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For  general multivariate linear models, a composi te  hypothesis does not  
usually induce invariance of  the joint  distribution under  appropr ia te  groups 
of  transformations,  so that genuinely distribution-free tests do not  usually 
exist. Fo r  this purpose, some aligned rank order statistics are incorpora ted  in 
the proposal  and study of  a class of  asymptot ical ly  distribution-free tests. 
Tests for the parallelism of  several multiple regression surfaces are also 
considered. Finally the opt imal  properties of  these tests are discussed. 

1. Introduction 

In the context of  a general form of the multivariate linear model,  we consider a 
sequence {X~=(Xli  . . . .  ,Xp~)', i > 1 }  of  independent  r andom vectors (i.rv) with 
cont inuous  cumulat ive distr ibution functions (cdf) 

F,.(x)=P{X~ <x}=F(x -~ t - f l c i ) ,  i> l, x e R  p, p> l, (1.1) 

where ~t = (cq . . . .  , ep)' and fl = ((fijk))j= 1 ..... p,k= 1 ..... q (q > 1) are unknown parame-  
ters, and c~=(cl~ . . . .  , cq~)', i > l  are vectors of  known regression constants. The 
form of the cdf F is not  assumed to be specified. By reference to the usual 
canonical  reduct ion of  the mult ivariate linear hypothesis  [viz., Anderson (1958), 
Ch. 8], we consider the following. We part i t ion 

fl = (  ill ,  flz ), ql +q2=q, q~>O and q 2 > 0 ,  (1.2) 
p x q  p x q l  P•  

and consider the null hypothesis 

H 0 : f 1 2 = 0  against the alternative Hi"  f12+0. (1.3) 

Note  that whenever q~ is > 1, both  H o and H1 are composi te  hypotheses. 
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For the particular case of q l=0  i.e., for Ho: ~=0, the X i are identically 
distributed (i.d.) under H o and a class of conditionally as well as asymptotically 
distribution-free rank order tests has already been studied by Puri and Sen 
(1969). For q1>1, under Ho:/~2--0, the X i are no longer i.i.d., and this 
invalidates the approach of the above mentioned paper. In fact, in such a case,. 
genuinely distribution-free rank order tests may not generally exist. In the 
univariate case (i.e., for p=l), this difficulty has been circumvented in some 
specific problems by Sen (1969) and Puri and Sen (1973) by using suitable 
aligned rank order tests where the alignment is based on rank order estimates of 
the nuisance parameters. This approach is systematically explored and develop- 
ed here for the general multivariate linear model, and, basically, the theory of 
rank order estimators of regression parameters, developed in Sen and Purl 
(1969) and Jure~kovfi (1971), is employed here for the estimation of the nuisance 
parameters (i.e., /~1) and incorporated in the construction of suitable aligned 
rank order statistics on which tests for H0:iga=0 are based. In the univariate 
parametric case, the classical likelihood ratio test possesses some (asymptotic) 
optimality properties. The picture is somewhat different in the multivariate 
general linear models where the likelihood ratio tests may not perform uniform- 
ly better than others, even asymptotically. However, under quite general regula- 
rity conditions, the Wald-optimality (viz., best average power and the most 
stringency) applies to the likelihood ratio types tests. In the nonparametric 
multivariate problems too, a variety of tests is available in the literature [viz., 
Puri and Sen (1971)], and some of these can be adapted for the general linear 
model under consideration. Among other possibilities, we consider here a class 
of rank order tests having some analogy with the likelihood ratio type tests. For 
such rank tests, it is possible to develop distribution theory in some closed forms 
comparable to those of the likelihood ratio tests and permitting an asymptotic 
comparison of these tests for local alternatives. 

The proposed rank order tests for H o are considered in Section 3 following 
the preliminary notions and basic assumptions in Section 2. Section 4 deals with 
asymptotic comparisons of parametric (mostly, normal theory and likelihood 
ratio) and rank order tests. Asymptotic optimality of the proposed aligned rank 
tests is also considered in this section. The last section deals with a special case 
of (1.3), namely, testing the hypothesis of parallelism of several (multiple) 
regression surfaces, which turns out to be the multivariate multiparameter 
analogue of Sen (1969). 

2. Preliminary Notions 

Let Rji= ~ u(Xji-Xjs ) (where u(t)=l  or 0 according as t is > or <0) be the 
s = l  

rank of Xj~ among the Xjs, s=l, . . . ,n,  for i = l , . . . , n ,  j = l , . . . , p .  Since F is 
continuous, ties among the observations may be neglected, in probability. For 
each j ( = l  .. . .  ,p) and n(>l),  we consider a set of real valued scores 
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a(,J)(1), ..., a~g)(n), generated by a score Jhnction 0i(u), 0 < u <  1, in either of the 
following ways: 

a~J)(i)=~j(i/(n+l)) or EOj(U,i), i=1  .. . .  ,n; j=l , . . . ,p ,  (2.1) 

where Cj(u) is assumed to be square integrable inside (0, 1), and U~I <. . .  < U,, 
are the ordered random variables of a sample of size n from the rectangular 
distribution over (0, 1). Our proposed testing procedure is based on the following 
type of rank order statistics: 

Sn=((Sn, jk)); Sn, jk = ~ (Cki--ffkn) a(nJ)(Rji) 
i = l  

(2.2) 

n 

where~-k~:n -1 ~ cki, f o r k : l  . . . .  , q ; j : l , . . . , p .  W e d e n o t e b y ~ = n  -1 ~ c i. 
i = 1  i = 1  

Following H~jek (1958) and Hoeffding (1973), we assume that for every 
j (=  1 .... ,p), 

q , j (u )  = e } ~ ( u )  - ~o}~ (u) (2.3) 

where (p}~)(u), s =  1, 2 is absolutely continuous and non-decreasing in u e(0, 1) and 

1 

Sl~o}S)(u)l{u(1-u)}-~du<oo; s = l ,  2; j = l  . . . .  ,p. (2.4) 
0 

Denote 
1 

~j--~oj(u)du, j = l  .... ,p, 
0 

and 

2j j, (F) = ~ ~ (pj(Ftjl(x)) (p j, (F~j,~ (y)) dF[ij, ~ (x, y) - qSj. ~ ;  
- o o  - o o  

(2.5) 

(2.6) 

where F~j~(x) and F~jj,~(x, y) are the marginal cdfs of the j-th and the (j,j')-th 
components respectively. Assume 

A(F)=((2jf(F))) is positive definite (p.d.) and finite. (2.7) 

We also denote by 

c.=((c..k~,))= ~ (ei-e.)(c~-e.)'  
i = l  

- -  ( c ~ i  - a k . ) ( c ~ , .  - e k , .  
i 

(2.8) 

and assume that 

C, is p.d. for every n>no, (2.9) 
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and there exists a p.d. and finite matrix C, such that  

n -  1 C,,---* C as n - ~ .  

Further ,  we assume that  

c_o (1 )  0(2) for i =  1, ..., n, 
i - -  '~'i - -  ~ i  

(2.10) 

(2.11) 

where for each k ( = l ,  . . . ,q)  and s ( = l ,  2), c~] is non-decreasing in i. This 
assumption is a slightly simplified version of a parallel assumption made  by 
Jure~kov~t (1971). For  q =  1, (2.11) is not  necessary. 

Finally, we assume that  for every e >0,  there exists an integer n o = no(e), such 
that  for n > n o. 

n - l C n . k k > g { m a x  ICki--Ck,[2}, k = l , . . . , n .  (2.12) 
l<=i<_n 

Regarding the c.d.f. F, we assume that  for each j ( =  1, ..., p), the marginal  
c.d.f. F~j~ has an absolutely cont inuous probabil i ty  density function (p.d.f.) f~j~ 
with a finite Fisher informat ion 

Ij = I(f[Jl)= ~ { ( d / d x ) l o g ~ l ( x ) }  2 d F m ( x  ), j = 1 . . . . .  p. (2.13) 
- - o o  

As has been ment ioned in Section 1, our  testing procedure  rests on some 
aligned rank order  statistics. To explain the al ignment procedure,  we need the 
following notations.  

Let  B=((bjk))j= 1 ..... p;k= 1 ..... q be a real matrix, and we write B'=((b ' l ,  ..., b'p)) 
where b) = (bj 1 , . . . ,  bjq), for j = 1, ..., p. Let  then 

Xi(B) = X i - B e i  =(X~i(bl) ,  ..., Xpi(bp))' for i =  1 . . . .  , n; (2.14) 

R j i ( B ) = R j i ( b ~ ) =  ~ u ( X j i ( b j ) - X j s ( b j ) ) ,  i = i , . . . , n ;  j = l ,  . . . ,p ,  (2.15) 
S = I  

so that  Rji(B ) is the rank of Xji (b~) among Xjs(bj), s =  1, ..., n, for i =  1 . . . . .  n. 
Now, replace the Rji  in (2.2) by Rji(bj) for i =  1 . . . . .  n, j =  1 . . . .  , p and denote  

the corresponding matr ix of rank order  statistics by 

S, (B) = ((S,, jk (bj)))j= 1 ..... p; k = a ..... q' (2.16) 

Note  that  S,(B) in (2.16), viewed as a function of the pq elements in B, generates 
a pq-dimensional  stochastic process (on RVq). We shall make  use of the same in 
the next section to introduce the proposed  aligned rank order  statistics. 

3. The Proposed Aligned Rank Order Tests 

As in (1.2), we introduce the following part i t ionments:  

t t B = ( B 1 ,  B 2 )  ; e' i =(Ci(1), ei(2)), i=1  . . . . .  n. 
p x q  p x q l  pxq2 q x l  q l x l  q 2 x s  

(3.1) 
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Then, under H o in (1.3), we have 

Fi(x) =F(x  -ae - i l l  ci(1)), i=  1, ..., n. (3.2) 

First, we proceed to estimate the nuisance parameter (matrix) fll for the 
model (3.2). For this, we consider the p x ql matrix 

Sn(1)(B 1 , 0)= ((S,,, jk(b}l))))j= 1 ..... p;k= 1 ..... ql, (3.3) 

where 

(b}*))' = (b j l ,  . . . ,  b ~ ,  0, ..., 0), j = 1 . . . .  , p .  (3 .4 )  

Now, under (3.2), S,(,)(fll, 0) has the same distribution as of S,(,)(0, 0) under the 
hypothesis that f l=0;  for the latter case, we may use the results of Puri and Sen 
(1969) and obtain the following: (a) under (3.2), S,(1)(fll, 0) has expectation 0 and 
dispersion matrix 

A(F)@Cn(11 ) where C , =  (C,(,,), C.(12)) (3.5) 
\Cn(21) Cn(22) /"  

C,(i/) is of order ql x qj, i,j = 1, 2 and | stands for the Kronecker product, and 
(b) as n ~  0% 

Y(n -~ S,(,)(fll, 0)) --* ~/; • ql (0, a (F) | C(a 1)), (3.6) 

where C(~,) is the upper ql •  principal minor of C, defined by (2.10). To 
estimate ill, we adopt the alignment procedure studied in detail by Sen and Puri 
(1969) and Jureekovfi (1971), and define 

D.--  BI: ~ IS.,j~(b~l))I=minimum . (3.7) 
j = l  k= l  

Then, our estimator of ill, under the model (3.2), is given by 

fit,,  = centre of gravity of Dn. (3.8) 

By arguments parallel to those of Jureekov~ (1971), it follows that 

^ P (3.9) sup Hfll--fll,nll----+O, as  H-+oo  
II1 cD~ 

~ ( n  ~- [ / ~ , . - / h ] ) - +  ~ ~ ~(0, r(F) |  1)) (3.10) 

where 

T(F) = ((z j j, (F))) = ((2jr (F)/Aj A j,)) (3.11) 

and 

Aj= }~ (d/dx)qoj(Fti:(x))dFtj~(x), j = l  . . . .  ,p. (3.12) 
--cO 
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Under the model (3.2), fl~,, is a translation-invariant, robust, consistent and 
asymptotically normally distributed estimator of ilL, We use the same for our 
alignment process and consider the following aligned rank order statistics: 

~ .~=( (&j0 )~=~  ..... ~ ; ~ + ~  ..... ~ (3.13) 

where 

S,,jk= ~ (Cki--gk,)a~)(Rji), j = l , . . . , p ; k = q t  + l,...,q, (3.14) 
i=1 

and the aligned-ranks are defined by 

/~j~=Rj~(fll,,,0 ) for i=1  . . . . .  n; j = l ,  . . . ,p. (3.15) 

To introduce the proposed test statistics, we first define 

M. = ((mia, ,))~, j,= 1 ..... p 

_ ( (  ~,', -~i) -~J',)) -- (n--l)  -1 ~, a~)(Rji)an (Ryi)-a . a, , (3.16) 
i=1 

where 

h~)=n -1 ~ a~)(i), for j = l  . . . .  ,p. (3.17) 

Also, replacing R~i by iqai and Rj, i by /~j'i for i=1  . . . . .  n and j , f = l  . . . .  ,p in 
(3.16), we denote the corresponding matrix by 

M, =(( ~ ,  ,))j,~,= ~ ..... p. 

Let then 
- 1  

Cn* = C . ( 2 2 ) -  Cn(21) Cn(11) Cn(12) ,  

I~ =I(/I, | C* (of order pqzxpq2), 

Hn ~-((Sn.jk Sn, j 'k'))j,j '= l ..... p; k,U=ql +1 ..... q 

(3.1s) 

(3.19) 

(3,20) 

(3.21) 

where H,  is also of the order Pq2 x Pq2. Then, our proposed test statistic is 

P P q q 
= Z Z 2 Z g.,,kg,,J'k'rh~ i'c*kk" (3.22) 

j = i  j ~ J -  k = q l + l  k ' = q a + l  

where 

191;_1 Ajj, - ~  , ~Jk, k'=q~+l ..... q. --((m, ))a,j'=l ..... p and C * - l - " c  *kk'~ (3.23) 

The analogy of 2 ' ,  to the classical Lawley-Hotelling trace criterion for the 
multivariate analysis of variance (MANOVA) problem can readily be identified. 
Whereas the latter is based on the least squares estimators of the parameters 
involved in the model, our f ,  is based on the corresponding rank order 
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estimators of the nuisance parameters. Further, the asymptotic equivalence of 
the Lawley-Hotelling trace and the likelihood-ratio criteria (under the normal 
theory model) is well-known [viz., Anderson (1959), Ch. 8]. In the same spirit, 
we could have proposed an alternative test-statistic 

Y~  = IIG, U]IH,+ G, II, (3.24) 

where [JAIl stands for the determinant of the matrix A. By using Theorem 3.1 of 
Jure~kovfi (1971) and proceeding as in the proof of Theorem 3.3 of Puff, Sen and 
Gokhale (1970), it can be shown that 5~, and - 2 1 o g ~  ~ are asymptotically 
equivalent under the null hypothesis and for local alternatives too. As such, in 
the sequel, we shall be mainly concerned with the statistic Y,,. 

In the remainder of this section, we show that Under H0:/~2 =0, when the 
assumptions of Section 2 are met, ~ ,  has asymptotically a chi-square distribu- 
tion with Pq2 degrees of freedom. This provides an ADF (asymptotically 
distribution-fi'ee) test for Ho. 

Lemma 3.1. Under H o : f 1 2  = 0 and the assumptions of Section 2, 

nG,~I~A-t(F)|  *-l, as n~oo ,  (3.25) 

where 

(3.26) 
\C(21)  C(22) 

Proof. By virtue of (2.10), to prove (3.25), it suffices to show that 

P (3.27) M, --+ A (F), as n~oo .  

Als~ since rh;;""=m;i'"=(n-1)-l { ~' [a:i)(i)-~/)]2} -'2;;(F)=/l;'i by (2"l) 

some routine computations, we need only to show that for every j ~=j', 

mjj,,,---~,tj;,(F) when H 0 holds. (3.28) 

By assumption (2.3), (see also Hfijek (1968), section 5) for every e>0, there 
exists a decomposition 

(o;(u)=(o~l)(u)+(o~2)(u)-(o}3)(u), 0 < u < l ,  j = l  . . . .  ,p (3.29) 

where (O}a)is a polynomial, 9)} 2) and (o} 3) are non-decreasing, and 

3 1 
Y. 1 < j < p .  (3.30) 

k=2 0 

Using (3.29) we decompose rhi;,,, into 9 terms, Using the Cauchy-Schwarz 
inequality for the eight terms for which at least one factor is non polynomial 
along with (3.30), it follows that to prove (3.28), it suffices to take (oj=(o}I), 
1 <--_j<p. Since the (o}I) are absolutely continuous and are polynomials, for them, 
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the corresponding rfi~j,,, can be written as 

S (pS~)(/~.j(x)) ~p~,~)(/4.j.(y)) dI~*jj,(x, y) + o(1) 
-o0 -c~o 

where/4 , j  is the sample c.d.f, for all the aligned observations on the j-th variate, 
j = 1,.. . ,  p and H,jj, ~* is the bivariate sample c.d.f. (for the j-th and j'-th variates) 
for these aligned observations. For the aligned vectors Xi(fl~, 0), i=  1 . . . .  , n, the 
sample c.d.f.'s are denoted by H,j and H,jj,,* for j ( + j ' ) =  1,.. . ,  p. Then, by (2.14), 
(3.10) and the continuity of the parent' c.d.f., it follows that as n-~ o% 

sup {IH,jj,(x, y)-H,jj ,(x,  Y)I. x, y 6 R 2 } ~ O  a.s., 

for every j4=j'=l,. . . ,p. Also, note that the ~b~ 1) are bounded, continuous 
functions. So, first replacing/4, by H,, I~* by H* and then using Theorem 4.1 of 
Puri and Sen (1969), the desired result follows. In fact, it can be shown that 
(3.27) holds a.s. 

Lemma 3.2. Under Ho: f12=0 and the assumptions of Section 2, as n~oe, 

n- ~ {S.(2) - S.(1)(ill, 0) + A (101," - Pl) C.(12) } _z,  0, (3.31) 

where defining the Aj by (3.12), 

A = Diag(A1, ..., Ap). (3.32) 

The proof follows as a direct multivariate extension of Theorem 3.1 of 
Jure~kov/t (1971), and hence, the details are omitted. 

By noting that cf. Jure~kovg (1971) S,(1)(101,0)=op(1), the following lemma 
also follows from Theorem 3.1 of Jure~kovfi (1971). 

Lemma 3.3. Under the hypothesis of Lemma 3.2, as n-~ o% 

n -~ {Sn(1)(fll, D) - A  (101 ' . - i l l )  Cn(11)} -p~+ 0. (3.33) 

From (3.31) and (3.33), we arrive at the following 

Lemma 3.4. Under the hypothesis of Lemma 3.2 as n~  o% 

n-~ {Sn(2)-Sn(2)(fll, 0) + Sn(1)(fll, 0) Cn(~ 1)Cn(12)} ~ p  0, (3.34) 

where Sn(2)(fll,0 ) is defined as in (3.13)-(3.14) with the -Rii being replaced by 
Rji(fll, 0). 

Consider now H*: fl=0. Then, under H0: f12=0, the pair (S~(1)(fll,0), 
S,(2)(/~ 1, 0)) have the same joint distribution as that of S, under H*, and since, 
[viz., Puff and Sen (1969)], the latter is asymptotically multinormal with mean 0 
and dispersion matrix 

A (F) | C,, (3.35) 
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it follows that under H 0 in (1.3), 

~(n-~ {Sn(2~@. 0)-- S.~,(/L. 0) C ~ ,  C., 2~) 
~p~q~ (0, A (F) | {C(22) - C(2 ~) C(~ ~) C(~ 2)}). (3.36) 

Hence, by (3.34) and (3.36), we obtain that under H o in (1.3), as n~oe ,  

5f(n -~- S,(2)-~p~q2 (0, A (F) | C*). (3.37) 

From (3.37), Lemma3.1 and the asymptotic distribution theory of quadratic 
forms associated with asymptotically multinormal vectors, it follows that under 
the hypothesis of Lemma3.3, 2 ' ,  has asymptotically a chi square distribution 
with p q2 degrees of freedom. 

Thus, the proposed ADF test of size e(0 < e  < 1) is as follows: 
2 be the upper 100c~% point of the chi square c.d.f, with Pq2 degrees Let Zpq2,~ 

of freedom. Then, the null hypothesis H o in (1.3) is accepted or rejected 
2 according as 5r is < or > Xpq~,~. 

4. Asymptotic Comparison with Parametric Counterparts 

We confine ourselves to local alternatives for which the power of thee proposed 
tests are away from 0 and 1. We consider a sequence {Kn} of Pitman-type 
alternative hypotheses, viz., for some (fixed) non-null ~2, 

(4.1) 

for which an asymptotic power function can be traced and compared with the 
parallel function for some parametric tests for the same problem. 

For the normal theory model (where the underlying c.d.f. F is assumed to be 
multivariate normal), classical parametric (likelihood ratio, Lawley-Hotelling 
trace or the largest characteristic root criterion of S.N. R o y - s e e  Chapter8 of 
Anderson (1959)) tests are all based on the least squares estimators. Sen and 
Puri (1970) have studied the asymptotic properties of the likelihood ratio (as 
well as the Lawley-Hotelling Trace) statistic when the underlying F is not 
necessarily normal. It follows that if F possesses a finite and positive definite 
dispersion matrix 

~:(F)-- ((cov(X~, X j,0)) = (%~,(F))), 

then, under H o in (1.3), L, (=-2 log- l ike l ihood  ratio criterion when F is 
assumed to be normal) has asymptotically a chi-square distribution with Pq2 
degrees of freedom. Also, under {K,} in (4.1), L n has asymptotically a non- 
central chi square distribution with Pq2 degrees of freedom and non-centrality 
parameter 
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A L = Trace(F(Z(F) |  C*)- ~), 

where 

(4.2) 

F = ( ( T j k ? j . k . ) ) ; . ; . = t  . . . . .  p ; k . k ' = , , + ~  . . . . .  q, 

and the Yjk are defined in (4.1). 
Consider now a sequence of alternatives {K*}, specified by 

(4.3) 

- 3  K*' /~=(0, n 7z), 72 defined in (4.1). (4.4) 

Then, (S.m(fl~,0),S.(e)(/?a,0)), under K., has the same joint distribution as that 
of S. under K*. Noting this fact, using the results of Puri and Sen (1969) and our 
lemmas in Section 3, it follows by some routine computations that under {K.}, 
a s  t,/----~ oo  ~ 

( n--~ g.(2))--* @q~ ( A 72 C*, A (F) | C*). (4.5) 

From Lemma 3.1 and (4.5), we conclude that under {K,}, ~n has asymptotically 
a non-central chi square distribution with P q2 degrees of freedom and non- 
centrality parameter 

A s = Trace(F(T(F) | C*)- 1), (4.6) 

where T(F) is defined by (3.11). 
From (4.2) and (4.6), we conclude that the Pitman 

efficiency (ARE) of 5r with respect to L, is given by 
asymptotic relative 

e~,L = A j A  L = tr (F(T(F) | C*)- ~)/tr(F(~,(F) | C*)- 1) (4.7) 

which depends on F, F and C*. If F is multinormal and for 5r we use the 
normal scores (i.e., all the q~j being the inverse of a standard normal c.d.f.), then, 
it can easily be checked that T(F)=X(F) ,  and hence, (4.7) reduces to 1, i.e., the 
aligned rank order normal scores test and the likelihood-ratio test are asympto- 
tically power-equivalent for normal F and local alternatives in (4.1). However, in 
general, for arbitrary F, e~,L is bounded as follows: 

chp(X (F) T -  I(F)) ~ e~,L _G ch, (X(F) T -  I(F)), ( 4 . 8 )  

where chj(A) stands for the j-th (largest) root of A for j >  1. The bounds in (4.8) 
may be studied as in Sen and Puff (1967) or Puri and Sen (1969), and hence, the 
details are omitted. For testing simple hypotheses in multivariate linear models, 
Puri and Sen (1969) have studied (in their Theorem 6.2) the optimality of rank 
order tests for local alternatives. In passing, we may remark that under the same 
set of regularity conditions as in Theorem 6.2 of Puri and Sen (1969), ~r has 
asymptotically the best average power with respect to suitable surfaces in the 
parameter space (of 72), it has also asymptotically the best constant power on 
such surfaces and, finally, it is an asymptotically most stringent test. 
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5. A D F  Tests for Parallelism of Several Regression Surfaces 

As a mul t ivar ia te  general izat ion of the univar ia te  p rob l em treated in Sen (1969), 
we consider  here the following. Let  XI k), k = 1, ..., n k be n k independent  rv's with 
cont inuous  c.d.f.'s 

F//(k)(x) = P {X} k) < x} = F(x  - ek - e(k)~, --//k i ,  (5.1) 

for i = 1 . . . .  , n k, k = 1 , . . . ,  s ( >  2). We desire to test the null hypothesis  

H o :  f l  1 . . . . .  fls = f l ( u n k n o w n )  (5.2) 

where ~ ,  .. . ,  e~ and fl are t reated as nuisance parameters .  I f  we let f l k = f l z  + f l* ,  k 
= 1 . . . .  , s (so that /~* = 0), q = s t (where each of  the el k) in (5,1) is a t-vector), then, 
we are in a posi t ion to use the theory  developed in Sections 3 and 4. Therefore,  
wi thout  giving the details of  derivations,  we present  the main  results in this case 
as follows. 

Based on the n k observat ions  in the k-th sample,  we define ~(k) as in (2.2) and - -n  k 
(k) B S.~( ) as in (2.14)-(2.16). Let  then n = n ~  + .. .  +n~ and 

= S,~ ( ) for BER "t. (5.3) 
k =  1 

Under  H o, we est imate the c o m m o n  fl as follows: as in (3.7)-(3.8), we let 

D , =  B: ~ IS , , jm(bj ) l=minimum ; (5.4) 
j = l  m=l  

ft, = centre of  gravi ty  o l D , .  (5.5) 

Let  then 

^(k) (k) ^ S,k = S,k (fl~), k = 1 . . . .  , s; (5.6) 

H(k)-- ( (S% ) S~ k) ~ �9 (5.7) 
n k - - \ t  nk, jr  n k , j ' r ' l ] j , j ' = l , , . . , p ; r , r ' = l , . . . , t ,  

n 

~k)_ ~ (e i _ %~)(ei - ,~) (5.8) C n  k __ (k) - (k) ~ , 

i=1 

191" = (n - s ) -  1 k~l i~l-~V . . . .  Sa(J)(l~(~hj,.-d~} . . . .  ( a ( J ) ( l ~ ' } h - d ; ) ~ ] ]  " J , , ~  - - . ~ . ] ] ,  (5.9) 

G.~ = ~/I. | C(#] for k = l  . . . .  ,s, (5.10) 

where the ~,~ and N J) are the averages of  the regression vectors and the scores, nk 
t 

and are defined as in Section 2;/~(}~j, is the rank  of --J,~(!~)- ~ ]~,,j~ ~(k) a m o n g  the n k 
r = l  

aligned observat ions  on the j - th  var ia te  in the k-th sample,  for i =  1, . . . ,  n k, j 

= 1, . . . , p ;  k =  1 . . . .  , s. Then, the aligned rank  order  test-statistic is 

A~ = ~ Trace(H~,~ G,2~). (5.11) 
k=l  
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Under H o in (5.2), ~n has asymptotically a chi-square distribution with p ( s -  1) t 
degrees of freedom, while under the sequence of alternatives {K,}  where 

= f l + n - - ~ k ,  k = l  . . . .  ,s; n~k-- , K,: flk ~ ~ C (k)~' - 0  (5.12) 
k=l 

it has the corresponding non-central distribution with the non-centrality param- 
eter 

Ase = i Trace(~(T(F) | Ck)- 1), (5.13) 
k = l  

where 

~=((V}k,)7}~,~,)) and C~ =limn-l"~(k)~n~, k = l  . . . .  ,s, (5.14) 
n o  oO 

which we assume to exist. Asymptotic optimality results hold under the same 
setup as in the later part of Section 4. 
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