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Summary 
A result of DooB regarding consistency of Bayes estimators is extended to a large class of 

Bayes decision procedures in which the loss functions are not necessarily convex. Rather weak 
conditions are given under which the Bayes procedures are consistent. One set involves restric- 
tions on the a priori distribution and follows an example in which the choice of a priori distri- 
bution determines whether the Bayes estimators are consistent. Another example shows that 
the maximum likelihood estimators may be consistent when the Bayes estimators are not. 
However, the conditions given are of an essentially weaker nature than those established for 
consistency of maximum ]ikelihood estimators. 

1. Introduction 

This is a contribution to the study of the asymptotic behavior of Bayes decision 
procedures. The main results include conditions which imply consistency of a class 
of Bayes procedures. 

In  1949 DooB [3] published a rather surprising and fundamental result 
regarding consistency of Bayes estimators. Roughly speaking, DooB shows that  
under very weak measurability assumptions, for every a priori distribution ~ on 
the parameter space O the Bayes estimators are consistent except possibly for a set 
of values 0 in O having ~ measure zero. DooB's results are summarized and 
extended in several directions here in section 3. These results carry over to a large 
class of Bayes procedures in decision problems in which the loss functions are not 
necessarily convex. This is established in section 4. 

In  1953 L]~CAM [8] (see also [9]) gave some conditions under which Bayes 
estimators are consistent, at least for suitable a priori distributions. However, 
these arose in connection with maximum likelihood estimators and are stronger 
than his conditions for consistency of the latter. In view of DooB's results and the 
nature of maximum likelihood estimators it would seem reasonable to expect that  
conditions for consistency of Bayes estimators might be found which would be 
essentially weaker than those for maximum likelihood estimators. In  fact condi- 
tions given in section 6 of the present paper, though not comparable with WALD'S 
[11] or LECAM'S conditions for consistency of maximum likelihood estimators, are 
of an essentially weaker nature. 

FREEDMAN [4] very recently published results on the problem when the sample 
space is discrete and in this paper he proves that  in the case of independent identi- 
cally distributed variables taking on only finitely many values the Bayes esti- 
mators are consistent and asymptotically normal. However he gives an example 
in which the set of possible values of the random variables is countable and Doob's 
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exceptional set is the complement of a set of the first category. Even in this case, 
then, conditions must be added to Doob's to ensure consistency. 

In  section 5 three examples are given which lead to the results in section 6. 
The first two are rather trivial. One is a case in which Doob's exceptional set has 
the power of the continuum and the other provides a situation in which the 
maximum likelihood estimators are consistent but the Bayes estimators are not. 
The third example, however, satisfies Wald's conditions as well as many other 
regularity conditions. Here the a priori measure used determines whether the 
Bayes estimators are consistent. 

2. Basic assumptions and definitions 

We define the Bayes procedures in the context of Wald's general decision 
theory. Let 0 be an arbitrary set, the "possible states of nature", and !~ a g-field 
of subsets of O. A set A of available decisions together with a g-field @ on A is 
given. A real valued function w is defined on A • O. Assume w is ~ • !~-measurable. 
This is the loss function for the problem and a value w(t, O) of it is interpreted as 
the amount lost when the statistician chooses t + ~ and 0 e 0 is the "true state 
of nature". Let ~ be given together with a g-field 9~ on ~ and let X be a random 
variable with range ~. To each 0 ~ O let correspond a probability measure Po on 9~ 
so that  O is the index set for a given subset ~ ~ {P0, 0 ~ O) of the family ~ of 
all probability measures on 9~. I t  will be convenient to give a structure to O which 
we shall assume in all sections except for sections 3 and 4; namely that  O is 
homeomorphic to a subset of the infinite dimensional cube K with sides J = [0, 1]. 

o o  

Take for the Topology on K the one induced by the  metric (~(x, y) ~ 9~-~ l xk -- y~ ] 
- 1 -  

w h e r e  x = (Xl, x2 . . . .  ) and y = (Yl, y2 . . . .  ) belong to K. Since we will be con- 
cerned only with convergence properties we may without loss of generality appeal 
to a Slutsky type of argument and act as though O were in fact a subset of the 
cube. In  this case it is no loss to assume that  the loss function w is non-negative 
and bounded above by one. Note that  under the assumption that  0 c K, the a 
priori distributions automatically possess moments of all orders. 

A space ~- of decision procedures is given, each element of which is a function 
associating with every x e ~ a probability distribution Fx on ~. Thus if x is 
chosen,a solution to the decision problem will be given once an element T ~ Y is 
specified and t e ~ is chosen according to the distribution Fx given by T (x). We 
assume 3-- is the set of procedures for which F. (C) is ~-measurable for each C e ~. 

Let ~ be a probability measure on ~. For fixed ~ the Bayes procedures are 
defined through functions W and R, on ~ • O and ~- respectively, where 

W(T(x),  O) = f~( t ,  O)F~(at), 
~4 

R(T, O) = f W(T(x), O) Po(dx) 

and 
R(T) = rE(T ,  O)~(dO). 

o 

chosen and 0 is "true", is called the risk R(T, 0), the expected loss when T is 
function. 
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Definition 1. A procedure fi~ Y is called Bayes /or the problem specified by 
(w, ~) i/ R(~) = inf  R(T) .  

T e J -  
I n  most  of  what  follows, we will be concerned with non-randomized procedures, 

those whose values are, for each x ~ 3~, distributions assigning their total  mass to a 
single point  t e A. I n  this case it is convenient  to equate the procedure T to the 
funct ion on ~ whose values are the corresponding points in A. Then we shall write 
T(x) = t. 

To define consistency we shall need a sequence of decision problems. Let  
{O, ~},  {zJ, ~}, {~, 9/[} and w be fixed as above. Let  {2n} be an increasing sequence 
of sub a-fields of 91, 9In c ~ln+i, and assume tha t  gf is generated by  {~fn}. For  each 
n ~ 1, 2, 3 . . . .  and for each P in the family ~ of  probabi l i ty  measures on 91, let 
Pn be the restriction of  P to 9In. Also for each n, J - n  is the space of  decision 
procedures defined on 3~ and such tha t  F.  (C) is 9In-measurable for each C e ~. 

Let  % be an arbi t rary  family of subsets ~' c O. 

Definition 2. We shall say that the sequence {Tn} o/ decision procedures is 
weakly %-consistent i] /or every F ~ % and every e > O, 

sup P o { x e ~ :  W(Tn(x),O) - - in fw( t ,  0) > e} -+0 as n - > o o .  
O~F t~A 

{ Tn} is strongly ~-consistent i / /or every F e 7~ and e > O, 

sup Pc {x e ~ : sup [ W (Tn (x), O) -- inf  w (t, 0)] > e} -+ 0 as N --> c~. 
OeF n ~ N  t e a  

We will be concerned mainly  with the case in which each F contains a single 
point. I n  this case the definition reduces to the usual convergence "in Pc pro- 
babi l i ty"  and "with Pc probabil i ty 1", respectively, of  W(T~, O) to  inf w (t, O) for 

t~A 

each 0 in U F .  I f  in addition~+;U F = O then we say tha t  {Tn} is consistent. 

Let  b be a function defined on O and taking values in the cube K. Unless the 
cont rary  is explicitly specified we shall take as Bayes estimators of b the sequence 
of  conditional expectat ions E(b]  gfn), n = 1, 2 . . . . .  This definition agrees with 
the one given above when the loss funct ion w is of  a suitable quadrat ic  nature.  The 
use of  more general loss functions satisfying suitable regular i ty requirements 
introduces no essentially new difficulties as will be indicated in section 4. 

We shall always assume tha t  the sequence of problems under  consideration 
corresponds to an increasing sequence of a-fields {~In}. However  most  of the results 
obtained in sections 5 and 6 are derived under  the assumption tha t  the random 
variables involved are independent  and identically distributed. Under  this assump- 
t ion 2r will be the infinite product  of  copies of a set 3~, on which a a-field 9I 1 is given. 
X will be the vector  (Zi, Z2, ...) whose coordinates are completely independent  
and have the same distribution p1 defined in terms of P as follows. Pu t  91i 
= gfi • 3~ and for each positive integer n let ~n be the product  of  n copies of 
3~i, ~,1 n the a-field on ~n generated by  rectangles with sides in gfi. Then the {Nn} 
will be defined as 91n = 91 n • 2~, 91 as the a-field on ~ generated by  the {9In} and 
the distr ibution P i  of  each Zn will be given by  p I ( A )  = P i ( A  • ~) for each 
A e 91i where, as before, P1 is the restriction of  P to 91i for some P in 9 .  Wi th  
regard to notation,  when subscripts are involved it will be convenient  to use pn 
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to  represen t  e i ther  the  p roduc t  measure  on the  n d imens iona l  sets ~n  corresponding 
to  p1 on 711 or the  res t r ic t ion  Pn of the  measure  P to  9An. This should be clear from 
the  context .  

3. Doob's theorems on consistency of Bayes estimators 

Assume th roughou t  this  sect ion t h a t  ). is any  p robab i l i t y  measure  on {O, ~3} 
which possesses finite first and  second moments .  

Rough ly  speaking  DooB's  ma in  theorem,  theorem 3.2 below, says  t h a t  Bayes  
es t ima tors  are s t rong ly  consis tent  a. e. (4); t h a t  is, the re  is a set B hav ing  
measure  zero such t h a t  the  Bayes  es t ima tors  are  consis tent  for all  0 ~ O no t  
belonging to B. 

Consider  first the  i ndependen t  iden t ica l ly  d i s t r ibu ted  case as defined in 
sect ion 2. The assumpt ions  of sect ion 2 are to hold  wi th  the  except ion  t h a t  O is as 
ye t  a rb i t r a ry .  I n  wha t  follows we shall  make  use of  the  assumpt ions :  

A 1 {~1, ~I~} and {0 ,  fS} are both isomorphic to Borel sets in a complete separable 
metric space. 

A 2 For every A ~ 9A1, P. (A) is a ~-measurable/unction. 

A 3 I] 01 4:02 there exists a set A ~ 911/or which Po~(A) 4= Po,(A).  

A 4 There exists an ~,l-measurable/unction / on ~ such tha t / (x )  = 0 a. e. (Po) 
/or each 0 ~ O. 

Theorem 3.1 (DooB) : Conditions A 1, A 2 and A 3 imply A 4. 

Theorem 3.2 (Doo~) : I / A  1, A 2 and A 3 hold then the Bayes estimators o/ the 
identity map b : 0 --> 0 are strongly consistent a. e. (4). 

Theorem 3.2 is an  immed ia t e  consequence of  Theorem 3.1 and  the  fac t  t h a t  the  
Bayes  es t ima tors  form a mar t inga le  sequence. The a rgumen t  is this.  I f  ~ = O • ~, 
# the  measure  on ~3 • 91 de t e rmined  b y  {Po} and  2 then,  wr i t ing  b (co) = b (0, x) = 0 

and  fin(O)) = fin (x) = E ( b I z l , . . . ,  Zn), the  {fin} form a mar t inga le  sequence, the  
mar t inga le  convergence theorem applies  and  

fin(CO) --, E (b l z l ,  z2 . . . .  ) = E ( b l x )  as n -+  ~ ,  a .e .  (/~). Theorem 3.1 provides  
the  final step,  t h a t  E ( b l x  ) = b a.e .  (/~) because b y  A4,  ~ b d #  = ~Jd# for all 

C C 

C e ~3 • 9[ so t h a t  b = ] a .e .  (#). b is t hen  equiva len t  to an N-measurable  funct ion 
so t h a t  E ( b l x  ) = b a.e .  (/~). The  theorem is p roved  because i f  C = {og:fin(O)) 
-+ b(co)} and  Ao = {x : fn (x )  -+ 0}, then  

1 = tt(C) = ~fdPo;c(dO) = fPo(Ao)Z(dO) 
0 A 0 0 

a n d  

P o  { f .  - +  O} = 1 a . e .  (~) . 

A resul t  s imilar  to t heo rem 3.2 b u t  va l id  for a r b i t r a r y  sys tems {~, 91} m a y  be 
o b t a i n e d  b y  using A 4  as a condi t ion,  thus  bypass ing  theorem 3.1. Such an exten-  
sion m a y  be of  in te res t  for app l ica t ions  to the  t heo ry  of  inference for s tochast ic  
processes. The  same cons idera t ions  as those  for theorem 3.2 prove  theorem 3.3. 
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Theorem 3.3: I f  b :O-->K is a ~-measurable map to the cube K and i / A 2  and 
A4 are satisfied, then the Bayes estimators of b are strongly consistent a.e. (~). 

Letting O be arbitrary but  restricting the a-field ~ on O and continuing with 
the independent, identically distributed case, one can prove the following result 
as a consequence of results of L]~ CAM [9]. Assume that  ~ is the completion for ~ of 
the a-field generated by the functions {P01 (A), A e ?I1} on O. 

Theorem 3.4 (L]~ CAM): I f  b : 0 --> K is ~-measurable, then the Bayes estimators 
o/b are strongly consistent a.e. (~). 

Proof: For all functions f : O --> R1 which are equivalent for ~ to !~-measurable 
and ~-integrable functions, define an index of approximation 

~n (/) = i n / f  f [/(0) -- hn (x)[ Po (dx) ,~ (dO) 

where ~ is the space of ?in-measurable real valued functions. Then lemma 1 of 
[9] says that  the space of"accessible" functions, i. e., functions / for which ~n (/) -+ 0 
as n --> co, is the space of functions equivalent to 2-integrable functions which arc 
measurable for some sub a-field ~ '  c !~. 

In  particular, for each A e ?i', the function Po(A) is accessible since it is 
equivalent to the limit of ?in-measurable functions hn defined by. 

hn(x) ~- 1/n (number of coordinates zl, z2, . . . ,  zn which are in A). Hence by 
lemma 1 of [9], for each accessible function / there exists an ?i-measurable function 
h such that  

(1) S I/(0) - h(x)] P0 (dx)~(dO) = O. 

By the martingale property of the sequence {E(/] ?ira)} and by (1), the result 
follows. 

Thus far we have been primarily concerned with the independent identically 
distributed case. I f  {?in} is an increasing sequence, measurability assumptions 
replacing A 2 and A 4 imply the conclusion of theorem 3.3. 

Let  {~, ?i} be a measurable space. Let  {?in} be an increasing sequence of 
sub a-fields of ?i; ?In e ?in+l and ?in -> 9/. I f / i s  a function to O, wr i t e / -1 (~)  for 
the inverse image of ~ under f. 

Theorem 3.5: If  P. (A) is ~-measurable /or every A e 71 and i/ there exists a 
function / on ~ such that 0 ~ f (x) a.e. (Po) and such that/-1(~) c 9I, then the Bayes 
estimators o/b = / - 1  are strongly consistent a.e. (~). 

4. Extension of Doob's results to a class of procedures 

By the definition in section 2, fin E ~--n is a Bayes procedure for (2, w) if for 
each x ~ ~ it prescribes a probability measure •x on ~ which minimizes the 
average risk 

(2) R ( T~ = f f f w (t, O) Fx (dr) P~ (dx) ~ (dO) 

over all procedures T in ~ n ,  the integrals being taken over the whole range in 
each case. The inside integral is ?in • !~-measurable so that  R (T) may be written as 

(3) R (T) = ~ ~ ~ w (t, O) Q~ (dO) Fx (at) Pn (dx) 
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where O~ is de termined a.e.  (Pn) b y  Q~(B) = En (b Ix), b = set indicator  of  B, for 
each B E  !~ and  Pn(A) = yP~(A)2(dO), A ~ ?in, n = 1, 2, . . . .  Now if To mini- 
mizes (2) then  for all T e J - n  the  inside integral  in (3), name ly  

](x, T) = y yw(t, O)Qn(dO)Fz(dt), 

bears the relat ionship [(x, T) ~ / ( x ,  To) a.e.  (Pn) t o / ( x ,  To). T h a t  is, suppose To 
minimizes  (2). Then f [ (x, To) Pn (dx) = inf  f / (x, T) Pn (dx) for all A e Nn because 

A T e ~ - - n  A 

otherwise there  would be a set A with Pn(A) > 0 and .f/(x, To)Pn(dx) > ]/(x,  
A A 

T')Pn(dx) for some T ' ~ Y n .  Bu t  then,  since Y n  is convex, T " =  I A T ' +  
+ (1 - -  IA) To would belong to J n  and  would have  R(To) > R(T").  

Fur ther ,  if  AT is the  except ional  set  on which /(x, T) < / (x ,  To) and if 
Pn(~JAT) = 0 then  To minimizes /(x, T), the inside integral in (3), a.e.  (Pn). 

T e J n  
Final ly  since / (x, To) is an average over  LJ, its in tegrand is for some t e A less than  
or equal  to /(x, To). To summarize ,  provided Pn(( .JAT)= O, To minimizes 

(2) ~ To minimizes f w (40~Q ~ ,  z (d0)a. e. (Pn). We shall t ake  this as a condition 
in L e m m a  4.1 and  in wha t  follows. 

5. A (OA ) = 0. 
T e ~ - n  

L e m m a  4.1 s ta tes  t h a t  these Bayes  procedures are s t rongly consistent  a.e.  (2) 
for  a class of  Ioss funct ions which include the  usual ones in problems of test ing and 
est imat ion.  

L e m m a  4.1: Suppose 

(i) A5 and the conditions o/theorem 3.2 hold, 

(ii) /or each 0 E O, w(t, O) attains its minimum at t(O) ~ A, and 

(iii) /or every e > 0 and each 0 ~ 0 the sets B (C Vo, ~) defined by 

B(t, Vo, = {0' e V0: I w(t, 0') - w(t, 0) l < e} 

where Vo is any open neighborhood o] 0, satis]y the two conditions 

B(Vo, s) ~- ('~ B(t, Vo, e) belongs to S5 and 2.(B(Vo, s)) > O. 
tea 

The~ the Bayes procedures/or (~, w) are strongly consistent a. e. ()~). 
Proo]: The discussion preceding l emma  4.1 establishes t h a t  the Bayes  proee- 

dures/3n correspond to points  {tn (x)} in ~ which minimize 

gn(t, x) -~ f w(t, O)Q~(dO) 

a.e. (Pn). Recalling the definition 2 and taking the sets F to be those consisting of 
single points  outside a set having  )~ measure  zero, we need only  show tha t  

w(t~(x),O)-->w(t(O),O) a.e. (P), where P(A)~- -SPo(A)~(dO) ,A~ .  
B y  condit ion (iii) and  since gn (tn (x), x) ~- inf  gn (4 x) we have  for any  s > O, 

t e a  

(4) (w(tn(x),O)-- s)Q~(B(Vo, s)) ~=gn(t(O),x ) a.e. (P, ) .  

B y  (i), Qn(B(Vo, e)) --> l a.e.  (P). 0 n  the other  hand  since w(t, .) is assumed in 
section 2 to be ~ -measu rab le  for each t, (i) also says t h a t  the Bayes  es t imators  of  
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w t(b) are strongly consistent a.e, (~). That  is, the right side of (4)converges to 
w(t(O), O) ~.e. (Po) for almost all O(Jl). Hence lira sup w(t~(x), ~) ~ w(t(O), O) a.e. 
(P). Further~ since w(tn(x), 0) ~ w(t(6), 6} for all n, so is the limit inferior of  the 
sequence and this proves the lemma, 

The next lemma allows us to restrict discussion to the a posteriori distributions 
{Q~} in the study of consistency of Bayes procedures for problems in which the loss 
functions satisfy the conditions of lemma 4.1. 

Lemma 4.2: I] w satisfies the conditions el lemma 4.1; i/the Bayes procedures/or 
(~, w) correspond to the sequence {tn} on ~ und i/the distributions {Qn} converge a.e. 
(P~) ~o the indicator o/{0}, tfieu w(G, O) --> w(t(O), O) a.e. {Pc). (Thar is~ ~h~ Bayes 
procedures for (s w) are strongly consistent for {0}). 

Proo/: The inequality (4) follows from the conditions of lemma 4.1. Since 
0 _< w _< 1 by assumption (sec. 2). 

]w(t(O), O) Qn(dO) <= Q~ (BC(Vo, s)) . 
.B~( V O, e) 

Also, 
.~w(f(O), O) Q~(dO) ~: (w(t(O), O) + e) Q~(B( Vo,~)) , 

Add the left sides to get the right side of (4) and from these inequalities, whenever 
Qn(B(Vo, e)) ~ 0~ (4) gives 

w(tn(x), O) < 2e -~ Q~(Bc(V~ = Q~(B(vo,~)) ~- w(t(O), 0 ) .  

Since w(t(O), O) ~ w(tn, O) for all n, and by  assumption Q~(B(Vo, e)) -+ 1 a ,  e ,  

(P~), i t  follows tba~ ]fin w (t .  (x), O) = w( t  (0), 0). 
n --* ~ 

5. Examples 

In  this section several examples are given in which Bayes estimators are not 
consistent, though in each case consistent estimators do exist. 

Example 1, Take 0 to be the real line, (O is homeomorphic to (0, 1); ](0) ~-- 1/2 
(arctan 0 + 1), for example, defines a 1 - -  1 bicontinuons map), ~ the family of 
distributions whose restrictions P~ to 92t corTeslaond to the/V (b, I) disfiributions 
on the line, where b(0) ----- 1 --  0 if 0 belongs to the Cantor ~et on [0, 1] and 
b (0) ---- 0 otherwise, The Bayes estimator~ of the identity map ~ on O, 

n 

' Z? ~n(x)  - ~ + 1 ~' 

converge a. e. (P0) to b (0) for every 0 ~ O. However, consirtent estimators of ~0 do 
exist by a theorem in [6] since ~0 is of th~ 1 st Baire class for the distance IIP - -  QI] 
o n  ~ .  

(5) ]1 p --  Q ]1 = 2 sap ] P (A) - -  Q (A) I , 

Example 2. I~  example 1, the ma~<imum likelihood estimators estimate the 
same function oI] O as the Bayes estimators do. Examples are easily found in 
which maximum likelihood estimators are not consistent but the Bayes estimators 
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are. For  instance, BA~IADUR'S example 2 in [1] satisfies DooB's  conditions and O 
is a countable set. The m a x i m u m  likelihood estimators below are consistent though 
consistency in the ease of the Bayes estimators depends on the choice of  the a 
priori distr ibution ; it fails for the uniform distr ibution on O. 

I n  this example, O = [1, 2), 2, is Lcbesgue measure on the Borel sets of  O. 
X = (Z1, Z2, ...) as usual and the distr ibution of  Z1 has uniform densi ty on [0, 1) 
if 0 = 1 or on [0, 2/0) ff 1 < 0 < 2. The max imum likelihood est imator  for 
b (0) = 0 is for each n, put t ing  Yn = max  Z~, 

i = 1, . . . ,n  

1 Yn < 1  

bn (X) = when 
2/Yn Yn > 1 

while the Bayes est imator is 

n + 1 2 n+2 - 1 

n + 2 2 n+l -- 1 when Yn ~ 1 

fin(X)= ~2/ro I fOn+ldO 
l ~  Yn > 1. 
(fOndO 

So for 0 1 ^ = , bn is consistent while fin is not.  
I t  should be noted tha t  {fin} would be consistent on O if instead of 2 one took 

for the a priori distr ibution 

~ L l : ~ ; t + ( 1 - - ~ ) ; t 2  where 0 < ~ < 1  and ~ 2 ( B ) = l  ff 

B ~ { 1 } , 0 , 2 2 ( B ) = 0  if  B ( ~ { 1 } = 0 .  

Example 3. WAZD'S conditions for consistency of  max imum likelihood esti- 
mators  in [11] are not  satisfied in either of  the above examples and it is reasonable 
to ask whether  these conditions would imply  consistency of  Bayes estimators. The 
answer is no and example 3 substantiates this. Besides WALD'S conditions the 
class of  distributions considered here meet  other  regulari ty conditions. I n  parti- 
cular, i[ P01 - -  P010 [] -~ 0 as ]0 - -  0o I -> 0 and the densities are continuous. We 
shall go into some detail here because the arguments  used to show the lack of  
consistency lead directly to the results in section 6. I n  this example the consistency 
or lack of  it is determined by  the a priori distribution. 

Let  O = [0, 1/2], Po is defined th rough  the densi ty ]o of any  one coordinate 
Z of X, 

- -1  

z+O~ 
/o(z) = e I[0,0) (z) + [a(O)z + b(0)] IEo,~o) (z) + C(O) I~2o,11(z) 

2 0  

1 -- ff(z) dz 
0 

where IA is the indicator of  A, C(O) -- 1 -- 2 0 ' 

1 
0 ~ 0 2  1 

a ( 0 )  - -  c ( o )  - e ' 0 and b ( O ) ~ 2 e  0+02 _ C ( O ) .  

Z. W~hrscheinl ichkei ts theor ie ,  :Bd. 4 2 
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For  0 = O, C(O) is defined by  cont inui ty to  be 1 a n d / 0  becomes uni form on [0, 1]. 
The following propert ies  of these distr ibutions will be used. P u t  00 = 0. Then 

(i) n P01 - -  PoIo II is an increasing funct ion of 0 and for 
0 < 1/4, IiP~ - p0~o II < 4 0 .  

T h a t  is, 
2O 

[[p~-e~ooll= 1 - e  ~+o2 dz+ la (O)z+b(O) - - l [dz+(1- -20) (e (O) - - l )  

o I < 0 +  C ( O ) - - e  o-~o~ - t - ( 1 - - 2 0 ) ( C ( 0 ) - - 1 ) .  

i 
For  0 < l ,  C(O) < ~ _ ~ s o  t h a t  

0 
[]Po~- Po~ol I < 0 +  2 (1 -20)  + 2 0 < 4 0 .  

, fo (z) 
(ii) H (0) = E0o Jog f~o(~) is an increasing funct ion of 0 in a neighborhood of 00. 

In  part icu]ar ,  when 0 ~ 2 ,  H '  (0) > 1. To  see this compute  

a+0,( (1)) H ( 0 ) = l o g  t ~ - ~ -  q- g ( C ( O ) ) - - g  e -~176 - k ( 1 - - 2 0 ) l o g C ( O )  

where g (y) = y log y - -  y. Then  

H'(O)-- o(1+o) ~2(o) g(C(O))--g ~-oTo~ + ~ 0 ) ~ ( l o g ~ ( 0 ) + ~ _ + ~ +  
§ 0 - 2 o)c'(o) 

c(O) 2 log C(O) . 
1 

a(O) and since 0 < .2, g(C(O)) --  Since Oa(O) : C ( O ) - - e  o+O~,a , (O)> 0 

- -  g e -  0 ~  is negat ive  and  greater  t han  - -  1. Since C (0) increases f rom 1, the  

th i rd  and  four th  t e rms  are posit ive and  the last  t e rm is greater  t han  - -  2. Finally,  
1 - 0  

a (0) > ~ so t h a t  

1 0 I 0 ~ 
H ' ( O ) >  0(1+0)  a(O) 2 >  O ( l + e )  1 - - 0  2 > 1 .  

(iii) Apply  L~CAM'S corollary 4.1 of  [8] to  get  

�9 1 k 1 fo(zi) 
h m  suplk-~, o g - -  H(0)[ = 0  a.e.  (Boo) 
k-,~ o~o i=1 ]oo(zd 

Thus  for any  ~ > 0 and  for each x outside of a set  having Po~ probabi l i ty  0, there 
is an ~7(0, x) such t ha t  

sup [ ~- logp~(x)  - -  H(O) l < O 
O e o  

o r  

(6) e n(~(~ -~) < p'~ (x) < e n(~(~ +~) 

for n > 2V(Q, x). Here  we use the  fact  t h a t  ~O~o(X) = 1 on t~. 
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= 0  1 , Let Vn [ , ~ ]  

tha t  for any  ~ > O, 

Let  V = [0, ~), e < .1, and write the Bayes  estimates {fl,~) as 

/~  (x) = < ( x )  Q~(V1 + O,~(z) Q.':iV ~) 

where b~ and b~ are the averages over V and V c, resp. Then if  Qn(v) -> O~ 
lim inf  fin (X) ~ e and {fin (x)} does not  converge to 0. We shall show tha t  this 

~b---> OO 

happens a. e. (P0,). 

By  (iii) and OiL for almost  all x(Poo) and for n > N(~, x), 

(7) fp~2(dO) > f e*'(nl~ > e ~[H(~<>-e] ~([2v, .2]). 
g~ [2 e,.'21 

For  n > 2 , ] l P $  ~ p g o [ l  =< n [[ P~0 --  P]~ l[ < 4 n O  by (i) so 

< - -  

I t Poo ),(Vn)jop~ 2(dO)- - I  >c5 

~2(V~) --~ 
Vn E P Oo 

f 4 < d2(v~) 0 2 ( d O ) < ~ .  

For  An the  set in bra, ekets, 

This gives convergence to 1 a.e. (Po~) but  also for 

( s )  

for n > N1 (& x). 

.~ --> oo . 

x~  Ae , and for some Nl(d ,  x) ,  
N=I k=N 

Finally,  using (iii) again, this t ime on V -- Vn, 

(9) fp~i(dO) < f e  n<m')+~ 2(dO) < e ~<~<~) +~)2(V). 
V -  Vn V - -  Vn 

Put t ing  (7), (8) and (9) together,  we have 

q'~ (V) - l, v 

0 V c 

where C1 = (1 -b 6)[212e, .2])] -1 and C2 = ):(V)[2([2e, .2])]-1. 

So far ~o has been a rb i t ra ry  and so has 2. I f  ~ < / / ( 2  e) - 2 H(e), then  the second 

te rm -+ 0 a. e: (Pool Also, if (2(Vn))~]"e ~-'(2~) < 1 then the first te rm doee the 

2* 
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same thing. For  example, if  2 has the density Cae -1I(~ on [0, 1/2], then 2(Vn) 
< Ca e -  n~ and the first term is less then C1 C3 e -  (n~ - Q + H (2 ~)) 

However,  if 2 were chosen to be uniform on [0, 1/2] then  the {fin} would be 
consistent at  00 ~ 0. 

6. Conditions for consistency of Baycs procedures 

In  this section we assume tha t  the conditions of lemma 4.1 are satisfied so tha t  
lemma 4.2 applies and we m a y  continue to restrict discussion to the a posteriori 
distributions Qn. 

I f  ~ is a norm on O, 0 compact  and ~:P01 --~ 0, then example 3 shows tha t  
Doo]3's conditions together  with the condition tha t  ~ and its inverse be continuous 
for the distances ~ and @, @ (P, Q) ~ I[ P - Q I], are not  sufficient for consistency of  
Bayes estimators. Nei ther  is the stronger condition of  cont inui ty  of  densi ty func- 
tions. We remark here tha t  WALD'S conditions imply the existence of uniformly 
consistent tests of  the hypothesis  t ha t  Z has the distr ibution P0to against the 
alternative tha t  the distr ibution is P01 for some 0 in the complement  of  any  open 
neighborhood of 00. The existence of such a test  will be one of  the conditions in 
each set of  conditions for consistency given in this section. A useful result in this 
connection is a necessary and sufficient condition due to KI~AFT [7]. This and an 
inequali ty which we state as lemma 6.1 will he used to establish the theorems 
which follow. 

Let  {Po, 0 ~ O1} and {Qo, 0 ~ 02} be two families of  probabil i ty measures on 
9/. On the space of probabi l i ty  measures on g( define the inner product  @ (P, Q) 

= I Vpqd#  where # is any  a-finite measure with respect to which P and Q are 
bo th  absolutely continuous and where p and q are the corresponding densities. I f  
there is a set A E 9 /such  tha t  P(A)  = 0 and Q(A) = 1 then P and Q are ortho- 
gonal. Then @ has the following properties:  

(i) 0 ~ @ ~ 1  

(10) (ii) @(P, Q) = 0 r P and Q are orthogonal  and @ (P, Q) = 1 r P ~- Q. 

(iii) 2(1 @(P, Q)) < ]I P QI[ < 2 V 1  2 - = - = - @ p ( p ,  Q ) .  

Let @n (P, Q) = @ (Pn, Qn) = ~ Vpnqndl2n where Pn, Qn, t~n are measures on ~n C 9/. 

Let  ~t)21 and ~IJ~2 be the spaces of  all probabil i ty measures on O1 and 02, respectively. 
A n y  sequence {~0n} of  91n-measurable functions on ~ with 0 ~ ~n =< 1, 

n = 1, 2 . . . .  is a test of a hypothesis  t ha t  a probabil i ty measure on 9/belongs to a 
given set against the hypothesis  t h a t  it belongs to an alternative set. {q0n} is 
consistent for the hypothesis  P ~ {Po, 0 ~ O1} against the alternative P ~ {Qo, 0 ~ 02} 
if Eo (q)n) "-> Io~ (0), 0 E O1 W 02. {~0n} is uni/ormly consistent if the convergence is 
uniform on O1 kJ 02. 

The theorem in [7] then says tha t  a uniformly consistent test  exists if and only if  

sup @n (E~.~ (Pb), E~  (Q~)) -+ 0 as n --> co, b (0) = O. 

Lemma 6.1 is known in perhaps a var ie ty  of different forms. I t s  proof  makes 
use of  inequalities which m a y  be found, for example, in a paper by  C ~ o F ~  [2]. 
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The independent,  identically distr ibuted case will be assumed in what  follows and 
the lifting of  this restrietion will be discussed following the proof  of  theorem 6.4. 

Let ~1 = {Po, 0 ~ 01}, ~2 = {Po, 0 ~ 02}, 01 = {00}, 02 = Vg0 where Voo is 
any  open neighborhood of 00. 

Lemma 6 . 1 : I 1  there is a uni/ormly consistent test o/ the hypothesis Po ~ 1  
against the alternative Po ~ ~2 then there exists a real number r > 0 and a positive 
integer k such that liPS0 - -  Pn]l >= 2(1 - -  2e -mr) where m~ ~ n < (m @ 1)/c and 
P~ = E~ (P~). 

Proo/: Let  {~On} be the uni formly consistent test assumed to exist. Then there 
exist /c > 0 such tha t  Eoo(qDn) < 1/8 and Eo(~on) > 1 - -  1/8 for all 0 e V~0 and 
n ->_- k. For  j = 1, 2 . . . .  let ~ , j  = {(z(l-1)k+l,, z(j-1)k+2,, . . . .  zjk)}. On ~k j define 
r andom variables ~o~, j = ~ (Z(j-1)~+I,, Z0"-1)~+2,, . . . .  Zjk), j = 1, 2 . . . . .  Then 

m 

Ym = 1/m ~ Fk, j is a sum of independent  identically distr ibuted random variables 
] = t  

with expectat ion Eo (Ym) = Eo (~k) and by  the strong law of  large numbers  

EOo(~) < -~ 0 = Oo 
Ym --~ for 

7 
Eo (cf~) > -ff 0 ~ V~o 

a.e. (Po). 
The a rgument  to prove the lemma depends on the faet  t ha t  P~*k{Ym ~ 1/4} 

decreases to 0 exponentially,  uniformly on V~o. Wri te  U = ~ --  1/4 and suppose 
t =< 0, t real. Then 

We shall show tha t  for some t and C, Eoe t~ ~ C < 1. Now e trz is bounded for t in 
any  neighborhood of  the origin and Eoe tU is continuous in t. By  looking at the 
slope of the curve, Eo Ue re, it will be seen tha t  in some interval  containing 0 
Eoe *v is str ict ly increasing to 1 as t increases to 0, whatever  be 0 e V~ o ; in faet  
Eo Ue t~r > 1/2 on V~o for 0 > t > some to. Tha t  is, at  t = O the slope is positive 
and the value is 1. For  t < 0, 

] E o U e t ~ : - - E o U [  <Eo[ ]  V lie w -  1]] < E 0 l d  U -  11 . 

Also, [e t v -  l I <  max(1 - - e  t, e -t -- 1) ~ max(] t], e -t -- 1) so tha t  for some 
t o<O,  max( l to l ,e- t~  -- l) < e and IEoUetV-- EoU[ < e if to <~ t <_ O. I n  
particular,  for e > 1/8, Eo Ue tv > Eo U --  e > 1/2 for all 0 ~ V~o. I t  follows tha t  
for some rl  > 0, Eoe t~ = e -r~ < 1 and tha t  

p n { y  m ~ 1 }  .~- f p ~ { y ~  _< a2(a0)  for n _>role. 

~o 

By using a similar a rgument  with t ~ 0 an r2 > 0 m a y  be found such tha t  
Po~{Ym ~ 1/4} g e -'~r~ for n ~ ink. For  r = rain(r1, r2) it follows tha t  

II Polo - P ~  II = 2 sup  1P~3o (A) - -  ~,~ (A) I > e (1 - -  ee -mr)  
A s~,~ 

for m/c ~ n < (m -~ 1)/c by  considering A = {Ym ~ 1/4}. 
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For  theorems 6.1 through 6.4 we assume the independent  identically d is t r ibuted 
case and also the  existence of a measure  with respect  to which all the P~ admi t  

29o(~) ] 
densities p~. As before H is defined b y  H (0) ---- Eo~ log ~ ] .  

Theorem 6.1: Suppose that (i) the densities may be chosen ~ • 9~l-measurable. 
(ii) V e !~ is a neighborhood o/ Oo and there is a uni/ormly consistent test o/ the 
hypothesis Po ---- Poo against the alternative P o e  (Po, 0 e Vc}, and (iii) /or every 

> 0 V contains a subset W such that ~(W) > 0 and H(O) > -- s on W. Then 
Q~(V c) -+ 0 a.e. (Poo). 

i f  Proo/. Let  P n  - -  ~ ( V  c) p ~ Z ( d O ) ,  qn -- 2(W) p~o'Z(dO) and Pn defined b y  
V ~ W 

Pn(A)  ---- ] P~(A)2(dO), A e ?ln. Then  for f p~(x)2(dO) > O, Qn(Vc) < 2(VC)pn(x )  
= z ( w ) q n ( x )  �9 

I t  will be shown t h a t  Pn (x)/qn (x) --> 0 exponent ia l ly  a. e. (P0o). 
B y  l emma  6.1 there exist numbers  k and  r such t h a t  for m k <  n < (m ~- 1)k, 

Ii P~o - -  Phil >-- 2(1 - 2e-mr). Thus  by  (iii) of (10), 
mr 

P ~29" [ ~ I Q n ( P ~ o ,  P 1 ) <  I~V 1 (1 2e_mr) ~ 2e 2 l~ i e -mr . 
o o l A  > _ - - : :  - -  - -  - -  - -  

4 
F o r  ~m = e 

7/ (11) Po~ 29~ ~ -  > e  <<_2e 4 
2900 I - -  

For  A n ~  pn > e  . An is contained in the set on the  left side of  ( l l ) ,  
(290  

r n  

2er/2e 2k is greater  t han  the r ight  side and  it follows f rom (11) t h a t  

Poo ( ~ " An I ~- O. T h a t  is, for a lmost  all x(Poo)there is an integer  N1 (x) 
] 

\ 2 / = 1  n_>-~ / 

such t h a t  
F ~  

(12) 29n(x) < e  2k for each n > N l ( x ) .  
n 

29Oo(x) 

1 n 
To find a bound for qn/P~o, define averages ~n (x, 0) = ~ i =~l(log 2010 (zi) - -  logp010 (zi)). 

For  each O, of n(', O) --+ H(O) a. e. (Poo) b y  the  strong law of large numbers .  Bu t  
also by  the  !~ • 9~n-measurability of  ~n and  b y  Fubini ' s  theorem there is an x set 
with Poo measure  zero such t h a t  for all x in i ts  complement  ~n (x, ") --~ H a. e. (v), 

1 
v(B) = ~(-~W) ~(W • B), B e ~ .  For  fixed e > 0 and  W given by  condition (iii), 

an  appl icat ion of Fa tou ' s  l emma  and a HSlder  inequal i ty  gives 

l i m i n f  ] e  ~'(x'~ ~(dO) > f e ~(~ v(dO) > e -~ 
n----> o o  
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so tha t  for some N2 (x) and each n ~ N2 (x) 

(13) y en~,,(z,o)v(dO) __ qn(X) > e_n~ a. e. (Poo) . 
polo (x) - 

By (12) and (13) 

< ~(vc) -~(~-~) 
Q~(V c) = ) ~ e  for all n >  max(Nl (x) ,  N~(x))  a. e. (Poo). Theresu l t  

r 
follows by  choosing e < 2 k " 

The second set of conditions for consistency of  Bayes procedures for (2, w), w 
satisfying the conditions of  lemma 4.1, also involves H and the existence of  a 
uniformly consistent test  and it  follows a]most immediate ly  from theorem 6.1. 

Theorem 6.2 *: Suppose (i) the densities Po may be chosen 2) • 9~l-measurable, 
(ii) H (O)-+ 0 as 0--> 0o, (ifi) /or every neighborhood V ~ ~ o/ Oo there exists a 
uni/ormly consistent test o/ the hypothesis that Po = Poo against the alternative that 
Po ~ {Po,  0 ~Vc} .  Then/or  every 2 which assigns positive probability to the open sets 
in 0 the Bayes estimators {fin} converge to Oo a. e. (Poo). 

Proo/. Write fin (x) ~-- b*n (x) Qn (V) -[- bn (x) Qn ( Vc ) where 

1 
b*.-- Q"(v) Z ( ~ v I ~ . )  

and bn is a similar average over V c. By assumption, for every e > 0 there is a neigh- 
borhood We c V of  00 such t h a t  ~(W,) > 0 and H (0) > - -  s on We. By  theorem 
6.1, O(fin, b*) -+0  a. e. (Poo). Also V was any  neighborhood of 00 and 6(bn*, 00) 

sup(6(0,  0 ' ) :  0 e V, O' eV} .  This establishes the theorem. 
The next  two results depend on the local behavior  of  the a priori measure 2. 

Let  W, = {0: ]] P~ - -  Poo [] < e}. 

Theorem 6.3: Suppose (i) p~ is ~ • 21-measurable, ( i i ) /or  each neighborhood 
V ~ ~ o/Oo there exists a uni/ormly consistent test o/the hypothesis Po -~ Poo against 
the alternative P o ~  {Po,  0 ~ V c} and (iii) /or each V there is a sequence {en} o/ 
positive numbers such that n Sn --> 0 and lim inf [2(V n We,] 1In = 1. Then flu -+ Oo 
in Poo probability, n~oo 

.Further, i / e n  ~ n ~  Y / o r  some ~ > 0 then fin ---> Oo a. e. (Poo). 

Proo/. The idea of  the proof  for theorem 6.1 m a y  be used to prove this. 
Compare the average densities on V c with those on neighborhoods of  00. The 

1 fl ~ 2(dO) tends to zero second condition implies t ha t  the average p~ --  ).(Vc) d pn 
V c Oo 

exponential ly a .e .  (Poo). I t  also implies t ha t  for neighborhoods Vn c V of 00 
chosen so tha t  ][ P ~ -  P~0 II-+ 0 rapidly enough uniformly on Vn, the average 

1 f oo2(d0) to qn --  ~(V~) ~'~ p~/p~ tends 1 either in Poo probabi l i ty  or a. s. Condition 

(iii) then insures tha t  Q~ ( V c) < ~ ( VC) pn (X) ~ (V~) q~ (x) -~ 0 either in Poo probabil i ty or a. s. 

according to the possible choices for {en} in (iii). 

* Theorem 6.2 and a result similar to theorem 6.3 have been announced in page 48 of the 
July issue (1964) of the Proceedings of the IN'ational Academy of Sciences. 
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Specifically, conditions (i) and (ii) imply inequality (11) and (12) so tha t  for 

some integer k ~ 1 and real r > O,pn <= e .2~ n for all sufficiently large n, a. e. (Poe)" 
On the other hand, taking Vn = V (~ Wen, 

1 1 
(14) P o o { l q ~ - - l ] > 6 } ~  6- ,[]qn l [P~o(dx)~  &~(~n) fV~llP~--P~o[]).(dO ) 

for any 6 > 0. Since on Vn the integrand is less than nen, qn --> 1 in Poe pro- 
bability. By condition (iii), since 

~(VC)pn(X) < e - ~  Z(V~) 
(15) Qn(Ve) ~ .~(Vn) qn(X) -- \ [ i ( V ~ ]  qn(x) ' 

the first conclusion will follow. 
1 

To prove the second statement,  suppose (iii) holds with en =< n2+0 �9 Take the 

union of the sets in the left side of (14) and sum the right side over all n ~ N. Then 

1 oo / .  1 r 
poo(U{lq~_ ii > 6}) < Zn ~ I - -  )~(Vn) J r .  ] [P~-P~ol[~(dO)<= ~ n ~ n .  

Let N -+ oo and this gives qn -+ 1 a. e. (Poe). By (15), Q~(V c) ---> 0 a. e. (Po~). 
Since V was arbitrary, the theorem follows from the form of fin (x) in the first 

line of the proof of theorem 6.2. 
This provides a convenient verification of the fact that  the Bayes estimators in 

example 3 are consistent when 2 is uniform on [0, 1/2]. 
Theorems 6.1, 6.2 and 6.3 do not depend on the structure of O. For the next 

result, assume that  0 is a locally compact metric space. Let  6 be the distance on O. 

Theorem6.4: Suppose (i) there exists a compact neighborhood V o] Oo and a 
uni/ormly consistent test el Po = Poe against P o e  {Po, 0 e Vc}, (ii) /or O' e V, 
] [ P o -  Po'l[->0 when 6(0,0')-->0, (i i i) /or {sn} and {Wen} as in theorem 6.3, 
lim inf(2(V n Wtn) )l/n = 1, (iv) pl  o is ~3 • 9ill-measurable. Then fin -+ Oo either 

n ---> c o  

in PooProbability or a. e. (Poe) according to wheter en may be chosen so that hen ---> 0 
or n 28n --> O. 

Pro@ Since V is compact so is V n W e where W is any open neighborhood of 
00 with W c V. Conditions (i) and (ii) imply the existence of a uniformly consistent 
test of Po = Poe against Po~ {Po, 0 ~ We}. The result then follows from theorem 
6.3. 

The assumptions of these theorems are often easily verified. For example, the 
conditions of theorem 6.1 are satisfied in the example of KIEFE~ and WOLFOWITZ 
[6] in which 0 is the upper half-plane {-- ~ < # < @ 0% 0 < a < ~ }  and the 
underlying family of distributions are those given by  the densities 

p(z) = ~  exp 2 -~- a exp 2 - j  , - - c ~ < z < o o .  

I t  may  be noted that  when the family of distributions ~ consists of distributions 
on the real line, if O is compact and ]l P - -  Q II is equivalent to the Kolmogorov- 



On BayesProcedures 25 

Smirnov distance and the conditions of theorem 6.1, for example, are usually 
easily verified. 

Although the results have been stated for the independent identically distri- 
buted case, similar results follow when there is some sort of weak dependence. For 
example the conditions of independence and identity of distributions came into the 
proof of theorem 6.1 in the use of a strong law of large numbers and the use of 
]emma 6.1 in conjunction with the fact that  @(pn, Qn) .= @n(P, Q) <= @~'(P, Q) 
in this case. Similar strong laws of large numbers are known when certain types of 
dependence are involved; e. g., KATZ and THOMASIAN [5] in the case of discrete 
Markov processes satisfying DO~BLIN'S condition. Here the H of the theorems 
wou]d be replaced by the expected value of the log of the ratio of densities taken 
with respect to the stationary measure ~ on 9~ which corresponds to the 00 of the 
theorem. When the conditions @(P~ Qn) =< @~(p, Q) and ][Po~ - -  Pn][ >= 
2(1 -- 2e-Cn), c > 0 are met (again P n  is the average with respect to A of the 
distributions Po on 9.In, 0 c Vc), the arguments in the proof of theorem 6.1 apply 
to obtain the same conclusion. The Bayes estimators {fin} are still consistent for 
each 00 ~ O for which the conditions hold for all V with 2 (V) > 0. 

Further the existence of a uniformly consistent test in theorem 6.1 may be 
replaced by a condition such as that  H(0) < -- ~] on V c for some ~ > e to obtain 
a corollary to theorem 6.1. 

Corollary to theorem 6.1: I]  (i) the densit ies p l  m a y  be chosen!~ • ~ll-measurable 
and (ii) ~(V) > 0, H (O) < - -  ~ on V c / o r  some ~ > 0 and H (O) > - -  e on some set 

We c V wi th  )~( Ws)  > 0 / o r  each s wi th  0 < e < ~7, then Qn(Vc) -+ 0 a. e. (Poo). 
This follows from theorem 6.1 since 

n 

may be used as a test statistic to construct a uniformly consistent test of the 
hypothesis Pc  - Poo against the alternative Pc  ~ { P c ,  0 c Vc}. Alternatively, 
a similar argument to that  for (13) gives 

lim+ p e'<~ < 
V V c 

a. e. (Poo), so that  a. e. (Po) for all sufficiently large n, 

I (C+,(x,O)2(dO) = p ~  < e _ ~  

r poo 

This together with (13) gives Q~ ( V c) <__ ce -n(~ - ~) and the result. Similar variations 
may be obtained for theorem 6.3. 

Extensions in other directions are possible; for example the class of loss 
functions considered could be increased. 

I am deeply indebted to Professor L. LECAI~I, under whose guidance I obtained the results 
established in my thesis and given in this paper. 
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