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Summary

A result of DooB regarding consistency of Bayes estimators is extended to a large class of
Bayes decision procedures in which the loss functions are not necessarily convex. Rather weak
conditions are given under which the Bayes procedures are consistent. One set involves restric-
tions on the a priori distribution and follows an example in which the choice of a priori distri-
bution determines whether the Bayes estimators are consistent. Another example shows that
the maximum likelihood estimators may be consistent when the Bayes estimators are not.
However, the conditions given are of an essentially weaker nature than those established for
consistency of maximum likelihood estimators.

1. Introduction

This is a contribution to the study of the asymptotic behavior of Bayes decision
procedures. The main results include conditions which imply consistency of a class
of Bayes procedures.

In 1949 Dooz [3] published a rather surprising and fundamental result
regarding consistency of Bayes estimators. Roughly speaking, DooB shows that
under very weak measurability assumptions, for every a priori distribution 1 on
the parameter space ® the Bayes estimators are consistent except possibly for a set
of values § in @ having A measure zero. DooB’s results are summarized and
extended in several directions here in section 3. These results carry over to a large
class of Bayes procedures in decision problems in which the loss functions are not
necessarily convex. This is established in section 4.

In 1953 LeCam [8] (see also [9]) gave some conditions under which Bayes
estimators are consistent, at least for suitable a priori distributions. However,
these arose in connection with maximum likelihood estimators and are stronger
than his conditions for consistency of the latter. In view of Door’s results and the
nature of maximum likelihood estimators it would seem reasonable to expect that
conditions for consistency of Bayes estimators might be found which would be
essentially weaker than those for maximum likelihood estimators. In fact condi-
tions given in section 6 of the present paper, though not comparable with WarLp’s
[11] or LECAM’s conditions for consistency of maximum likelihood estimators, are
of an essentially weaker nature.

FrEEDMAN [4] very recently published results on the problem when the sample
space is discrete and in this paper he proves that in the case of independent identi-
cally distributed variables taking on only finitely many values the Bayes esti-
mators are consistent and asymptotically normal. However he gives an example
in which the set of possible values of the random variables is countable and Doob’s
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exceptional set is the complement of a set of the first category. Even in this case,
then, conditions must be added to Doob’s to ensure consistency.

In section 5 three examples are given which lead to the results in section 6.
The first two are rather trivial. One is a case in which Doob’s exceptional set has
the power of the continuum and the other provides a situation in which the
maximum likelihood estimators are consistent but the Bayes estimators are not.
The third example, however, satisfies Wald’s conditions as well as many other
regularity conditions. Here the a priori measure used determines whether the
Bayes estimators are consistent.

2. Bagie assumptions and definitions

We define the Bayes procedures in the context of Wald’s general decision
theory. Let @ be an arbitrary set, the “possible states of nature”, and B a ¢-field
of subsets of ®. A set A of available decisions together with a g-field € on A is
given. A real valued function w is defined on 4 x ©. Assume wis € X B-measurable.
This is the loss function for the problem and a value w(f, 8) of it is interpreted as
the amount lost when the statistician chooses t € A and 6 € @ is the “true state
of nature”. Let X be given together with a o-field ¥ on X and let X be a random
variable with range X. To each 6 € @ let correspond a probability measure Py on %
so that @ is the index set for a given subset & == {Py, 0 € O} of the family & of
all probability measures on ¥. It will be convenient to give a structure to @ which
we shall assume in all sections except for sections 3 and 4; namely that @ is
homeomorphic to a subset of the infinite dimensional cube K with sides J =[0, 1].

Take for the Topology on K the one induced by the metric d (x, ) :kzlglk— |2 — v |
where & = (1, 2, ...) and ¥ = (y1, ¥2, ...) belong to K. Since we will be con-
cerned only with convergence properties we may without loss of generality appeal
to a Slutsky type of argument and act as though & were in fact a subset of the
cube. In this case it is no loss to assume that the loss function w is non-negative
and bounded above by one. Note that under the assumption that & c K, the a
priori distributions automatically possess moments of all orders.

A space I of decision procedures is given, each element of which is a function
associating with every x € ¥ a probability distribution F, on €. Thus if # is
chosen,a solution to the decision problem will be given once an element 7' € .7 is
specified and ¢ € 4 is chosen according to the distribution Fg given by T (x). We
assume 7 is the set of procedures for which F.(C)is Y-measurable for each C e €.

Let 4 be a probability measure on B. For fixed 1 the Bayes procedures are
defined through functions W and R, on X X @ and 9 respectively, where

W(T(ﬂ’)), 0) = fw(t> 9) Fx(dt) )
4
R(T, 6) = [ W (T (&), 6) Py(da)
X

and.
R(T)= [ R(T, 0) 1(d6).
@

R(T, 0), the expected loss when 7T is chosen and 6 is “true”, is called the risk
funetion.
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Definition 1. A procedure € T is called Bayes for the problem specified by

(w, A) if R(B) = inf R(T).
Teg

In most of what follows, we will be concerned with non-randomized procedures,
those whose values are, for each x € ¥, distributions assigning their total mass to a
single point ¢ € A. In this case it is convenient to equate the procedure 7' to the
function on X whose values are the corresponding points in A. Then we shall write
Tx)=t.

To define consistency we shall need a sequence of decision problems. Let
{0, B}, {4, €}, {¥, A} and w be fixed as above. Let {¥,} be an increasing sequence
of sub ¢-fields of %, Ay, € W11, and assume that A is generated by {%A,}. For each
n=1,2,3,... and for each P in the family & of probability measures on ¥, let
P, be the restriction of P to . Also for each %, 7, is the space of decision
procedures defined on X and such that F.(C) is Up-measurable for each C € €.

Let T be an arbitrary family of subsets F ¢ 6.

Definition 2. We shall say that the sequence {Ty} of decision procedures is
weakly X-consistent if for every F € T and every ¢ > 0,
sup Po{weX: W(Ty(x),0) —infw(t,0) > e} >0 as n->oo.

0cF ted
{T's} is strongly T-consistent if for every F e T and & > 0,
sup Po{xcX :sup[W (Ty(x), 0) — infw(t, 0)] > e} -0 as N -—>oo.
ted

§cF nzN

We will be concerned mainly with the case in which each F contains a single
point. In this case the definition reduces to the usual convergence “in Py pro-
bability” and “with Py probability 17, respectively, of W (T, 0) to inf w (¢, 0) for

ted
each  in |_) F. If in addition (_) ' = @ then we say that {T',} is consistent.
Fel Feg

Let b be a function defined on @ and taking values in the cube K. Unless the
contrary is explicitly specified we shall take as Bayes estimators of b the sequence
of conditional expectations B (d|%y,), n = 1,2, .... This definition agrees with
the one given above when the loss function w is of a suitable quadratic nature. The
use of more general loss functions satisfying suitable regularity requirements
introduces no essentially new difficulties as will be indicated in section 4.

We shall always assume that the sequence of problems under consideration
corresponds to an increasing sequence of g-fields {%,}. However most of the results
obtained in sections 5 and 6 are derived under the assumption that the random
variables involved are independent and identically distributed. Under this assump-
tion X will be the infinite product of copies of a set X, on which a o-field 91 is given.
X will be the vector (Z;, Zs, ...) whose coordinates are completely independent
and have the same distribution P! defined in terms of P as follows. Put U3
= Yl x X and for each positive integer n let X* be the product of = copies of
X1, A» the o-field on X» generated by rectangles with sides in 1. Then the {U,}
will be defined as A, = A" X X, A as the o-field on ¥ generated by the {¥A,} and
the distribution P; of each Z, will be given by P1(4) = P1(4 X X) for each
A € Al where, as before, P; is the restriction of P to U; for some P in &. With
regard to notation, when subsecripts are involved it will be convenient to use P?»
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to represent either the product measure on the n dimensional sets %” corresponding
to P on A or the restriction Py of the measure P to 9. This should be clear from
the context.

3. Doob’s theorems on consisteney of Bayes estimators

Assume throughout this section that 4 is any probability measure on {@, B}
which possesses finite first and second moments.

Roughly speaking DooB’s main theorem, theorem 3.2 below, says that Bayes
estimators are strongly consistent a.e. (1); that is, there is a set B having A4
measure zero such that the Bayes estimators are consistent for all 0 € @ not
belonging to B.

Consider first the independent identically distributed case as defined in
section 2. The assumptions of section 2 are to hold with the exception that @ is as
yet arbitrary. In what follows we shall make use of the assumptions:

A1 {X1, %} and {©, B} are both isomorphic to Borel sets in a complete separable
metric space.

A2 For every A e Ny, P.(A4) ts a B-measurable function.
A 3 If 01 + 02 there exists a set A € Wy for which Py (A4) = Py, (4).

A 4 There exists an U-measurable function f on X such that f(x) = 0 a.e. (Pg)
for each 0 ¢ 6.

Theorem 3.1 (Doos): Conditions A1, A2 and A3 wmply A 4.

Theorem 3.2 (Doos): If A1, A2 and A 3 hold then the Bayes estimalors of the
identity map d: O — O are strongly consistent a. e. (1).

Theorem 3.2 is an immediate consequence of Theorem 3.1 and the fact that the
Bayes estimators form a martingale sequence. The argument is this. If Q=0 x %,
4 the measure on B X U determined by { Py} and A then, writing b (w) = b (6, 2) =6
and fn(w) = fu(®) = E(d|21, ..., 24), the {B,} form a martingale sequence, the
martingale convergence theorem applies and

Bn(w) — B(d|z1,22,...) = E(d|x) as n — oo, a.e. (u). Theorem 3.1 provides
the final step, that E(d|x) = d a.e. (u) because by A4, fbdy = ffdpz for all

¢ ¢

C e BxUsothat b = fa.e. (u). b is then equivalent to an A-measurable function
so that E(d|x) = b a.e. (u). The theorem is proved because if € = {w:fy(w)
- d(w)} and Ap = {x:f,(x) — 0}, then

1 = u(0) = [ [dPsA(d6) = [ Po(A0)2(d0)
[©]

O 4y

and

Po{fn—>0}t=1a.e. (1).

A result similar to theorem 3.2 but valid for arbitrary systems {¥, %} may be
obtained by using A4 as a condition, thus bypassing theorem 3.1. Such an exten-
sion may be of interest for applications to the theory of inference for stochastic
processes. The same considerations as those for theorem 3.2 prove theorem 3.3.
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Theorem 3.3: If :60 — K is a B-measurable mayp to the cube K and if A2 and
A4 are satisfied, then the Bayes estimators of b are strongly consistent a.e. (A).

Letting @ be arbitrary but restricting the o-field B on @ and continuing with
the independent, identically distributed case, one can prove the following result
as a consequence of results of LE Cam [9]. Assume that B is the completion for 4 of
the g-field generated by the functions {Pj(4), A € U1} on 6.

Theorem 3.4 (e Cam): If 9:©@ — K is B-measurable, then the Bayes estimators
of b are strongly consistent a.e. (1).

Proof: For all functions f: @ — R, which are equivalent for 4 to B-measurable
and A-integrable functions, define an index of approximation

an(f) = inf@f [1£(8) — ki (z)| Py (dx) 2 (d6)
hne

where § is the space of Uy-measurable real valued functions. Then lemma 1 of
[9] says that the space of ““accessible functions, i.e., functions f for which o, (f) — 0
as n — oo, is the space of functions equivalent to A-integrable functions which are
measurable for some sub o-field B’ c B.

In particular, for each A4 € A’, the function Py(4) is accessible since it is
equivalent to the limit of %,-measurable functions %, defined by.

hyp(x) = 1/n (number of coordinates zj, 22, ..., 2, which are in 4). Hence by
lemma 1 of [9], for each accessible function f there exists an Y-measurable function
k such that

(1) [11(6) — k()] Po(dw) 2(d6) = 0.

By the martingale property of the sequence {E (f|%n)} and by (1), the result
follows.

Thus far we have been primarily concerned with the independent identically
distributed case. If {%,} is an increasing sequence, measurability assumptions
replacing A2 and A4 imply the conclusion of theorem 3.3.

Let {¥, %} be a measurable space. Let {%,} be an increasing sequence of
sub o-fields of U; A, € Uyt and A, — A. If f is a function to @, write f~1(B) for
the inverse image of % under f.

Theorem 3.5: If P.(A4) is B-measurable for every A € U and if there exisls a
function f on X such that 0 = f(x) a.e. (Pg) and such that {~1(B) c U, then the Bayes
estimators of b = f~1 are strongly consistent a.e. (4).

4. Extension of Doob’s results to a class of procedures

By the definition in section 2, 8, € 7, is a Bayes procedure for (1, w) if for
each z e X it prescribes a probability measure F, on € which minimizes the
average risk

(2) R(T) = [ | [w(t, 6) Fy(dt) Pj (dx) A(d0)

over all procedures 7' in .7 ,, the integrals being taken over the whole range in
each case. The inside integral is ¥, X B-measurable so that R (T') may be written as

@) R(T) = [ [ fw(t, 0) @ (dB) F(dt) P (de)
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where Q7 is determined a.e. (Py) by @ (B) = Ey(d|x), b = set indicator of B, for
each Be B and P,(4) = J'PZ}(A)}L(CZG), AeWy,, n=1,2,.... Now if Ty mini-
mizes (2) then for all T' € ., the inside integral in (3), namely

fle, T) = [ [w(t, 6) Qu(d0) Fr(dr),

bears the relationship f(x, T) = f(x, To) a.e. (Py) to f(x, T'). That is, suppose Ty

minimizes (2). Then f f(x, To) Py (dx) = inf J' f(x, T') P, (dx) for all A € Uy because
4 TeT n
otherwise there would be a set 4 with P, (4 ) > 0 and [' f(z, To) Py (dx) > f flz

Ty Py (dx) for some 71" e .7 ,. But then, since I, is convex, T = I, T’ +
+ (1 — I4) Ty would belong to 7, and would have E(T') > E(T").

Further, if A is the exceptional set on which f(x, T) < f(», T) and if
Py,(|JAr) = 0 then T minimizes f(x, T'), the inside integral in (3), a.e. (Pn).

TeT »n
Final{y since f(x, T) is an average over A, its integrand is for some ¢ € A less than
or equal to f(z, To). To summarize, provided P, (UA 7y =0, T¢ minimizes
TeT n
(2) == T'o minimizes fw(t, 0)Qr (db)a. e. (Py). We shaﬁi take this as a condition
in Lemma 4.1 and in what follows.
5.A P,(\JAr) = 0.
TeT n

Lemma 4.1 states that these Bayes procedures are strongly consistent a.e. (1)
for a class of loss functions which include the usual ones in problems of testing and
estimation.

Lemma 4.1: Suppose
(i) A5 and the conditions of theorem 3.2 hold,
(ii) for each 6 € @, w(t, 0) attains its minimum at t(0) € 4, and
(iil) for every e > 0 and each G € O the sets B(t, Vg, &) defined by
B(t, Vo, &) =4{0" e Vo:|w(t, 0') — w(t,0)| < e}
where Vy is any open neighborhood of 0, satisfy the two conditions
B(Vg, &) =) B(t, Vo, &) belongsto B and A(B(Ve, ) >0.

ted
Then the Bayes procedures for (A, w) are strongly consistent a. e. (A).
Proof: The discussion preceding lemma 4.1 establishes that the Bayes proce-
dures B, correspond to points {t, (x)} in 4 which minimize

g (t, %) fw ¢, 0)YQr(d0)
a.e. (Py). Recalling the definition 2 and taking the sets F to be those consisting of
single points outside a set having 4 measure zero, we need only show that
w(tn(x),0) ~w(t(6),0) a.e. (P), where P(4)= [Py(4)A(dh), 4.
By condition (iii) and since gy (fx (%), #) = inf gx (¢, ) we have for any ¢ > 0,
ted

(4) (w(tn (%), 0) — &) Gz (B(Vo, &) = gu(t(0),2) a.e. (Pn).

v (i), @ (B(Vg, ¢)) =1 a.e. (P). On the other hand since w(t, .) is assumed in
sectlon 2 to be B-measurable for each {, (i) also says that the Bayes estimators of
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w t(d) are strongly consistent a.e. (1). That is, the right side of (4) converges to
w{t{8), 0) a.e. [Py) for almost all 6(2). Hence lim sup w(l,{z), 8) < w(t(0), §) a.e.
(P}. Further, since w(ty,(x), 0) = w(t(6), §) for all n, so is the limit inferior of the
sequence and this proves the lemma,

The next lemma, allows us to restrict discussion to the a posteriori distributions
{@%} in the study of consistency of Bayes procedures for problems in which the loss
functions satisfy the conditions of lemma 4.1.

Lemma 4.2: If w satisfies the conditions of lemma 4.1; if the Bayes procedures for
(A, w) correspond to the sequence {t,} on X and if the distributions {Q%} converge a.e.
(Pg) to the indicator of {8}, thew w(ly, 8) — w{i(®), 0) a.e. {Pg). (That is, the Bayes
procedures for (1, w) are strongly consistent for {0}).

Proof: The inequality (4) follows from the conditions of lemma 4.1. Since
0 < w = 1 by assumption (sec. 2).

Jw(t(9), 0) @5 (d6) < @ (B*(Vo, 2)) .
B(Vg.®)
Also,
Jwl(1(6),0) Q3 (d0) < (w(1(5),0) 4 &) & (B(Vs, ¢)) .
R{Vg, &}
Add the left sides to get the right side of (4) and from these inequalities, whenever
Q7 (B(Ve, €)) > 0, (4) gives
wita(2),0) =26+ ST 4 w(t(0),6)

Since w (£(8), 8) < w(ty, 0) for all », and by assumption Q7 (B(V,, £)) =1 a.e.

(Pg), it follows that lim w(t, (%), B) = w{t(8), B).

n—>

5. Examples

In this section several examples are given in which Bayes estimators are not
consistent, though in each case consistent estimators do exist.

Ezample 1. Take @ to be the real line. (@ is homeomorphic to (0, 1); f(0) = 1/2
(arctan 0 -+ 1), for example, defines a 1 — 1 bicontinuous map). & the family of
distributions whose restrictions P; to U; correspond to the N (v, 1} distributions
on the line, where () =1 — 6 if 6 belongs to the Cantor set on [0, 1] and
2(0) = 0 otherwise. The Bayes estimators of the identity map ¢ on 0,

Zzlz

i=1

converge a. e. (Pp) to b (8) for every 6 ¢ @. However, consistent estimators of ¢ do
exist by a theorem in [6] since @ is of the 1st Baire class for the distance | P — @
on 9.
(3) | P— Q] =2sup|P(4) — Q(4)].

A&

Ezxample 2. Tn example 1, the maximum likelihood estimators estimate the
same function on @ as the Bayes estimators do. Examples are easily found in
which maximum likelihood estimators are not consistent but the Bayes estimators
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are. For instance, BAHADUR’s example 2 in [7] satisfies Doo®’s conditions and &
is a countable set. The maximum likelihood estimators below are consistent though
consistency in the case of the Bayes estimators depends on the choice of the a
priori distribution ; it fails for the uniform distribution on @.

In this example, ® = [1, 2), 1 is Lebesgue measure on the Borel sets of 6.
X = (%1, Zg, ...) as usual and the distribution of Z; has uniform density on [0, 1)
if =1 or on [0,2/6) if 1 < 0 < 2. The maximum likelihood estimator for
9 (0) = 01is for each n, putting ¥, = max Z;,

i=1,..,n

1 Y, <1
(X)) = when

2/Y, Y,.>1

while the Bayes estimator is
(n -1 2nt2_1

n+2 2ntl ] Ypsl

J when

X)= 27,
ﬁ’ﬂ/( ) f@n+1d6

i
2]V, Y,>1.
[6mdo

Ui

So for § = 1,%n is consistent while 8, is not.
It should be noted that {f,} would be consistent on & if instead of 1 one took
for the a priori distribution

AMM=al-+-(1—a)la where 0<a<<1l and Ay(B)=1 if
Bn{l} =0, 1(B)=0 if Bn{l}=49.

Example 3. WALD’s conditions for consistency of maximum likelihood esti-
mators in [17] are not satisfied in either of the above examples and it is reasonable
to ask whether these conditions would imply consistency of Bayes estimators. The
answer is no and example 3 substantiates this. Besides WALD’s conditions the
class of distributions considered here meet other regularity conditions. In parti-
cular, | Pj— Pg || — 0 as |6 — 0y| — 0 and the densities are continuous. We
shall go into some detail here because the arguments used to show the lack of
consistency lead directly to the results in section 6. In this example the consistency
or lack of it is determined by the a priori distribution.

Let @ = [0, 1/2], Py is defined through the density fp of any one coordinate
Zof X,

-1

fo(2) = “ 7% Itow (2) + [a(6)z -+ b(0)] Tis.20) (=) + C(6) Ii26,11 ()

26
1— [f(z)dz
where I 4 is the indicator of 4, C'(6) = ﬁ ,

1

6+062 1

and b(f)=2e °F% _(C(h).

C0) —e
[

Z. Wahrscheinlichkeitstheorie, Bd. 4 2

a(f)=
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For 6 = 0, C (D) is defined by continuity to be 1 and fg becomes uniform on [0, 1).
The following properties of these distributions will be used. Put 6y = 0. Then

(i) | P} — P§,) is an increasing function of § and for
6 <1/4, | Pj — P| <46.
That is,
6 1 20
| P} — P, =y(1 —e z+"2>dz—}—f]a(@)z—l—b(@)—l[dz-{- (1 —26)(C(0)—1)
B

0

1

<H+ 2{0(0)%"”97] +@1=20)(CH—-1).

1 1
For 6 <, C(0) <{_—gg%° that

0
| Ph— Pi,| <0+ 555 +20<46.
Jfo(2)

(ii) H(0) = E, log Fone) is an inereasing function of 6 in a neighborhood of 8.
In particnlar, when § < .2, H' () > 1. To see this compute

1

H(O)=log -5 + a—}g(g(ow» —g(e‘ T)) + (1 —20)log C(6)

where g(y) = y log y — y. Then

1
, 1 2 -1 1 1
H©O) = 5056 — Zz((e)) (g(U(ﬂ)) -9<6 o 0)) + 26 1sC0) + 5 +
1—-26)C(0
(—C@);Q — 2log 0(8).
1
Sinco 0a(f) = C(B) —e +* &' (6) > — “0) and since § < 2, 9(C(0)) —
S E

— g(e is negative and greater than — 1. Since C(0) increases from 1, the

third and fourth terms are positive and the last term is greater than — 2. Finally,

a(f) > — b so that

, 1 g 1 62
HO>505g e~ 2> 008 1-0

(iii) Apply LECam’s corollary 4.1 of [8] to get

—2>1.

. 1 & i
lim sup ]?ZPg J{Z((;)) —H(@O)] =0 a.e. (Py,).

k—>co 06

Thus for any ¢ > 0 and for each z ontside of a set having P, probability 0, there
is an (g, z) such that

1
sup | _-log p§(x) — H(f)| <o
ge@
or
(6)
for n > N (g, x). Here we use the fact that pj, (x) = 1 on X.

6'/»(H(H)) - 7 (H(6) o)

<pglx)<e
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Let V =0, £), ¢ < .1, and write the Bayes estimates {8,} as
Bul) = by (x} QUV) + bu(w) @ (V)

where b, and b, are the averages aver V and V¢, resp. Then if Q*(V) — 0,
lim inf B, (x) = ¢ and {f,(x)} does not converge to 0. We shall show that this

H—> 0

happens a. e. (Py).
By (iii) and (ii), for almost all {Ps,) and for n > N (g, x),

(7) jpg @) > [ &9 500 > MO 1426, 2)).
[2e,.2]

1
Let Vo= |0,55]. For n>2,| P — PL| < n| P} — Ph] <4n0 by () so
that for any d > 0,
P,,O{ > é}

awn)ff b dPy A(df)

<5777 feme

1 [P
e | —1
uvn)fp;; Aab)
Va 4

For A, the set in brackets,

PQQ(UA)g Z%—a@ as N -—>oo.

k=N

This gives convergence to 1 a.e. (Pg,) but also for

oo oo a
xe ( N U A;c) . and for some N; (6, z),
N=1k=N
(8) AVn) (1 —0) < [ppA(dB) < (L4 6)A(Vy)
Vﬂ.
forn > N1(4, z).
Finally, using (iii) again, this time on ¥V — ¥,

9) [p3a(d0) < [0 )(d6) <

Ve Vn V—Va

n(H (&) +¢)
e

A(V).

Putting (7), (8) and (9) together, we have

[pi@adn [ ph) A(d0)
1%

1Y

[ pE() 7(d9) T oo aidey, = nlo—H2 ) n[H(e) — H(2e) + 26]
fpé‘(r) 7(df) < fp'g‘(x) A(d6) <Cid(Va)e +Cy¢
) e

(V)=

where C1 = (1 4 §)[A[2¢, .2])]71 and Oy = A(V)[A([2¢, .2])] 1.
So far o has been arbitrary and so has 4. If p <Ii(2—£);ﬂﬂﬁ, then the second
term — 0 a. e. (Py). Also, if (A(Vy))1/mee—~HZ9 1 then the first term does the

o%
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same thing. For example, if 1 has the density C3e~® on [0, 1/2], then A(V5,)
< Cae~" and the first term is less then 0 Cge~®* —e+H2e)

However, if 4 were chosen to be uniform on [0, 1/2] then the {§,} would be
consistent at 69 = 0.

6. Conditions for consistency of Bayes procedures

In this section we assume that the conditions of lemma 4.1 are satisfied so that
lemma 4.2 applies and we may continue to restrict discussion to the a posteriori
distributions @7.

If § is a norm on @, @ compact and ¢: P§j — 0, then example 3 shows that
Doow’s conditions together with the condition that ¢ and its inverse be continuous
for the distances d and g, o (P, @) = | P — @|, are not sufficient for consistency of
Bayes estimators. Neither is the stronger condition of continuity of density func-
tions. We remark here that WALD’s conditions imply the existence of uniformly
consistent tests of the hypothesis that Z has the distribution P}, against the
alternative that the distribution is P} for some 6 in the complement of any open
neighborhood of . The existence of such a test will be one of the conditions in
each set of conditions for consistency given in this section. A useful result in this
connection is a necessary and sufficient condition due to Krarr [7]. This and an
inequality which we state as lemma 6.1 will be used to establish the theorems
which follow.

Let {Pg, 0 € O1} and {Qs, 0 € @3} be two families of probability measures on
. On the space of probability measures on U define the inner product o (P, @)
= fl/ﬁd,u where p is any o-finite measure with respect to which P and ¢ are
both absolutely continuous and where p and ¢ are the corresponding densities. If
there is a set 4 € U such that P(4) = 0 and @(4) = 1 then P and @ are ortho-
gonal. Then g has the following properties:

Hosp=s1l
(10) (i) o(P, @) =0 <> P and @ are orthogonal and ¢ (P, Q) =1« P=@Q.

(iii) 2(1 — (P, @) =[P — Q| =2V1 — ¢;(P, @.
Let o4 (P, Q) = 0(Pn, Qn) = “/Md[un where Py, @y, jin ave measures on 2, c U.
£

Let M and M2 be the spaces of all probability measares on &1 and @y, respectively.

Any sequence {@n} of U,-measurable functions on X with 0 < ¢, <1,
n =1, 2, ...is a fest of a hypothesis that a probability measure on 2 belongs to a
given set against the hypothesis that it belongs to an alternative set. {@,} is
consistent for the hypothesis P e { Py, § € @, } against the alternative P {Qy, 0 @3}
if Bo(gn) —>16,(0), 0 € @1 U Oz. {@n} is uniformly consistent if the convergence is
uniform on &, U @s,. _

The theorem in [7] then says that a uniformly consistent test exists if and only if

sup on (B, (Py), B3, (@) >0 as m—o00,d(0)=0.
A1eMiAzeMa

Lemma 6.1 is known in perhaps a variety of different forms. Its proof makes
use of inequalities which may be found, for example, in a paper by CHERNOFF [2].
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The independent, identically distributed case will be assumed in what follows and
the lifting of this restriction will be discussed following the proof of theorem 6.4.

Let #; = {Po, 0c 91}, Py = {Po, 0e @2}, O = {00}, Oy = Vgn where Vg, 18
any open neighborhood of 8.

Lemma 6.1: If there is a uniformly consistent test of the hypothesis Pye P
against the alternative Py € Py then there exists a real number r > 0 and a positive
integer k such that | Pg, — Pn|| = 2(1 — 2e~™") where mk < n << (m + 1)k and
Pr = B, (Py).

Proof: Let {@n} be the uniformly consistent test assumed to exist. Then there
exist & > 0 such that B, (@) < 1/8 and Ee(ps) > 1 — 1/8 for all € ¥j, and
n=k Forj=12,.. let Xp,; = {(z(jq)k.}ll, 21205 s zj]c)}. On Xj ; define
random variables Pk:7 — Pk (Z(j—l)k+1', Z(j—l)k+2': ens ij), ] = 1, 2, ... Then

L
Yp=1/m Z @k, ;is a sum of independent identically distributed random variables
i=1
with expectation Eg(Y ) = Eg(pr) and by the strong law of large numbers

0= 0o
for
he Vi,

Eﬂo'((pk) <

Yu—

w1 oo

Eo(pr) >
a.e. (Pp).
The argument to prove the lemma depends on the fact that P§*{Y, < 1/4}

decreases to 0 exponentially, uniformly on V§,. Write U = ¢z — 1/4 and suppose
t <0, treal. Then

Pgnlc {m (Ym _ %) g 0} § EG (etm(mellél)) — (EeetU)m .

We shall show that for some # and C, Ege!’ < O < 1. Now ¢!V is bounded for ¢ in
any neighborhood of the origin and Ege'U is continuous in ¢. By looking at the
slope of the curve, EgUe'V, it will be seen that in some interval containing 0
Eqe'U is strictly increasing to 1 as ¢ increases to 0, whatever be 6 ¢ V7§, ; in fact
EqUe'W > 1/2 on V§, for 0 > ¢ > some #o. That is, at £ = 0 the slope is positive
and the valueis 1. For¢ < 0,

!EoUetU—*'EgUl <Eg[|UH€tU——1]]<E0|61U—ll .

Also, e’V — 1| < max(l — ¢f, et — 1) < max(|{],e* — 1) so that for some
to < 0, max(|to],e™™ —1) < e and |BoUe'V— ByU| < e if fp<t=<0. In
particular, for e > 1/8, BoUe'V > By U — ¢ > 1/2 for all & V§,. It follows that
for some r1 > 0, EpefeU = e~™ < 1 and that

P”{Ym§%}:fP§”{Ym§7i~}lg(d6)ge’”’“ for n=mk.
v

By using a similar argument with f = 0 an r2 > 0 may be found such that
Py {Yy, = 1/4} < e ™2 for n Z mk. For r = min (ry, 7») it follows that
| P§, — Pr| = 2sup| Py, (4) — Pr(4)] = 2(1 — 2e-mr)
Ae¥Un
for mk < n < (m - 1)k by considering 4 = {¥,, < 1/4}.
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For theorems 6.1 through 6.4 we assume the independent identically distributed
case and also the existence of a measure with respect to which all the P} admit
densities pg. As before H is defined by H (6) = E,, (log ;’D : ((zz)) ) .

Theorem 6.1: Suppose that (1) the densities may be chosen B X Wy-measurable.
(i) Ve B is a neighborhood of By and there is a uniformly consistent test of the
hypothesis Pg = Py, against the alternative Poc {Pg, 0 € V¢}, and (iii) for every
e > 0V contains a subset W such that A(W) > 0 and H(0) > — & on W. Then
Qr(Ve) >0 a.e. (Pg,).

1 1
Proof. Let py = WVT)ng (dh), qn = T(Wfpgl(dﬁ) and P, defined by
Ve W

Py(A) = [ P}(4)4(d6), A € Ly Then for [ pi(2)2(d6) > 0, Q4(Ve) < E”;V;é’"(%)
It will be shown that py, (2)/gs (x) —> 0 exponentially a. e. (Pg,).

By lemma 6.1 there exist numbers 4 and r such that for mk < n < (m + 1)k,
| P5, — Pgl| = 2(1 — 2e-mr). Thus by (iii) of (10),

_mr
2

Py, {f::>8n} —Qn(P00,P1 )=— l/l— 1—26"'”")2_2 en 1/1——77"—7
_
For ¢y =c¢
_mr _mr
(11) Pe,,{_p?">e 4l§2e *
Py,

™m

For 4, = {p” >e Zk}. Ay is contained in the set on the left side of (11),
peo

N

2er2e *F js greater thanthe right side and it follows from (11) that
P@u( N U An) = 0. That is, for almost all x(Py,) there is an integer Ny ()

N=1nzN
such that
.
(12) p:(x) <e % for each n> Ni(x).
Py, (%)
To find a bound for g, /pf,, define averages @, (, 6) = — Z (log p§ (2:) — logps, (1)) -

For each 0, ¢, (, 0) — H(0) a. e. (Py,) by the strong law of large numbers. But
also by the B X U,-measurability of ¢, and by Fubini’s theorem there is an x set
with P, measure zero such that for all x in its complement @, (z, ©) — H a. e. (»),

v(B) = _ATIVWMW N B), Be B. For fixed £ > 0 and W given by condition (iii),

an application of Fatou’s lemma and a Hélder inequality gives

lim inf | e7@9 y(d0) = [e7® y(df) > e~*

n—roo



On Bayes Procedures 23

so that for some Ng(x) and each n > Na(x)

(13) fermn@0y(dh) = D00 = g=ne g o (P,).
pe(, ()
By (12) and (13)
QLVe) £ 5 A(V) ( 2 ~e) for all n > max(N;(z), Na(x)) a. e. (Pg,). Theresult

w) ¢
follows by choosmg g < % .

The second set of conditions for consistency of Bayes procedures for (1, w), w
satisfying the conditions of lemma 4.1, also involves I and the existence of a
uniformly consistent test and it follows almost immediately from theorem 6.1.

Theorem 6.2 *: Suppose (1) the densities pg may be chosen B X Ui-measurable,
(i) H(0) =0 as 0 — 0, (ili) for every meighborhood V B of Oy there exists a
uniformly consistent test of the hypothesis that Py = Py, against the alternative that
Py {Pg, 0 Ve}. Then for every A which assigns positive probability to the open sets
in @ the Bayes estimators {B,} converge to O a. e. (Py,).

Proof. Write fa(¢) = b (2) @(V) + bu (@) Q2(V¢) where

(V)
and b, is a similar average over V¢. By assumption, for every ¢ > 0 there is a neigh-
borhood W£ c V of 6 such that A(W,) > 0 and H(0) > — & on W,. By theorem

6.1, 6(Bn, by) — 0 a. e. (Py,). Also V was any neighborhood of 6y and 3(bx, 6o)
= sup{d (0, 0 :0¢V,0 ¢V} This establishes the theorem.

The next two results depend on the local behavior of the a priori measure 1.
Let We={0:] Py — Pg,|| < e}

Theorem 6.3: Suppose (i) ps is B X Yi-measurable, (i) for each neighborhood
V e B of O there exists a uniformly consistent test of the hypothesis Py = Py, against
the alternative Pge{Pq, 0 € V¢} and (iil) for each V there is a sequence {en} of
positive numbers such that ne, — 0 and Hm inf[A(V n W, ]V = 1. Then f, — 6o
in Py, probability. n>oo

Further, of eq = #for some § > 0 then B — O a. e. (Py,).

Proof. The idea of the proof for theorem 6.1 may be used to prove this.
Compare the average densities on V¢ with those on neighborhoods of 6. The

ljf—?% A(d6) tends to zero

second condition implies that the average p, = e

Pe
Ve o
exponentially a.e. (Pg,). It also implies that for neighborhoods V,c V of g
chosen so that | P§ — Pf, | — 0 rapidly enough uniformly on V,, the average

Gn = A—(%/”) f Py, A(d0) tends to 1 either in Py, probability or a.s. Condition

(iii) then insures that @f(V°) = —j:%m—())

according to the possible choices for {e,} in (iii).

0 either in P, probability or a.s.

* Theorem 6.2 and a result similar to theorem 6.3 have been announced in page 48 of the
July issue (1964) of the Proceedings of the National Academy of Sciences.
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Specifically, conditions (i) and (ii) imply inequality (11) and (12) so that for

%"

some integer £ = landrealr > 0,p, e for all sufficiently large n, a. e. (P, )’

On the other hand, taking V, =V n W,
1 12 V3
(14) Peo{|Qn—1|>5}§ {lgn—1| Py my—n)fvnnpe—Peu“}-(d@)

for any 6 > 0. Since on V,, the integrand is less than ney, ¢ — 1 in P, pro-
bability. By condition (iii), since

15 nTe A(V) pal=) 2 nA(Vc)
1% %)= I 7w é([uvnnl/f») (@

the first conclusion will follow.
To prove the second statement, suppose (iii) holds with ¢, < a2-s - Take the
union of the sets in the left side of (14) and sum the right side over all n == N. Then

Po(J{]gn — 1] >} = 5 2 T /Vnnpg— AR e > nen.

nzN

Let N — oo and this gives g, — 1 a. e. (Pg,). By (15), @5(V°) — 0 a. e. (Py,).

Since V was arbitrary, the theorem follows from the form of 8, () in the first
line of the proof of theorem 6.2.

This provides a convenient verification of the fact that the Bayes estimators in
example 3 are consistent when 1 is uniform on [0, 1/2].

Theorems 6.1, 6.2 and 6.3 do not depend on the structure of @. For the next
result, assume that @ is a locally compact metric space. Let ¢ be the distance on @,

Theorem 6.4: Suppose (i) there exists a compact neighborhood V of Op and a
uniformly consistent test of Pg = Peu against Poe {Pg, 0 Ve}, (ii) for 8"V,
| Po — Py | — 0 when 6(0,0') =0, (iii) for {ex} and {W,} as in theorem 6.3,
lim inf(A(V N W,))Vn =1, (iv) p} ¢s B X Uy-measurable. Then Bn — ¢ either

7—»00

in Py, probability or a. e. (Py,) according to wheter gy, may be chosen so that ne, — 0
or ng, — 0.

Proof. Since V is compact so is ¥V N W¢ where W is any open neighborhood of
0o with W c V. Conditions (i) and (ii) imply the existence of a uniformly consistent
test of Py = Py against Py e {Pg, O € W¢}. The result then follows from theorem
6.3.

The assumptions of these theorems are often easily verified. For example, the
conditions of theorem 6.1 are satisfied in the example of Krergr and WorLrowIrz
[6] in which @ is the upper half-plane {— co < y < -} o0, 0 < ¢ < oo} and the
underlying family of distributions are those given by the densities

p) = 2V2n[eXP{ (z—2u)2}+%exp{_(zz—gl;)i}]7 — oo <2< 0.

It may be noted that when the family of distributions & consists of distributions
on the real line, if @ is compact and | P — Q| is equivalent to the Kolmogorov-



On Bayes Procedures 25

Smirnov distance and the conditions of theorem 6.1, for example, are usually
easily verified.

Although the results have been stated for the independent identically distri-
buted case, similar results follow when there is some sort of weak dependence. For
example the conditions of independence and identity of distributions came into the
proof of theorem 6.1 in the use of a strong law of large numbers and the use of
lemma 6.1 in conjunction with the fact that o (P, Q%) = p, (P, @) = o}(P, @)
in this case. Similar strong laws of large numbers are known when certain types of
dependence are involved; e. g., Karz and THOMASIAN [§] in the case of discrete
Markov processes satisfying DoEBLIN’s condition. Here the H of the theorems
would be replaced by the expected value of the log of the ratio of densities taken
with respect to the stationary measure sz on 2 which corresponds to the 6o of the
theorem. When the conditions p(P} @7) < of(P, Q) and |Pj — Pyl =
2(1 — 2e~¢7), ¢ > 0 are met (again P, is the average with respect to 1 of the
distributions Py on Uy, 6 € Ve), the arguments in the proof of theorem 6.1 apply
to obtain the same conclusion. The Bayes estimators {f,} are still consistent for
each 0y & @ for which the conditions hold for all ¥ with 2(V) > 0.

Further the existence of a uniformly consistent test in theorem 6.1 may be
replaced by a condition such as that I () << — # on V¢ for some 5 > ¢ to obtain
a corollary to theorem 6.1.

Corollary to theorem 6.1: I} (i) the densities p! may be chosen® X Wy-measurable
and (i) A(V) > 0, H(0) < — n on V¢ for some 5 > 0 and H (0} > — & on some set
Wec V with 2{Ws) > 0 for each & with 0 < & << n, then Qg (V) — 0 a.e. (Py,).

This follows from theorem 6.1 since

> llog pl (1) — log p},(20)] = @a (. 6)

i=1

may be used as a test statistic to construct a uniformly consistent test of the
hypothesis Py = Py, against the alternative Pge {Pg, 6 € V¢}. Alternatively,
a similar argument to that for (13) gives

lim sup ﬂ%/‘e"’"(”’ﬁ)l (df) < Z(IVC_)—feH(B)/I (d0) << e-n

n—roco Ve Ve
a. e. (Py,), so that a. e. (Pg) for all sufficiently large =,
1

_t [ eron0) = Pn — p—mn
s [P M) = B < e,
Ve Db

This together with (18) gives @7 (V¢) < ce~"@~ 9 and the result. Similar variations
may be obtained for theorem 6.3.

Extensions in other directions are possible; for example the class of loss
functions considered could be increased.

I am deeply indebted to Professor L. LECam, under whose guidance I obtained the results
established in my thesis and given in this paper.
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