Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1977

(1)

On Vector-Valued Amarts and Dimension of Banach Spaces

G.A. Edgar and L. Sucheston*

Department of Mathematics, Ohio State University, Columbus, Ohio 43210, USA

If $(X_n)_{n \in \mathbb{N}}$ is an amart of class (B) taking values in a Banach space with the Radon-Nikodym property, then X_n converges weakly a.s., as proved in [4]. Examples exist in [4] and [7] which show that *strong* convergence may fail, but recently Alexandra Bellow [2] proved the following result: A Banach space **E** is finite-dimensional if (and only if) every **E**-valued amart of class (B) converges *strongly* a.s. We prove here that if p is fixed, $1 \le p < \infty$, then a Banach space **E** is finite-dimensional if (and only if) every *I*^p-bounded **E**-valued amart converges *weakly* a.s. The point of this is that in the amart convergence theorem for an infinite-dimensional Banach space, the assumption (B) cannot be weakened any more than the conclusion that weak a.s. convergence holds can be strengthened.

Let (Ω, \mathscr{F}, P) be a probability space, $\mathbb{N} = \{1, 2, ...\}$, and let $(\mathscr{F}_n)_{n \in \mathbb{N}}$ be an increasing sequence of σ -algebras contained in \mathscr{F} . A stopping time is a mapping τ : $\Omega \to \mathbb{N} \cup \{\infty\}$, such that $\{\tau = n\} \in \mathscr{F}_n$ for all $n \in \mathbb{N}$. The collection of bounded stopping times is denoted by T; under the natural ordering T is a directed set. (The notation and the terminology of the present note are close to those of our longer article [7].)

Let **E** be a Banach space and consider a sequence $(X_n)_{n \in \mathbb{N}}$ of **E**-valued random variables adapted to $(\mathscr{F}_n)_{n \in \mathbb{N}}$, i.e. such that $X_n: \Omega \to E$ is \mathscr{F}_n -strongly measurable. We will write EX (expectation of X) for the Pettis integral [9] of the random variable X. The sequence (X_n) is called an *amart* iff each X_n is Pettis integrable and $\lim_{\tau \in T} EX_{\tau}$ exists in the strong topology of **E**. An adapted sequence (X_n) is said to be of *class* (B) iff

$$\sup_{\tau \in T} E \|X_{\tau}\| < \infty.$$
(B)

Let $1 \leq p < \infty$. (X_n) is said to be L^p-bounded iff

$$\sup_{n\in\mathbb{N}} E \|X_n\|^p < \infty. \tag{1}$$

Theorem 1. Let a number p with $1 \le p < \infty$ be fixed. Given a Banach space \mathbf{E} , the following conditions are equivalent.

^{*} Research in part supported by the National Science Foundation (USA), grant MPS 72-04522A03

- (i) **E** is finite-dimensional.
- (ii) Every E-valued L^P-bounded amart converges weakly a.s.

(iii) Every E-valued L^p-bounded amart adapted to a sequence of σ -algebras \mathscr{F}_n with $\mathscr{F}_n = \mathscr{F}$ for all n, converges weakly a.s.

We will prove a slightly stronger result. The condition (2) includes not only *L*²boundedness, but boundedness in vector-valued Orlicz spaces as well.

Theorem 2. Let $\Phi: [0, \infty) \rightarrow [0, \infty)$ be a continuous increasing function with $\Phi(0) = 0$ and $\liminf_{t \to \infty} \Phi(t)/t > 0$. Let **E** be a Banach space. The following are equivalent.

- (i) **E** is finite-dimensional.
- (ii) Every E-valued amart (X_n) such that

 $\sup_{n} E\Phi(\|X_n\|) < \infty \tag{2}$

converges weakly a.s.

(iii) Every E-valued amart (X_n) satisfying (2) and adapted to a sequence of σ -algebras (\mathscr{F}_n) with $\mathscr{F}_n = \mathscr{F}$ for all n, converges weakly a.s.

Proof. (i) \Rightarrow (ii). Since $\liminf_{t\to\infty} \Phi(t)/t > 0$, an amart satisfying (2) is L^1 -bounded. As observed in [2], the convergence is an immediate consequence of the (ascending) amart convergence theorem [1] which asserts that an L^1 -bounded scalar amart converges a.s. It suffices to point out that projections on different coordinates of an L^1 -bounded amart are L^1 -bounded amarts.

(ii)⇒(iii) is obvious.

(iii) \Rightarrow (i). This is the main part of the theorem. We may note the nonprobabilistic nature of condition (iii). Indeed, to say that $(X_n, \mathscr{F})_{n\in\mathbb{N}}$ is an amart, is to say that for every sequence (ρ_n) of finite measurable partitions of Ω , $\rho_n = \{A_n^i, i = 1, 2, ..., r_n\}$, one has

$$\lim_{n} \sum_{i=1}^{r_n} E(X_{n+1}; A_n^i) = z \in \mathbf{E}$$

exists, the same for all $(\rho_n)_{n \in \mathbb{N}}$. Thus the implication (iii) \Rightarrow (i) is a result in the geometry of Banach spaces, and our proof is based on a fundamental result of that theory, the theorem of Dvoretzky, reducing the situation to Hilbert space. A. Bellow used the more elementary lemma of Dvoretzky-Rogers, which could also be applied, but the theorem of Dvoretzky seems to shed more light on the construction.

Given two Banach spaces F and E, F is said to be *finitely representable* in E iff, given any finite-dimensional subspace F_1 of F and any number $\varepsilon > 0$, there is an isomorphism V of F_1 into E such that

$$(1-\varepsilon) \|x\| \leq \|Vx\| \leq (1+\varepsilon) \|x\|$$

for all $x \in F_1$. The theorem of Dvoretzky [6] asserts that ℓ^2 is finitely representable in any infinite-dimensional Banach space.

Suppose now that **E** is an infinite-dimensional Banach space and let $\mathbf{F} = \ell^2$. We will define an amart on $\Omega = [0, 1]$ for \mathcal{F}_n : the Lebesgue measurable sets for all *n*. For each *n*, let r_n be the least integer larger than $2^n \Phi(2n)$.

Let $\{\bar{e}_n^i: n \in \mathbb{N}, 1 \leq i \leq r_n\}$ be a collection of orthonormal vectors in **F**. By the theorem of Dvoretzky, for each *n* there is an isomorphism V_n of the Hilbert space \mathbf{F}_n spanned by $\{\bar{e}_n^i: 1 \leq i \leq r_n\}$ into **E**, such that

$$\|V_n x\| \le 2\|x\| \tag{3}$$

for all $x \in \mathbf{F}_n$. Write $e_n^i = V_n \overline{e}_n^i$. Let $\rho_n = \{A_n^i : i = 1, 2, ..., r_n\}$ be a partition of Ω such that $P(A_n^i) = 1/r_n$. For $n \in \mathbb{N}$ and $i = 1, ..., r_n$, set

$$Y_n^i = n e_n^i \mathbf{1}_{A_n^i}.$$

Let the sequence $(X_m)_{m\in\mathbb{N}}$ be $\{Y_n^i: n\in\mathbb{N}, 1\leq i\leq r_n\}$ ordered so that Y_n^i is before $Y_{n'}^{i'}$ if n < n', or n=n' and i < i'. Thus if $X_m = Y_n^i$, then $m = R_{n-1} + i$, where $R_{n-1} = r_1 + r_2 + \cdots + r_{n-1}$. For $\tau \in T$, let $B_n^i = A_n^i \cap \{\tau = R_{n-1} + i\}$. Then

$$X_{\tau} = \sum_{n} \sum_{i=1}^{r_n} n e_n^i \mathbf{1}_{B_n^i}.$$

Now the sequence $X_m(\omega)$ is unbounded for each $\omega \in \Omega$, hence does not converge weakly.

In order to show that (X_n) is an amart, note that $r_n \ge 2^n \Phi(2n) \ge 2^n \Phi(2)$, so

$$\sum n r_n^{-1/2} \leq \sum n 2^{-n/2} \Phi(2)^{-1/2} < \infty.$$
(4)

Now if $\tau \in T$, $\tau > R_{N-1}$, then

$$\|EX_{\tau}\| \leq \sum_{n>N} \left\| \sum_{i=1}^{r_n} E(ne_n^i \mathbf{1}_{B_n^i}) \right\|$$
$$\leq \sum_{n>N} 2 \left\| \sum_{i=1}^{r_n} E(n\bar{e}_n^i \mathbf{1}_{B_n^i}) \right\|$$

But the \overline{e}_n^i are orthonormal, so

$$\left\| \sum_{i=1}^{r_n} E(n \bar{e}_n^i \mathbf{1}_{B_n^i}) \right\|^2 = \sum_{i=1}^{r_n} n^2 P(B_n^i)^2$$
$$\leq \frac{n^2}{r_n} \sum_{i=1}^{r_n} P(B_n^i) \leq \frac{n^2}{r_n}.$$

Thus

$$\|EX_{\tau}\| \leq 2 \sum_{n>N} \frac{n}{r_n^{1/2}},$$

which goes to 0 as N goes to ∞ by (4).

We next verify that (X_n) satisfies (2). Set

$$\overline{Y}_n^i = n \,\overline{e}_n^i \,\mathbf{1}_{A_n^i}.$$

Then for each ω ,

 $\|Y_n^i(\omega)\| \leq 2 \|\overline{Y}_n^i(\omega)\|.$

Hence

$$E\Phi(||Y_n^k||) \leq E\Phi(2||\bar{Y}_n^k||) = E\Phi(2n \, \mathbf{1}_{A_n^k}) = \frac{\Phi(2n)}{r_n} \leq \frac{\Phi(2n)}{2^n \Phi(2n)} = \frac{1}{2^n},$$

so $E\Phi(||X_m||) \leq 1$ for all *m*.

We finally observe that we have only used Dvoretzky's theorem with $\varepsilon = 1$. A simple proof for this weaker form of the theorem was given by L. Tzafriri [10].

References

- Austin, D.G., Edgar, G.A., Ionescu Tulcea, A.: Pointwise convergence in terms of expectations. Z. Wahrscheinlichkeitstheorie verw. Gebiete 30, 17–26 (1974)
- Bellow, A.: On vector-valued asymptotic martingales. Proc. Nat. Acad. Sci. U.S.A. 73, 1798–1799 (1976)
- Brunel, A., Sucheston, L.: Sur les amarts faibles à valeurs vectorielles. C.R. Acad. Sci. Paris. 282, 1011-1014 (1976)
- Chacon, R.V., Sucheston, L.: On convergence of vector-valued asymptotic martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33, 55-59 (1975)
- 5. Doob, J.L.: Stochastic Processes. New York: Wiley 1953
- Dvoretzky, A.: Some results on convex bodies. In: Proceedings of a Symposium on Linear Spaces, Jerusalem 1961
- Edgar, G.A., Sucheston, L.: Amarts: a class of asymptotic martingales. J. multivariate Analysis 6, 193-221; 572-591 (1976)
- Edgar, G.A., Sucheston, L.: The Riesz decomposition for vector-valued amarts. Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 85–92 (1976)
- 9. Pettis, B.J.: On integration in vector spaces. Trans. Amer. math. Soc. 44, 277-304 (1938)
- 10. Tzafriri, L.: On Banach spaces with unconditional basis. Israel J. Math. 17, 84-93 (1974)

Received July 15, 1976; in revised form February 20, 1977