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The purpose of the present paper is to characterize Campbell measures and 
Palm distributions of random measures and to apply these results in a new 
approach to the characterizations of infinitely divisible random measures by 
their Laplace functionals and their Palm distributions. The results on 
infinitely divisible random measures are well known. They can be found 
together with a detailed list of references in Kallenberg's monograph [2], 
which also contains proofs of almost all statements in Section 1 of this paper 
(see his note on page 9 concerning the Polish space setting). 

1. Introduction 

Let A be a Polish space, let 9X be its Borel algebra and N the ring of bounded 
Borel sets (bounded with respect to some complete metric which generates the 
topology). The space M of Radon measures on (A, ~i) with the vague topology is 
also a Polish space. Its Borel algebra is denoted by 99l. A probability measure P 
on the measurable space (M, 93l) is called a random measure on A. We will deal 
not only with probability measures on (M, 93l) but also with measures P which 
may be infinite. In any case it is assumed that the inequalities 

(1) 2e(B)=~gBP(d#)< o~. Br 

hold. 
Let Y be the set of measurable and bounded functions f:  A-~]R with 

bounded support and let ~ + ( ~ + )  be the subset of positive (and continuous) 
functions. 

The Campbell measure C e of a measure P on (M, ~J~) is the a-finite measure 
on (M • A, 9)l | 9.1) defined by the equations 

(2) ~ gdCe-- ~ g(#,x)#(dx)P(d#), g>O measurable. 
M x A  M x A  
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There exists (uniquely up to 2e-null sets) a Markov kernel P(x, ") from (A, 92) to 
(M, 9Jl) such that for measurable functions g > 0 the equations 

(3) j g(#, x) #(&) P(d#) = j'j" g(#, x) e(x, d#) &(dx) 
M x A  A x M  

hold. The probability measures P(x, .) are called the Palm distributions, the 
kernel (P(x, "))~A the Palm kernel of P. 

An easy consequence of (3) is the following Lemma 1, which can be used to 
calculate Palm distributions explicitely. Let P be a random measure, let 

Le(f)= ~ e x p ( - # f )  P(d#), f E ~  + 
M 

and 

Le(x,f)= ~ exp(-#f)P(x,d#) ,  f so~ +, x~A, 
M 

be the Laplace functionals of P and its Palm distributions. 

Lemma 1. The Laplace functionals of a random measure P and its Palm 
distributions satisfy the equations 

d 
(4) ds-s L e ( s f + g ) = -  5Le(x'sf+g)f(x))'p(dx)' f, g e ~  § s>0 .  

A 

I f  K is a Markov kernel from (A, 9.I) to (M, gJ~) with Laplace functionals LK(x , .), 
xeA, and if the equations 

dds Le(sf +g)~=o= -SL~:(x'g)f(x)2e(dx)' f' ge~-+ 

hold, then K is a Palm kernel of P. 

Remark. The method of differentiation of the Laplace or characteristic function- 
al of P in order to obtain the Palm distributions has been used frequently in 
earlier papers (see for instance Mecke [4], Jagers [13, Krickeberg [3], and 
Kallenberg [23). 

The following results will be needed in the sequel: 

Lemma 2 (Mecke [4]). There exists a measurable function h : M x A ~ N  + 
satisfying the equalities 

~h(#, x) #(dx) = 1 for all #sM\{0} .  

Lemma 3. I f  the sequence of Laplace functionals L n of random measures P, 
converges pointwise on 4 + and the limit is continuous from above at O, the limit is 
the Laplace functional of some random measure P, and the sequence (Pn) converges 
weakly to P. 
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2. Characterization of Campbell Measures and Palm Kernels 

Theorem 1. A measure C on the measurable space ( M x A ,  9X@~[) is the 
Campbell measure of some measure P with the property (1) if and only if (5) and (6) 
hold. 

(5) C(M x B)< oo, B e ~ .  

(6) ~gdC=O whenever ~g(p,x)p(dx)=O for each g e M .  

The measure C is the Campbell measure of some random measure P if in addition 
to (5) and (6) the inequalities 

(7) ~ (#B)-  ' dC < I, B e ~ ,  
(,uB > 0) x B 

are valid. 

Proof If C is a Campbell measure, the statements (5), (6), and (7) are immediate 
consequences of (2). Assume now the validity of (5) and (6) and define the 
measure P on (M, 9Jr) by 

~ f (p )P(d#)=  ~ f h d C ,  f measurable, bounded, 
M M x A  

where h is the function introduced in Lemma 2. Then we have because of (6) for 
measurable g: M x A --+IR + 

~g dCp = ~ g ( # ,  x)#(dx) h(#, y) C(d(#, y))=~g dC 

(for ~(~g(#, x) #(dx) h(#, y) -g (# ,  y)) #(dy) = O, geM).  

Thus C =  Ce, and P satisfies (1) because of (5). In case we also have (7) the 
measure P' which equals P on M\{0} and has weight 1 - s u p  ~S (#B) - l d C  

B e N  ( # B > 0 )  x B  

on the null measure 0 is a random measure with Cp, = C. 
Theorem 1 implies the following characterization of Palm kernels: 

Theorem 2. A Markov kernel K from (A, 91) to (M, g2) is a Palm kernel of some 
measure P with property (1) if and only if there exists a measure ~ e M  such that 

(8) yK(x,{O})2(dx)=O 
A 

and 

(9) ~ ~ #BK(x ,  d#) 2(dx) = ~ ~ # CK(x,  d#) 2(dx), 
C D  B D  

B, Ce~ ,  DegX 

hold. It  is a Palm kernel of some random measure P if and only if in addition to (8) 
and (9) 

(10) re=sup ~ ~ (#B) -1 K(x,d#)2(dx)< oo 
BE.~ B , u B > 0  

is valid. 
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Proof The necessity of (8), (9), and (10) for Palm kernels K is an obvious 
consequence of formula (3). To prove the sufficiency we observe that (9) can be 
written in the form 

(11) ~ g ( x ,  y, #) #(dx) K(y, d#) 2(dy) = ~ g ( y ,  x, #) #(dx) K(y, d#) 2(dy) 

with g being a product of indicator functions. By standard methods it can be 
shown that (11) is also valid for arbitrary integrable functions g. We use 
Theorem 1 to prove that C = K | 2 is a Campbell measure. Because of C(M x B) 
= 2 B  for B ~  condition (5) is satisfied. Let .[ f(#,x)#(dx)=O for each #~M and 
define the function g by g(x, y, #)= f (#, x) h(#, y), x, y zA ,  # e M  (h being the 
function introduced in Lemma 2). Then the left hand side of (11) is equal to 0, 
and the right hand side equals because of (8) 

~ f d C = ~ f d C .  
M \ { 0 } x A  

This proves the existence of a measure P on (M, 93l) with Palm kernel K. Under 
1 

the assumption (10) the measure - - P  is a random measure with the desired 
m 

properties. 
Condition (9) can be formulated in terms of Laplace functionals, which is the 

appropriate form for the application in the next section. 

Corollary. A Markov kernel with the Laplace functionals LK(X, "), x~A, is a Palm 
kernel if and only if there exists a measure 2 s M  such that (8) and 

d 
+ g) f2 (x) 2(dx) = d 5 LK(x ' s f  2 q- g) f t  (x) 2(dx) (12) ~s~LK(X, Sfl 

for f l , f 2 ,geo~  + and s = 0  

hold. 

3. Infinitely Divisible Random Measures 

Theorem 3. Let P be a random measure on A. Then the following three statements 
are equivalent: 

(13) P is infinitely divisible. 

(14) There exists a Markov kernel K' from (A, 920 to (M, 92~) such that P * K'(x, ') ,  
xeA,  is a Palm kernel of P. 

(15) There exists a measure c~eM and a measure K on (M, gJt) with property (1) 
such that 

Lv ( f )  = e x p ( -  e f -  ~(1 - e x p ( -  #f)) K(d#)), f e w  +. 
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Proof Assume (13). Let P, be the random measure on A satisfying P=P," (n 
= 1,2, ...). Let L, L,, L(x, .). and L,(x, .) be the Laplace functionals of P, ~,  
P(x, "), and P,,(x, .) respectively. Because of 

L (f)=L,(f)" ,  feJ~+, 

we obtain from (4) for s = 0 

d 
dds L(s f  +g)=nL.(g)"-'  ds L . ( s f  +g) 

= - ~L,,(g) "-~ g.(x, g) f(x) 2(dx) 

and by the second part of Lemma 1 

L(x,f)=L(f)l-~l"Ln(x,f) ,  xeA, f e Y  +. 

For xeA the limit 

lim L.(x, f )  = L(x, f ) /L( f )  = Lx(,(x, f )  
n ~ o o  

exists pointwise on ~ +  and is continuous from above at 0. It is therefore 
(Lemma 3) a Laplace functional of some random measure K'(x, .). This proves 
(14). 

Now assume the validity of (14). Define the function d and the Markov 
kernel K(x, .), xeA, by the equations 

(16) d(x)=K'(x,{O}), K'(x, ')=d(x)eo+(1-d(x))K(x, ') ,  xeA. 

Applying the corollary to Theorem 2 we show that K(x, .) is a Palm kernel. 
Condition (8) is satisfied by definition. Condition (12) holds for L(x, .) instead of 
LK(x, "). The Laplace functional L(x, .) is given by 

(17) L(x,f)  = L( f )  Lic(x,f) = L(f)(d(x) + (1 - d(x)) LK(x,f)). 

Therefore we obtain for s = 0 

d 
L(s f  1 + g) f2(x) 2(dx) 

ds- 

d 
sfl  +g)] f2(x)2(dx) �9 

d 
Applying (4) to the term ~ L(sfl +g) and using (14) this equals 

L(g) - [ I  ~ LK'(x, g) f~(x) 2(dx) + ~ LK(x , s f l  + g) fz(x)(1 -- d(x)) 2(dx) 
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d L ( x )  ,~(dx) s= 0 and equating this expression to dss ~L(x, s f2 + g) proves (12) with (1 

- d(x)) 2(dx) instead of )~(dx). 
Thus K(x , . ) ,  x~A,  is a Palm kernel of some measure K with 2/r 

- d(x)) ,Z(dx). 
From (4) and (17) we obtain 

d 
log L ( s f )  = - i f ( x )  d(x) 2(dx)-  JLK(x , s f )  f ( x )  2r(dx ) 

d~ 

and with c~(dx) = d(x) 2(dx) 

1 

log L ( f )  = - c~ f - j'j'exp ( -  s # J) f (x) K(x,  d#) )or(dx) ds 
o 

= - c~f-  5(1 - exp( - #f))  K(d#). 

This proves (15). 
The proof of (13) under the assumption (15) is trivial. 
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