A New Proof of Kesten's Theorem on the Growth of the Sum of Independent and Identically Distributed Random Variables

David Tanny*
Department of Mathematics, University of Rochester, Rochester, N.Y. 14627, USA

0. In this paper, a more direct and probabilistically intuitive proof of Kesten's theorem on the growth of the sum of independent and identically distributed random variables ([2]) is presented. The technique used is a modified version of "centering" employed by Wolfowitz ([4]) and Kesten ([3]).
1. Theorem (Kesten [2], Corollary 3). Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a sequence of independent and identically distributed random variables with $E X_{i}^{+}=E X_{i}^{-}=+\infty$. Then either
(i) $\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=+\infty \quad$ w.p.l, or
(ii) $\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=-\infty \quad$ w.p.l, or
(iii) $\quad \limsup \frac{S_{n}}{n}=+\infty \quad$ and $\quad \liminf _{n \rightarrow \infty} \frac{S_{n}}{n}=-\infty \quad$ w.p.l,
where $S_{n}=\sum_{i=1}^{n} X_{i}, \quad n=1,2, \ldots$.
Proof. Let $D=\liminf _{n \rightarrow \infty} S_{n} / n$ where $-\infty \leqq D \leqq+\infty$. By the Kolmogorov Zero-One Law, D is constant w.p.l. To prove the theorem, it suffices to show that $D=+\infty$ or $D=-\infty$. Suppose $-\infty<D<+\infty$. Without loss of generality we may assume $D>0$; for otherwise we may replace X_{i} by $Y_{i}=X_{i}-D+\frac{1}{2}$ and $H_{n}=\sum_{i=1}^{n} Y_{i}$ by noticing that $\underset{n \rightarrow \infty}{\liminf } H_{n} / n=\frac{1}{2}>0$ and $\underset{n \rightarrow \infty}{\liminf } H_{n} / n$ is finite iff $\liminf _{n \rightarrow \infty} S_{n} / n$ is
finite.

Consider the two-sided sequence $\left\{X_{i}\right\}_{i=0}^{+\infty}$ which is the extension of $\left\{X_{i}\right\}_{i=1}^{\infty}$ into "the past" ([1] Ch. 6). Define $\tilde{S}_{k}=\sum_{i=-k+1}^{0} X_{i}$ and $\tilde{S}=0=S_{0}$. It follows that

[^0]$\liminf _{n \rightarrow \infty} \tilde{S}_{n} / n=D$ w.p.l. Define stopping times $\gamma_{0} \equiv 0$,
\[

$$
\begin{align*}
\gamma_{1} & =\min \left\{n \geqq 1: \tilde{S}_{n}>0\right\} \\
& =+\infty \text { if no such } n \text { exists. } \tag{1}
\end{align*}
$$
\]

Since $D>0, \tilde{S}_{n} \rightarrow+\infty$ as $n \rightarrow \infty$ so $\gamma_{1}<\infty$ w.p.l. In the same manner, define

$$
\begin{align*}
\gamma_{k} & =\min \left\{n>\gamma_{k-1}: \tilde{S}_{n}-\tilde{S}_{\gamma_{k-1}}>0\right\} \\
& =+\infty \text { if no such } n \text { exists for } k=2,3, \ldots \tag{2}
\end{align*}
$$

Now $\left\{\tilde{S}_{\gamma_{k}}-\tilde{S}_{\gamma_{k-1}}\right\}_{k=1}^{\infty}$ are i.i.d. random variables and are positive, so the Birkhoff Ergodic Theorem implies that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \tilde{S}_{\gamma_{n}} / n & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\tilde{S}_{\gamma_{k}}-\tilde{S}_{\gamma_{k-1}}\right) \\
& =E\left(\tilde{S}_{\gamma_{1}}-\tilde{S}_{\gamma_{0}}\right) \quad \text { w.p.l. }
\end{aligned}
$$

To conclude the proof of the theorem, we need the following facts:

$$
\begin{align*}
& \quad \liminf _{n \rightarrow \infty} X_{-\gamma_{n}-1} / n=-\infty, \tag{3}\\
& 0<E\left(\gamma_{1}-\gamma_{0}\right)<+\infty, \quad \text { and } \tag{4}\\
& 0<E\left(\tilde{S}_{\gamma_{1}}-\tilde{S}_{\gamma_{0}}\right)<\infty . \tag{5}
\end{align*}
$$

For (4) implies that $\lim _{n \rightarrow \infty} \tilde{S}_{\gamma_{n}} / \gamma_{n}$ exists and then (3) and (5) imply that $\lim _{n \rightarrow \infty} \tilde{S}_{\gamma_{n}+1} /\left(\gamma_{n}+1\right)=-\infty$ which would contradict the fact that D is finite.

Now $X_{-\gamma_{k}-1}=\tilde{S}_{\gamma_{k}+1}-\tilde{S}_{y_{k}}$ so that $\left\{X_{-\gamma_{k}-1}\right\}_{k=1}^{\infty}$ is an i.i.d sequence of random variables with the distribution of $X_{-\gamma_{1}-1}$ the same as the distribution of X_{1} ([1]). Hence $E X_{-\gamma_{k}-1}^{+}=E X_{-\gamma_{k}-1}^{-}=+\infty$ and so (3) holds.

To prove (4) and (5) we adopt the notation of Kesten ([3]). In particular

$$
\begin{align*}
& v_{0}=\min \left\{j \geqq 0: \inf _{n>j} S_{n}-S_{j}>0\right\} \quad \text { and } \\
& v_{k+1}=\min \left\{j>v_{k}: \inf _{n>j} S_{n}-S_{j}>0\right\} . \tag{6}
\end{align*}
$$

Since $D>0, \lim _{n \rightarrow \infty} S_{n}=+\infty$ w.p.l so that $v_{0}<\infty$ and $v_{k+1}<\infty$. Furthermore, as was shown in ([3]), $q \equiv P\left(v_{0}=0\right)>0$. This allows us to define a new probability measure Q on the Borel subsets of \mathbb{R} by

$$
\begin{equation*}
Q(A)=\frac{1}{q} P\left(A, v_{0}=0\right) \tag{7}
\end{equation*}
$$

Let

$$
\begin{equation*}
v^{*}=\min \left\{m \geqq 1: \sum_{-m+1 \leqq i \leqq v_{0}} X_{i}>0\right\} . \tag{8}
\end{equation*}
$$

Then since $\left\{X_{0}, X_{-1}, \ldots\right\}$ and $\left\{X_{1}, X_{2}, \ldots\right\}$ generate independent σ-fields

$$
\begin{align*}
& P\left(\gamma_{1}=k\right)=\frac{P\left(\gamma_{1}=k, v_{0}=0\right)}{P\left(v_{0}=0\right)} \\
& =\frac{1}{q} P\left(\sum_{-j+1 \leqq i \leqq 0} X_{i} \leqq 0 \text { for } 1 \leqq j<k, v_{0}=0\right) \\
& =\frac{1}{q} P\left(v^{*}=k, v_{0}=0\right) \\
& =\frac{1}{q} P\left(v_{0}=0, v_{1}=k\right)=Q\left(v_{1}-v_{0}=k\right) . \tag{9}
\end{align*}
$$

Thus

$$
\begin{equation*}
0<\int \gamma_{1} d P=\int\left(v_{1}-v_{0}\right) d Q=\frac{1}{q}<\infty \tag{10}
\end{equation*}
$$

where the last equality is a simple result which may be found in [3].
To prove (5) we use ince again the independence of the σ-fields generated by X_{0}, X_{-1}, \ldots and X_{1}, X_{2}, \ldots respectively to obtain

$$
\begin{align*}
P\left(\tilde{S}_{\gamma_{1}}-\tilde{S}_{y_{0}} \in A\right) & =\frac{1}{q} P\left(\tilde{S}_{\gamma_{1}}-\tilde{S}_{\gamma_{0}} \in A, v_{0}=0\right) \\
& =\frac{1}{q} \sum_{l=1}^{\infty} P\left(v^{*}=l, v_{0}=0, \tilde{S}_{l} \in A\right) \tag{11}
\end{align*}
$$

where A is a Borel set.
Now increasing the indices by l on the set

$$
\left\{v^{*}=l, v_{0}=0, \tilde{S}_{l} \in A\right)
$$

yields the set

$$
\left\{v_{1}={ }_{p}, v_{0}=0, S_{l} \in A\right\}
$$

From this and (10) it follows that

$$
\begin{equation*}
P\left(\tilde{S}_{\gamma_{1}}-\tilde{S}_{\gamma_{0}} \in A\right)=Q\left(S_{v_{1}}-S_{v_{0}} \in A\right) \tag{12}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
0 \leqq \int\left(\tilde{S}_{\gamma_{1}}-\tilde{S}_{\gamma_{0}}\right) d P=\int\left(S_{v_{1}}-S_{v_{0}}\right) d Q \leqq+\infty \tag{13}
\end{equation*}
$$

Now by [3], $\lim _{n \rightarrow \infty} S_{v_{k}} / k \equiv \beta$ exists w.p.1, $\beta>0$, and $E(\beta)=\int\left(S_{v_{1}}-S_{v_{0}}\right) d Q$. Suppose
 if $\beta / \alpha<K$ w.p. $1 Q$, then

$$
\begin{equation*}
E Q(\beta)<K E_{Q}(\alpha)=K \int\left(v_{1}-v_{0}\right) d Q<\infty \tag{14}
\end{equation*}
$$

Since we assumed $D<\infty$, we may choose $K_{0}>D$. Then since $P\left(\liminf _{n \rightarrow \infty} S_{n} / n>K_{0}\right)$ $=0$ and $Q \ll P$, it follows that

$$
\begin{align*}
0 & =Q\left(\underset{n \rightarrow \infty}{\liminf } S_{n} / n>K_{0}\right) \\
& \geqq Q\left(\underset{n \rightarrow \infty}{\liminf } S_{n} / n>K_{0}, \beta / \alpha>K_{0}\right) \\
& =Q\left(\beta / \alpha>K_{0}\right) \geqq 0 \tag{15}
\end{align*}
$$

Hence $E(\beta)<\infty$ and so (5) is proved. As stated earlier, this, in conjunction with (3) and (4), proves the theorem.

References

1. Breiman, L.: Probability. Reading, Massachusetts: Addison-Wesley 1968
2. Kesten, H.: The limit points of a normalized random walk. Ann. Math. Statist., 41, 1173-1205, (1970)
3. Kesten, H.: Sums of stationary sequences cannot grow slower than linearly. Proc. Amer. Math. Soc. 49, (1975)
4. Wolfowitz, J.: Remarks on the notion of recurrence. Bull. Amer. Math. Soc., 55, 394-395 (1949)

[^0]: * Supported under NSF grant MPS-75-07228

