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Convergence of Weighted Averages 
of Independent Random Variables 

B y  
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1 .  I n t r o d u c t i o n  

Let {Xk} be a sequence of independent, identically distributed random 
n 

variables and {w~} a sequence of Fositive numbers. Define Sn = ~. w~Xk and 
n 1 

Wn = ~ wk. The purpose of this paper is to study the convergence properties of 
1 

Sn/Wn. We will say that  the weak (strong) law holds for {Xk, wk} ff and only if 
Sn/Wn -+ c in probabili ty (almost surely) for some constant c. 

Let  X be a random variable with the same distribution as the Xk's.  The trivial 
case when X is degenerate (almost surely a constant) will be omitted from con- 
sideration. Suppose ~ w~ < c o .  Then the convergence of Sn/Wn and the conver- 

gence of the series ~ weX~ are equivalent so tha t  Sn/Wn either fails to converge 
1 

in probabili ty or else converges almost surely to a non-degenerate limit. Thus even 
the weak law does not hold for {X~, w~}. We assume from now on tha t  ~ w~ = c o .  

The identi ty 

(1.1) 2n Sn-1 (Wn-1 \ Sn-1 . ( w ~ )  
w.  w .  1 -  w.  x . ,  

n = 2, 3, ... makes it evident tha t  the weak law does not hold for {X~, w#} 
unless lira (wn/Wn) -- O. This condition is also assumed throughout the paper. 
(We note for future reference tha t  wn/Wn --~ 0 and ~ w k  = oo if and only if 
max (w~/Wn) -+ 0.) In  the next section it is shown tha t  if the weak law holds for 
l <k~_n 

{X~, 1} then it holds for all {X~, w~} for which ~ w ~  = co and wn/Wn ---> O. In  
particular this is the case if E I X I is finite. 

The strong law is studied in section 3. The class of sequences of weights which 
gives the strong law for all X with E IX] < co is characterized in Theorem 3. 
This is a much smaller class than  the one studied for the weak law so there is some 
interest in considering other classes of weights. Bounded sequences of weights are 
investigated and even here the strong law does not hold for all X with E I X] < co. 
A sufficient condition (Theorem 4) is tha t  E [ X ]  log +]X I < c o .  Some examples 
are given in section 4. 

BAXT~I~ [1], [2] has recently obtained some very general pointwise ergodic 
theorems for sequences of weighted averages. The special feature of the present 

* This work was partially supported by the Air Force Office of Scientific Research. 



Convergence of Weighted Averages of Independent Random Variables 41 

paper is that  the restriction of the type of process permits consideration of a much 
larger class of weights. 

2. The weak law 

Let F be the distribution function of the random variable X. 

Theorem 1. The weak law holds /or all divergent sequences {wk} such that 
wn/Wn --~ 0 i /and only i] 

(2.1) l i m T P [ I X  l ~= T] = 0  and lim ~ xdF 
T--+oo T-->oo l x J < T  

exists. 
Proo/: I t  follows from the classical degenerate convergence criterion [3, p. 278] 

that the conditions (2.1) are a consequence of the classical weak law (w~ : 1, all ]c). 
n 

Now suppose (2.1) is true. Let Xn~ be Xk truncated at Wnlwk and Sn~ ~ ~ wkXnk. 
Then for all n sufficiently large, since max w~/Wn -~ O, we have 1 

l _ - - < k g n  

n X W~ < e ~ w~ P[Snn =# Sn] ~ ~ P[ n~ :# X~] x l  ~-w~z = w~ - ~ 
k = l  = k = l  

Therefore it will suffice to consider Snn instead of Sn. Now 

E W n  - -  W n  ~ = 1  Izi<W.lw~ 

where # is the second limit in (2.1). Since 

--T1 f x 2 d F : _ ~ l  I - - T 2 P [ , X  , =~T] -F2 fxP[[X]  =~x]dxl-~O, 
[ x I < T  O < x < T  

it follows that  for n sufficiently large 

Var Snn 1 ~_lw~ X 1 ~ 2 f ~=lw 2 __ ~Var nIr ~ w x 2 dF ~ 1 W~ 
W~ W~ k-  W~ ~=1 l~l<W,lw~ -- W~ ~ w~ 

An application of Chehyshev's inequality completes the proof. 
Condition (2.1) is equivalent to the existence of the derivative of the characte- 

ristic function of X at zero [4] and is clearly weaker than E I X I ~ co. 

3. The strong law 

For a given sequence of positive weights {w~}, define for each x > 0 N (x) as the 
number of n such that  Wn/wn ~= x. The rate of growth of this function is the 
critical factor in establishing the strong law. First we prove the fundamental 

Theorem 2.* I/  E ] X  1 < co, EN(]XI )  < oo, and 

(3.1) f x 2 f Ny(~Y 3 ) dy dF (x) < oo, 
y>=Ix] 

then the strong law obtains. n 

Proof. Let Yk be X~ truncated at W~/wk and Tn ~-- ~ wk Yk. Since 
1 

Z P [ Y k : ~ X k ] = ~  f dF=fY(Ix])dF<co, 
k k Ixl~_W~lw~ 

* The condition E N(IX]) ~ oo may be omitted, as it is a consequence of (3.1). 
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Tn/Wn and Sn/Wn converge on the same set and to the same limit almost  surely. 
Furthermore,  if  tt = E X ,  then E ( T n / W n ) ~ t t .  I t  will suffice to prove tha t  
( T n -  E T n ) / W n - + 0  almost  surely, or, by  [3, p. 238], t ha t  ~ w~ Var Yk/W~ 
converges. This sum is bounded by  k 

~ ~ ~ F  . 

]z Ix]<W~/w~ {k:W~/w~>lxl} 

To estimate the sum, observe tha t  

w~ - I ~N(y) N(z) N(Ixl) 
+ 2  

(k:lxl<W~/w~<z} lxl<y<=z 

and 
o o  

N(z) < 2 f  N(y) dy---~O as z - + c o ,  ~-w-= : - V -  

] ~__A) dy, 
Ixl<y<z 

where the integral converges as a result of  (3.1). Thus  

_<2 N(Y--A)dy 
W~ --  y8 

{k: W~/w~> Izl} y--> Ixl 

which completes the proof. 
The next  step will be to find the class of  weights which gives the strong law 

for every X with finite expectation. 

Lemma 1. The strong law /or {X~, w~} implies wnXn/W• --> 0 almost surely 
and the latter condition is equivalent to E iY (c I X [) < oo /or every c > O. 

Proo/: The ident i ty  (1.1) shows tha t  if the strong law holds then wnXn/Wn 
converges to zero almost  surely. Iqow this is equivalent  to 

N dr = y dr wnXn 
n = l  Ixl_-->~rr,/wn _ Wn > e < oo 

for every e > 0. 

Theorem 3. ro t  a given sequence o~ weights {wk}, the strong law holds /or all 
i with E]X]  < 0o i / and  only i / l i m s u p N ( x ) / x  < oo as x -+ oo. 

Proo/: First  suppose tha t  hmsupN(x ) / x  < oo so tha t  iV (x )<  M x  for all 
x > 0. Then E l i  I < oo implies E N ( [ X ] )  < oo and 

f y dy dr  (x) _< S x2 y>lxl - ~ d F =  M EIX[  

so the strong law applies by  Theorem 2. On the other  hand, f f l imsup N(x)/x  = oo, 
let x~ be a sequence such t h a t  N (x~)/x~ ~ oo. Then a sequence (/k) can be chosen 
with sum one and ~ / k x ~  < oo, ~ ]~N (xk) = co. This is a distr ibution such tha t  
E l i ]  < 0% but  E N ( [ X I ) - - - - o o  so tha t  the strong law does not  obtain by  
Lemma 1. 

The first example of  the next  section will show tha t  N (x) m a y  grow arbitrari ly 
fast even when wn/Wn -+ 0 SO tha t  it is in order to consider other conditions on the 
weights. One interesting possibility is a boundedness condition. The bound m a y  
be taken as one so we assume tha t  0 < w~ =< 1 and Wn -~ oo. 
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Lemma 2. For a divergent sequence o/ positive weights bounded by one, 

l h n s u p N ( x ) / x l o g x ~ = 2  as x - - > ~ .  

Proo/: Let Bn = (k  : n ~ Wk  ~ n + 1} and Vn be the number ofk  in Bn such 
that  Wk/w~ ~ x. Then 

~-v~__< ~ w k _ < _ n + l - ( n - 1 ) = 2  
X k~.B, 

so that  vn ~ 2x /n ,  and 

Ix] [~] 1 < v0 ~- 2x(1 ~- logx) N(x) = ~ v~ =< v0 + 2 x ~ ~ = 
n=O n = l  

The second example of the next section will give a bounded sequence of 
weights with limsup N ( x ) / x  log x >= 1 so that  even some bounded sequences fall 
outside the domain of Theorem 3. However, inserting the bound obtained in the 
preceding lemma in Theorem 2 yields 

Theorem 4. I] E IXI log+ IX] < r then the strong law holds for all bounded 
divergent sequences o/weights .  

4. Examples 

The first example will be to show that  N(x) may grow arbitrarily fast. Let 
{nm} be any increasing sequence of positive integers with nl = 1. Take wl = 1 
a n d  for  nm ~ ]c =~ nm+l ,  l e t  

w k = " n m k m . ~ - l ] \  m ] s o t h a t  W t : = W n m  = ( m @ l ) w ~ .  

Therefore, for nm ~ lc ~ rim+l, Wk/w~ = m @ 1 and N (m) = nm for all integral m. 
This shows that  N ( x )  can grow as fast as desired even ff w n / W n  --~ O. 

The other example is of a bounded sequence of weights with 

1 
lira sup N (x)/x log x ~ -~. 

The idea of the construction is the same as in the first example but the boundedness 
condition makes the task more difficult. In  this case, let no = 1, wl : 1, and 
define for nm <:. ]c ~ nm+l 

w~ = W~(1 + x:~)~-~(1 § x~)-~ 

where Xm = e 2 .... and the nm are defined by nm+l - -  n m =  [2 m e2~+~]. Then 

w~ = w ~ ( 1  + xT~)~-~o 

so that  Wk/wk = 1 + Xm. Furthermore 

Wn~+i : ( l  -~ x'~l) nm+l-n~ < (1 @ ~C,~I) O'mxra < e 2m 
W n m  ~ 

and 

W =~m Wn~:+ L ~_e 2~+~ 
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which implies  t h a t  

w~--~ (1 + Xm) - 1 W ~  ~ (1 + Xm) -1Wnm§ ~ xm(1 + Xu) -1 =< 1. 

Hence  the  sequence is bounded  and  

N(Xu  + 1) = nu+ l  ~> n~n+l- -  nm ~ 2Uxm -- 1 = �89 xralog xm -- 1. 
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