A New Proof of Kesten's Theorem on the Growth of the Sum of Independent and Identically Distributed Random Variables

David Tanny*

Department of Mathematics, University of Rochester, Rochester, N.Y. 14627, USA

0. In this paper, a more direct and probabilistically intuitive proof of Kesten's theorem on the growth of the sum of independent and identically distributed random variables ([2]) is presented. The technique used is a modified version of "centering" employed by Wolfowitz ([4]) and Kesten ([3]).

1. Theorem (Kesten [2], Corollary 3). Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of independent and identically distributed random variables with $EX_i^+ = EX_i^- = +\infty$. Then either

(i)
$$\lim_{n \to \infty} \frac{S_n}{n} = +\infty$$
 w.p.l, or

- (ii) $\lim_{n \to \infty} \frac{S_n}{n} = -\infty$ w.p.l, or
- (iii) $\limsup_{n \to \infty} \frac{S_n}{n} = +\infty$ and $\liminf_{n \to \infty} \frac{S_n}{n} = -\infty$ w.p.l,

where $S_n = \sum_{i=1}^{n} X_i$, n = 1, 2, ...

Proof. Let $D = \liminf_{n \to \infty} S_n/n$ where $-\infty \leq D \leq +\infty$. By the Kolmogorov Zero-One Law, D is constant w.p.l. To prove the theorem, it suffices to show that $D = +\infty$ or $D = -\infty$. Suppose $-\infty < D < +\infty$. Without loss of generality we may assume D > 0; for otherwise we may replace X_i by $Y_i = X_i - D + \frac{1}{2}$ and $H_n = \sum_{i=1}^n Y_i$ by noticing that $\liminf_{n \to \infty} H_n/n = \frac{1}{2} > 0$ and $\liminf_{n \to \infty} H_n/n$ is finite iff $\liminf_{n \to \infty} S_n/n$ is finite. $\sum_{n \to \infty}^{n \to \infty} K_i = \sum_{i=-k+1}^n X_i$ which is the extension of $\{X_i\}_{i=1}^\infty$ into "the past" ([1] Ch. 6). Define $\tilde{S}_k = \sum_{i=-k+1}^n X_i$ and $\tilde{S} = 0 = S_0$. It follows that

^{*} Supported under NSF grant MPS-75-07228

lim inf $\tilde{S}_n/n = D$ w.p.l. Define stopping times $\gamma_0 \equiv 0$,

$$\gamma_1 = \min \{ n \ge 1 : \tilde{S}_n > 0 \}$$

= +\infty if no such *n* exists. (1)

Since D > 0, $\tilde{S}_n \to +\infty$ as $n \to \infty$ so $\gamma_1 < \infty$ w.p.l. In the same manner, define

$$\gamma_k = \min \{ n > \gamma_{k-1} : \tilde{S}_n - \tilde{S}_{\gamma_{k-1}} > 0 \}$$

= +\infty if no such n exists for k = 2, 3, (2)

Now $\{\tilde{S}_{\gamma_k} - \tilde{S}_{\gamma_{k-1}}\}_{k=1}^{\infty}$ are i.i.d. random variables and are positive, so the Birkhoff Ergodic Theorem implies that

$$\lim_{n \to \infty} \tilde{S}_{\gamma_n}/n = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n (\tilde{S}_{\gamma_k} - \tilde{S}_{\gamma_{k-1}})$$
$$= E(\tilde{S}_{\gamma_1} - \tilde{S}_{\gamma_0}) \quad \text{w.p.l.}$$

To conclude the proof of the theorem, we need the following facts:

$$\liminf_{n \to \infty} X_{-\gamma_n - 1}/n = -\infty, \tag{3}$$

$$0 < E(\gamma_1 - \gamma_0) < +\infty, \quad \text{and} \tag{4}$$

$$0 < E(\tilde{S}_{\gamma_1} - \tilde{S}_{\gamma_0}) < \infty.$$
⁽⁵⁾

For (4) implies that $\lim_{n \to \infty} \tilde{S}_{\gamma_n}/\gamma_n$ exists and then (3) and (5) imply that $\lim_{n \to \infty} \tilde{S}_{\gamma_n+1}/(\gamma_n+1) = -\infty$ which would contradict the fact that *D* is finite.

Now $X_{-\gamma_{k-1}} = \tilde{S}_{\gamma_{k+1}} - \tilde{S}_{\gamma_{k}}$ so that $\{X_{-\gamma_{k-1}}\}_{k=1}^{\infty}$ is an i.i.d sequence of random variables with the distribution of $X_{-\gamma_{1-1}}$ the same as the distribution of X_{1} ([1]). Hence $EX_{-\gamma_{k-1}}^{+} = EX_{-\gamma_{k-1}}^{-} = +\infty$ and so (3) holds.

To prove (4) and (5) we adopt the notation of Kesten ([3]). In particular

$$v_{0} = \min\{j \ge 0: \inf_{n>j} S_{n} - S_{j} > 0\} \text{ and } \\ v_{k+1} = \min\{j > v_{k}: \inf_{n>j} S_{n} - S_{j} > 0\}.$$
(6)

Since D > 0, $\lim_{n \to \infty} S_n = +\infty$ w.p.l so that $v_0 < \infty$ and $v_{k+1} < \infty$. Furthermore, as was shown in ([3]), $q \equiv P(v_0 = 0) > 0$. This allows us to define a new probability measure Q on the Borel subsets of \mathbb{R} by

$$Q(A) = \frac{1}{q} P(A, v_0 = 0).$$
⁽⁷⁾

Let

$$v^* = \min \{ m \ge 1 \colon \sum_{-m+1 \le i \le v_0} X_i > 0 \}.$$
(8)

232

Then since $\{X_0, X_{-1}, ...\}$ and $\{X_1, X_2, ...\}$ generate independent σ -fields

$$P(\gamma_{1} = k) = \frac{P(\gamma_{1} = k, v_{0} = 0)}{P(v_{0} = 0)}$$

= $\frac{1}{q} P\left(\sum_{-j+1 \le i \le 0} X_{i} \le 0 \text{ for } 1 \le j < k, v_{0} = 0\right)$
= $\frac{1}{q} P(v^{*} = k, v_{0} = 0)$
= $\frac{1}{q} P(v_{0} = 0, v_{1} = k) = Q(v_{1} - v_{0} = k).$ (9)

Thus

$$0 < \int \gamma_1 \, dP = \int (\nu_1 - \nu_0) \, dQ = \frac{1}{q} < \infty. \tag{10}$$

where the last equality is a simple result which may be found in [3].

To prove (5) we use ince again the independence of the σ -fields generated by X_0 , X_{-1} , ... and X_1 , X_2 , ... respectively to obtain

$$P(\tilde{S}_{\gamma_{1}} - \tilde{S}_{\gamma_{0}} \in A) = \frac{1}{q} P(\tilde{S}_{\gamma_{1}} - \tilde{S}_{\gamma_{0}} \in A, v_{0} = 0)$$

$$= \frac{1}{q} \sum_{l=1}^{\infty} P(v^{*} = l, v_{0} = 0, \tilde{S}_{l} \in A), \qquad (11)$$

where A is a Borel set.

Now increasing the indices by l on the set

$$\{v^* = l, v_0 = 0, \tilde{S}_l \in A\}$$

yields the set

$$\{v_1 = v_0 = 0, S_l \in A\}.$$

From this and (10) it follows that

$$P(\tilde{S}_{\gamma_1} - \tilde{S}_{\gamma_0} \in A) = Q(S_{\nu_1} - S_{\nu_0} \in A)$$
(12)

Therefore

$$0 \leq \int (\tilde{S}_{\gamma_1} - \tilde{S}_{\gamma_0}) \, dP = \int (S_{\nu_1} - S_{\nu_0}) \, dQ \leq +\infty.$$
(13)

Now by [3], $\lim_{n \to \infty} S_{\nu_k}/k \equiv \beta$ exists w.p.l, $\beta > 0$, and $E(\beta) = \int (S_{\nu_1} - S_{\nu_0}) dQ$. Suppose $E(\beta) = +\infty$. Then for any integer K > 0 $Q(\beta/\alpha > K) > 0$, where $\alpha \equiv \lim_{n \to \infty} \nu_k/k$, since if $\beta/\alpha < K$ w.p.l Q, then

$$EQ(\beta) < KE_Q(\alpha) = K \int (v_1 - v_0) \, dQ < \infty.$$
⁽¹⁴⁾

Since we assumed $D < \infty$, we may choose $K_0 > D$. Then since $P(\liminf_{n \to \infty} S_n/n > K_0) = 0$ and $Q \leq P$, it follows that

$$0 = Q(\liminf_{n \to \infty} S_n/n > K_0)$$

$$\geq Q(\liminf_{n \to \infty} S_n/n > K_0, \ \beta/\alpha > K_0)$$

$$= Q(\beta/\alpha > K_0) \geq 0.$$
(15)

Hence $E(\beta) < \infty$ and so (5) is proved. As stated earlier, this, in conjunction with (3) and (4), proves the theorem.

References

- 1. Breiman, L.: Probability. Reading, Massachusetts: Addison-Wesley 1968
- 2. Kesten, H.: The limit points of a normalized random walk. Ann. Math. Statist., 41, 1173-1205, (1970)
- 3. Kesten, H.: Sums of stationary sequences cannot grow slower than linearly. Proc. Amer. Math. Soc. 49, (1975)
- 4. Wolfowitz, J.: Remarks on the notion of recurrence. Bull. Amer. Math. Soc., 55, 394-395 (1949)
- Received May 8, 1976