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If (Xn)n~ N is an amart of class (B) taking values in a Banach space with the 
Radon-Nikodym property, then Xn converges weakly a.s., as proved in [4]. 
Examples exist in [4] and [7] which show that strong convergence may fail, but 
recently Alexandra Bellow [2] proved the following result: A Banach space E is 
finite-dimensional if (and only if) every E-valued amart of class (B) converges 
strongly a.s. We prove here that if p is fixed, 1 < p < o% then a Banach space E is 
finite-dimensional if (and only if) every LV-bounded E-valued amart converges 
weakly a.s. The point of this is that in the amart convergence theorem for an infinite- 
dimensional Banach space, the assumption (B) cannot be weakened any more than 
the conclusion that weak a.s. convergence holds can be strengthened. 

Let (E2,~,P) be a probability space, N = { 1 , 2  . . . .  }, and let (~),EN be an 
increasing sequence of a-algebras contained in ~ .  A stopping time is a mapping r: 
s w { oo }, such that {7 = n} ~o~ for all n EN. The collection of bounded stopping 
times is denoted by T; under the natural ordering Tis a directed set. (The notation 
and the terminology of the present note are close to those of our longer article [7].) 

Let E be a Banach space and consider a sequence (X, ) ,~  of E-valued random 
variables adapted to (~),~N, i.e. such that X~: s is d -s t rongly  measurable. We 
will write E X  (expectation of X) for the Pettis integral [9] of the random variable X. 
The sequence (X,) is called an amart iff each X,  is Pettis integrable and limr r EXr 
exists in the strong topology of E. An adapted sequence (Xn) is said to be of class (B) 
iff 

supE [JXr < oo. (B) 
~ffT 

Let l < p <  oo. (X.) is said to be LP-bounded iff 

sup . ~  E IJX.If < oo. (1) 

Theorem 1. Let a number p with l < p < oo be fixed. Given a Banach space E, the 
following conditions are equivalent. 
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(i) E is finite-dimensional. 

(ii) Every E-valued LV-bounded amart converges weakly a.s. 

(iii) Every E-valued LV-bounded amart adapted to a sequence of a-algebras 
with ~ = ~ for all n, converges weakly a.s. 

We will prove a slightly stronger result. The condition (2) includes not only L p- 
boundedness, but boundedness in vector-valued Orlicz spaces as well. 

Theorem 2. Let ~: [0, oo)--, [0, oo) be a continuous increasing function with qg(O)= 0 
and lim inft.  ~ cP(t)/t > O. Let E be a Banach space. 7he following are equivalent. 

(i) E is finite-dimensional. 

(ii) Every E-valued amart (Xn) such that 

sup E~(IIX, I[) < ov (2) 
n 

converges weakly a.s. 

(iii) Every E-valued amart (X,) satisfying (2) and adapted to a sequence of a- 
algebras (~ )  with ~ = ~ for all n, converges weakly a.s. 

Proof. (i)~(ii). Since lira inf~ co ~(t)/t > 0, an amart satisfying (2) is Ll-bounded. As 
observed in [2], the convergence is an immediate consequence of the (ascending) 
amart convergence theorem [1] which asserts that an Ll-bounded scalar amart 
converges a.s. It suffices to point out that projections on different coordinates of an 
Ll-bounded amart are Ll-bounded amarts. 

(ii)~(iii) is obvious. 

(iii)~(i). This is the main part of the theorem. We may note the non- 
probabilistic nature of condition (iii). Indeed, to say that (X,, ~-),~N is an amart, is to 
say that for every sequence (p,) of finite measurable partitions of ~2, p, = {Ai,, i 
= 1, 2 . . . . .  r,}, one has 

rn 

lira ~ E(X,+I: Ai,)=zeE 
n i = l  

exists, the same for all (p,),~. Thus the implication (iii)~(i) is a result in the 
geometry of Banach spaces, and our proof is based on a fundamental result of that 
theory, the theorem of Dvoretzky, reducing the situation to Hilbert space. A. 
Bellow used the more elementary lemma of Dvoretzky-Rogers, which could also be 
applied, but the theorem of Dvoretzky seems to shed more light on the 
construction. 

Given two Banach spaces F and E, F is said to be finitely representable in E iff, 
given any finite-dimensional subspace F 1 of F and any number e > 0, there is an 
isomorphism V of F1 into E such that 

(1 -5)llxll -<_ 11Vxll < (1 +5)Ilxll 

for all xeF1. The theorem of Dvoretzky [6] asserts that #2 is finitely representable 
in any infinite-dimensional Banach space. 
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Suppose now that  E is an infinite-dimensional Banach space and let F = f2. We 
will define an amar t  on O = [-0, 1] for ~ :  the Lebesgue measurable  sets for all n. For  
each n, let r, be the least integer larger than 2" ~b(2 n). 

Let  {~i: n eN ,  1 < iN r,} be a collection of  o r thonorma l  vectors in F. By the 
theorem of Dvoretzky,  for each n there is an i somorphism V, of  the Hilbert  space F, 
spanned by -i .  {e.. l<i<=r.} into E, such that  

[I V.xll __<2 Irxll (3) 

for all x e F , .  Write ei. = -i i . V, e,. Let  p.  = {A,. i = 1, 2, ..., r,} be a part i t ion off2 such that  
i __ P(A,)-1/r,. For  n e N  and i =  1 . . . .  , r,, set 

i i 

Let the sequence (Xm),~N be {Y~/: n e N ,  1 <i<r.} ordered so that  Y~ is before y i,' if 
n < n', or n = n' and i < i'. Thus if X m = Y2, then m = R._  1 + i, where R,_ ~ = q + r 2 

i _ i c~ {z = R,_  1 + i}. Then + . - .  + r,_ ~. For  z ~ T, let B, - A, 

rn 

x =EE , n G 1Bt,. 
n i = i  

Now the sequence Xm(co ) is unbounded for each o)eg2, hence does not converge 
weakly. 

In order  to show that  (X.) is an amart,  note that  r. > 2" ~(2 n )>  2" ~(2), so 

E f/Fn- 1/2 ~ E / / / 2 -  n/2 ~b(2 ) -  i /2  < 00 .  (4) 

N o w  if "c e T, ~ > R u_ ~, then 

rIEX~II <---- ~>N i~ E(nei. l.~) 

rn 

<.>uE 2 i~=1E(nei" 1B~) " 

- i  But the e. are or thonormal ,  so 

~'n 2 rn ~= iE(ne~ IBm) = E n2 p(Bi.) 2 
i i ~ l  

Ft2 r~ Fl2 
< _ _ y  i 
- -  P ( B n )  ~ - - .  

r . i = l  rn 

Thus 

n 
[[EX~I [ < 2  Z 

- -  n>N r : / 2~  

which goes to 0 as N goes to ~ by (4). 
We next verify that  (X.) satisfies (2). Set 

I .  
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Then for each co, 

[1Y)(co)[I _-<2 II :7 . ' (co) l [  �9 

Hence 

g~([I YfflL)< Eq~( 2 II YfflL) = E4~( 2n la~) = ~(2n) < 
cb(2n) 1 

r. =2"~b(2n) 2"' 

so E~b(LIXmll)< 1 for all m. 
We finally observe that we have only used Dvoretzky's theorem with ~ = 1. A 

simple proof for this weaker form of the theorem was given by L. Tzafriri [-10]. 

G.A. Edgar and L. Sucheston 
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