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1. Introduction

Let Xy, ..., Xy be exchangeable random variables with continuous, symmetric

distribution function. Thus P[X; <z, ¢ =1,...,n] = Ple; X, <, 0=1,...,n],
for any of the 2% sign vectors e = (e1, ..., €3), & = 41, and any of the n! per-
mutations ¢ = (o1, ..., op) of (1, ..., n). The sequence Si,..., 8y (Sr= Z{Xi)
has the ladder index I if S, << 8y for 0 <r << I (Sy = 0). Ties among partial
sums So, S1, ..., Sy occur with probability zero and are disregarded. Let I7 be
the smallest ladder index, Iy, Is, ..., I, ... be the successive ladder indices.
We point out that there is complete analogy between ladder indices of 81, ..., S»
and equilibrium values in 27 steps of simple symmetrie random walk (hereafter
called simply “random walk”). A path counting procedure yields for ladder
indices a derivation of some results known for random walk. The probability that
there is a k-th ladder index and that exactly j sums are larger than the k-th ladder
sum 87, is found to be
W pghy=2ees (M H NN iz, k=g,
(8o = 0 plays the role of zero-th ladder sum, but does not count as one). This
provides a transition between the arc sine law of the number of positive sums
(k == 0), and the law of the number of ladder indices (j = 0). It is shown that
certain results which have no simple explanation in the case of random walk
become quite natural in the context of ladder indices.

2, Two Equivalent Problems

If an event E relative to Xy, ..., X, has an invariant probability (not depend-
ing on the particular continuous distribution function of the symmetric exchange-
able random variables Xy, ..., Xy), a convenient possible way to determine the
probability P[] is to use a path counting procedure. To a set of positive numbers
21 < Tg < **+ << xy such that

n
(2) > aix; +0 for all choices a; = —1,0,1,
=1 with at least one a; + 0,

associate the 27n! polygonal paths (r;e, 6) which join the origin (0,0) in a

Cartesian plane with the successive points (1, s1), (2, 82), ..., (n, 85), Where
T

Sp = Zei %5, P[E] equals the proportion of the paths for which Z holds. Con-

i=1
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versely, showing that for an event ¥ this proportion does not depend (provided (2)
holds) on z = (z1, ..., z,) establishes that Z has an invariant probability. The
method has been used for instance by HoBey and PyxE [5] to derive with relative
ease Baxter’s generalized arc sine law. A formal justification for this procedure
has been given by Friepmawn, Karz and Koormans [4].

Let K (n, j, k) be the event: there are at least k ladder indices for the sequence
81,...,85, and § partial sums are larger than the k-th ladder sum 8, (k=0,1,...,n;
§=0,1,...,7n — k). We shall check that it has an invariant probability. The fact
can be established directly, with a geometric argument similar to the one used
in [5]. While easy to visualize, the map obtained by the shrinking-and-switching
procedure is unfortunately clumsy to describe. We use therefore a different
argument, based on the following:

Lemma. Let Fy, be the event: “n is first ladder index of 81, ..., Su”°. It has an
tnvariont probability, equal to the probability that in random walk, the first equilibrium
occurs at step 2n.

Proof. The following relation between events is obvious:
Fp=[8<0,i=1,...,n—1]—-[8;<0,1=1,...,n].

2r
r

Set ¢y = 2—27( ) ,r=20,1,2, .... According to the finite arc sine law,

Pi{8; <0, i=1,...,7]=cy.
Therefore,
P[Fn]—:Cn_l—‘—Gn.

Comparison with [2, chap. I11.4] gives the conclusion.
The following notation will be used, with regard to the 22n! paths (z;e, )
generated by a set x; < --+ < 2, for which (2) holds:

£(n, §, k) = number of paths of type (n, j, k), i.e. for which E (n, j, k) holds.

wu(n, k) = number of paths for which s, is &-th ladder sum, i.e. for wichh i5 =,
where i designates the path’s k-th ladder index.

T(n,j)=1t(n,§,0)=2"2n! (2:: _ ?7) (277) , the arc sine frequency.

U(n, k) = t(n, 0, k) = number of paths having exactly k ladder sums.

Dividing each of the above frequencies by 27n! yields the corresponding
probabilities, which we shall denote respectively by:

p(n g, k), q(nk), P(n.j), Qn,k).

Theorem. E(n, ], k) has an invariant probability, equal (in the language of
[2, chap. III)) to the probability that in 2n steps of random walk, the particle refurns
at least k times to zero and spends 2§ steps on the positive side after the k-th return
to zero.

Proof. One can determine {(n, §, k) by reviewing possible lengths dp (0 < dj,
=iy —ip-1,h =1, ..., k) of portions of paths between consecutive ladder indices
1, ..., 0% (fp = 0), and by requesting that the portion of path of length n —
starting at s;, have exactly j positive sums (A <r=dy | -+ dp < n — §).
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The components z1, ..., , can be assigned to the successive sections of lengths
di,....,dy and n — r in n! {dl' .dg!(n — r)1}~1 ways, therefore
k
u(dp, 1)
t(n, 5, k > []#5kt,
o =t S i1 B

The known invariance of the arc sine frequencies 7'(n, j), together with the
invariance of the frequencies u(d, 1) which results from the lemma, establishes
that ¢(n, j, £) does not depend on 1, ..., z,, and hence that E(n, j, k) has an
invariant probability. The latter is found, dividing by 27n!:

k
p(n:7> ZP%—T 7) z HQ(dh’l)
dit o +de=r k=1

According to the lemma, g(dy, 1) is the probability of first return to zero after
2d;, steps of random walk, while P(n — r, j) is known to be the probability that
2j out of 2n — 2r steps, counted from an equilibrium position, are spent on the
positive side. The conclusion follows.

3. Derivation of the Probabilities

A recursion formula can be obtained for £(n, §, &) by following the procedure
used in [5]. Consider the » — 1 components xg << 3 < *++ << %y, for which (2)

n
holds for sums Z Let
2

i Xg

d:min{

tap=—1,0,1; :=2,...,n;a; =0 for at least one z}

Choose 0 < z1 << d. For convenience, set
tn, —1L,k)y=in,j,—D=tn—1Lnk)=in—1,5,n) =0.

For j,k = 0, j + k < n, the paths of type (n, j, k) can be obtained from paths
of length n — 1 constructed with zs, ..., &y, by insertion of 4 2, in the following
ways:

a) In any path of type (» — 1,7 — 1, k), insert {21 just behind the k-th
ladder sum s;,, or 4-z1 just behind one of the j — 1 sums larger than s;, . This
yields (27 — 1) t(n — 1, § — 1, k) paths.

b) In any path of type (n — 1,4,k — 1), insert -+ z; just behind one of the
ladder sums sp = 0, s;,, ... This yields k¢(n — 1,4, k — 1) paths.

¢) In any path of type (71, — 1, 4, k), insert — z; just behind one of sp, s;,, ...,
$;,, OF 47 just behind one of the » — 1 — j — k sums which are neither ladder
sums, nor larger than s;, . This provides the last term in:

5 tn,j, k)= (2] —Di(n —1L,j— Lky+ki(n— 1,5,k — 1) +
®) +@2n—2]—k—1itn—1,5,k, ,E=0,i+kE=n.

7/]{:1

For &k = 0 and the boundary values 7'(1, 0) = 7'(1, 1) = 1, the solution is
given by the arc sine frequencies T (n, §). For § = 0, one knows from random
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walk theory [3] that the solution is necessarily given by
U (n, k) = 2-n+k7! (2”; ’“) E=0,1,...,n,
corresponding to the probabilities

(4) Q(n, k) = 2-2ntk (2 " ’“) .

n
This is easy to obtain also by induction, from the values U(1,0) = U(1,1) = 1,
and U(n,0)=(2n — 1)1 = 2-7pn! (2?:) . As is known [2], the most likely numbers

of ladder indices are, for all # > 0, 0 and 1. More precisely,
Qn,0)=Q(n,1)>Q(n,2) >+ > Q(n,n)=27".

Rather than solve (3) directly, it is easier to proceed via w(n, k). This again
is known from random walk [3], but a derivation based on counting paths is
instructive. One has, for k=1, ..., n:

(5) 20U —1,k—1)—Um,k—1)=umnk)—unk—1).

In fact, consider for each choice of n — 1 of the numbers zi, ..., z,, the
U(n — 1,k — 1) paths having £ — 1 ladder sums. Complete them to length n by
adding I the missing ; in last position. This yields 20U (n — 1, k — 1) paths,
namely the % (n, k) paths having s, as k-th ladder sum, plus all those having £ — 1
ladder sums, sy, not being one of them. They number U(n, k — 1) — u(n, k — 1),
hence (5).
Let us write (3) for § = 0. This gives, with ¢(n, 0, k) = U(n, k) and with k

replaced by £ — 1:

Unb—DN=Fk—-0NUn—-1Lk—2)+ 20—k Un—1,k—1).
Comparison with (5) now yields, for k=1, ..., n,

un, k) —uwmnkbk—1)=kUn—1Lk—-1)—(k—1)U(n—1,k—2).
Summation from 1 to k leaves simply,
(6) u(n, k)=kUmn—1,k—1).

The probability that » is k-th ladder index is therefore

k 20—k
= 9-2n+k —
g(n, k) = 2-2n+ 2n—k< " ), k=1,...,n.

Notice the index of the maximum partial sum is # if and only if » is a ladder
index, so that one has:

P(n,O):Zq(n,k):%; fle@(n_ Lk—1).
k=1 k=1

From this, an easy calculation gives the expected number of ladder sums among
81,...,8, to be (2n -+ 2) P(n -- 1,0) — 1. Furthermore, the known relation

n n—1
>k lq(n, k) = (2n)71 reduces to > Q(n —1,k) = 1.
0 0



14 J. P. IMHOF:

For a path to be of type (n, §, k), the k-th ladder index must take one of the
values r =k, ..., n — §. The initial portion of r segments must correspond to
“k-th ladder index is #”’, the terminal portion of » — r segments to ““j positive

partial sums”. Taking into account the (:) choices of r initial z;’s, this gives

fn g k)= <:‘>u(7‘, k) Tn—r,7),

r=k

which becomes in terms of probabi]i’oies-

n?)k) quk ’}'I,——-T,?)
Noticing that P(n —r,§) = (ij)P(n-r, 0), one obtains
pn, g,k _( )zqu (n—7—7,0)

29 . 24 .
=(V)pn—i00 =(¥) e —in.
This establishes (1).
Let us also point out that there are two ways in which to evaluate the pro-
bability of obtaining at least k ladder indices: they correspond to the two members
in the equality

—k
anm Zka+ﬂ
j=0

4. Some Remarks

If L, is the index of the maximum partial sum and if we call ladder* indices
the successive indices Ly = I7 << I3<C-+- <n for which Sp;>S;, i=1I; +1,...,n,
the probability of having k ladder indices and m ladder* indices (0 <k +m <n)
is invariant. In fact, if P*(n, k, m) is said probability, the map

(X1, e B XLy e s ) = (BLy ooy @, — Xy ey — 21, 07)

shows that
P (n, k,m) = q(n, & + m).

The pair (k, m) takes one of the possible values corresponding to k, m=90,1,..., n
0 <k-+m=n, thus

n

2.(r+1)gm,r=1.

On the other hand, if down-ladder indices of S, ..., S, are defined to be
ladder indices of —81,..., —8,, the joint distribution of ladder and down-
ladder indices is not invariant.

Itis obvious, for reasons of symmetry, that P[» is first ladder index] = P [there
is no ladder index]. In the language of random walk, this yields the wellknown
equality P [first return to zero is at step 2n] = P[no return to zero in the first
2n steps].
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Consider now the 27n! paths (x; e, ¢) determined by a vector x for which (2)
holds. To each particular path, corresponding to ez, ..., en,,, make correspond
its reverse, determined by —en,,, ..., —e12,,. For 0 <m =< n, let C,, , be the
set of all paths for which one at least of the indices m, m + 1, ..., n is a ladder
index. One realizes at once that a path does not belong to C,, ,, if and only if its
reverse belongs to Cp_,11,,. In other words, if 4, , is the event: “one at

EEd

least of the indices m, m - 1, ..., » is a ladder index for the sequence 8i,...,8,”,
P[Am,n] + P[An—m+1,n] =1.

In the language of random walk, this gives (when 7 is replaced by m + n — 1)
the formula established by BrackweLr, DEUEL and FREEDMAN [1].
I thank an Editor for suggesting improvements of the manuscript.
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