [ in f {1 /n~h(Xj_ l ,X j ;  O, 0o); 0 e  Uc}] ~ (~ a. s. [Poo], as n--->r 
]=1 

This completes the  proof  of  the lemma.  

L e m m a  1 and L e m m a  3 t aken  together  imply  t h a t  for n sufficiently large 0n 

will lie a. s. [Poo] in U(Oo). I n  other  words, 0n -~ 00 a. s. [Poo], as n ~ ~ ,  and  this 
concludes the  proof  of the theorem.  

3. Extension 

Assumpt ion  (A1) includes compactness  of  the metr ic  space O. I n  practice, 
however,  there occur interesting problems where O is locally compact ,  bu t  not  
compact .  We assert  t h a t  under  this weaker  assumpt ion  abou t  O the result  still 
holds true. In  fact,  the  compactness  of O was used only in proving L e m m a  3. 
I f  we merely  assume t h a t  O is locally compact ,  L e m m a  3 is still true, provided we 
take  U c to be the complement  of U with respect  to a compact  neighborhood C(O) 
of 0, where U is an open neighborhood of 0 contained in C(O). This is all we needed 
f rom L e m m a  3, together  with L e m m a  1, to establish the  Theorem. 
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