On Ladder Indices and Random Walk

Ј. Р. Імноғ

Received October 18, 1966

1. Introduction

Let X_{1}, \ldots, X_{n} be exchangeable random variables with continuous, symmetric distribution function. Thus $P\left[X_{i}<x_{i}, i=1, \ldots, n\right]=P\left[e_{i} X_{\sigma_{i}}<x_{i}, i=1, \ldots, n\right]$, for any of the 2^{n} sign vectors $e=\left(e_{1}, \ldots, e_{n}\right), e_{i}= \pm 1$, and any of the n ! permutations $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ of $(1, \ldots, n)$. The sequence $S_{1}, \ldots, S_{n}\left(S_{r}=\sum_{1}^{r} X_{i}\right)$ has the ladder index I if $S_{r}<S_{I}$ for $0 \leqq r<I\left(S_{0}=0\right)$. Ties among partial sums $S_{0}, S_{1}, \ldots, S_{n}$ occur with probability zero and are disregarded. Let I_{1} be the smallest ladder index, $I_{1}, I_{2}, \ldots, I_{k}, \ldots$ be the successive ladder indices. We point out that there is complete analogy between ladder indices of S_{1}, \ldots, S_{n} and equilibrium values in $2 n$ steps of simple symmetric random walk (hereafter called simply "random walk"). A path counting procedure yields for ladder indices a derivation of some results known for random walk. The probability that there is a k-th ladder index and that exactly j sums are larger than the k-th ladder sum $S_{I_{k}}$ is found to be

$$
\begin{equation*}
p(n, j, k)=2^{-2 n+k}\binom{2 n-2 j-k}{n-j}\binom{2 j}{j}, \quad j, k \geqq 0, \quad j+k \leqq n . \tag{1}
\end{equation*}
$$

($S_{0}=0$ plays the role of zero-th ladder sum, but does not count as one). This provides a transition between the arc sine law of the number of positive sums ($k=0$), and the law of the number of ladder indices ($j=0$). It is shown that certain results which have no simple explanation in the case of random walk become quite natural in the context of ladder indices.

2. Two Equivalent Problems

If an event E relative to X_{1}, \ldots, X_{n} has an invariant probability (not depending on the particular continuous distribution function of the symmetric exchangeable random variables X_{1}, \ldots, X_{n}), a convenient possible way to determine the probability $P[E]$ is to use a path counting procedure. To a set of positive numbers $x_{1}<x_{2}<\cdots<x_{n}$ such that

$$
\begin{array}{ll}
\sum_{i=1}^{n} a_{i} x_{i} \neq 0 & \text { for all choices } a_{i}=-1,0,1 \tag{2}\\
& \text { with at least one } a_{i} \neq 0
\end{array}
$$

associate the $2^{n} n$! polygonal paths ($x ; e, \sigma$) which join the origin $(0,0)$ in a Cartesian plane with the successive points $\left(1, s_{1}\right),\left(2, s_{2}\right), \ldots,\left(n, s_{n}\right)$, where $s_{r}=\sum_{i=1}^{r} e_{i} x_{\sigma_{i}} . P[E]$ equals the proportion of the paths for which E holds. Con-
versely, showing that for an event E this proportion does not depend (provided (2) holds) on $x=\left(x_{1}, \ldots, x_{n}\right)$ establishes that E has an invariant probability. The method has been used for instance by Hobby and Pyke [5] to derive with relative ease Baxter's generalized are sine law. A formal justification for this procedure has been given by Friedman, Katz and Koopmans [4].

Let $E(n, j, k)$ be the event: there are at least k ladder indices for the sequence S_{1}, \ldots, S_{n}, and j partial sums are larger than the k-th ladder sum $S_{I_{k}}(k=0,1, \ldots, n$; $j=0,1, \ldots, n-k)$. We shall check that it has an invariant probability. The fact can be established directly, with a geometric argument similar to the one used in [5]. While easy to visualize, the map obtained by the shrinking-and-switching procedure is unfortunately clumsy to describe. We use therefore a different argument, based on the following:

Lemma. Let F_{n} be the event: " n is first ladder index of S_{1}, \ldots, S_{n} ". It has an invariant probability, equal to the probability that in random walk, the first equilibrium occurs at step $2 n$.

Proof. The following relation between events is obvious:

$$
F_{n}=\left[S_{i}<0, i=1, \ldots, n-1\right]-\left[S_{i}<0, i=1, \ldots, n\right] .
$$

Set $c_{r}=2^{-2 r}\binom{2 r}{r}, r=0,1,2, \ldots$ According to the finite arc sine law,

$$
P\left[S_{i}<0, i=1, \ldots, r\right]=c_{r} .
$$

Therefore,

$$
P\left[F_{n}\right]=c_{n-1}-c_{n} .
$$

Comparison with [2, chap. III.4] gives the conclusion.
The following notation will be used, with regard to the $2^{n} n$! paths $(x ; e, \sigma)$ generated by a set $x_{1}<\cdots<x_{n}$ for which (2) holds:
$t(n, j, k)=$ number of paths of type (n, j, k), i.e. for which $E(n, j, k)$ holds.
$u(n, k)=$ number of paths for which s_{n} is k-th ladder sum, i.e. for wichh $i_{k}=n$, where i_{k} designates the path's k-th ladder index.
$T(n, j)=t(n, j, 0)=2^{-n} n!\binom{2 n-2 j}{n-j}\binom{2 j}{j}$, the are sine frequency.
$U(n, k)=t(n, 0, k)=$ number of paths having exactly k ladder sums.
Dividing each of the above frequencies by $2^{n} n$! yields the corresponding probabilities, which we shall denote respectively by:

$$
p(n, j, k), \quad q(n, k), \quad P(n, j), \quad Q(n, k) .
$$

Theorem. $E(n, j, k)$ has an invariant probability, equal (in the language of [2, chap. III]) to the probability that in $2 n$ steps of random walk, the particle returns at least k times to zero and spends $2 j$ steps on the positive side after the k-th return to zero.

Proof. One can determine $t(n, j, k)$ by reviewing possible lengths $d_{h}\left(0<d_{h}\right.$ $=i_{h}-i_{h-1}, h=1, \ldots, k$) of portions of paths between consecutive ladder indices $i_{1}, \ldots, i_{k}\left(i_{0}=0\right)$, and by requesting that the portion of path of length $n-r$ starting at $s_{i_{k}}$ have exactly j positive sums ($k \leqq r=d_{1}+\cdots+d_{k} \leqq n-j$).

The components x_{1}, \ldots, x_{n} can be assigned to the successive sections of lengths d_{1}, \ldots, d_{k} and $n-r$ in $n!\left\{d_{1}!\ldots d_{k}!(n-r)!\right\}^{-1}$ ways, therefore

$$
t(n, j, k)=n!\sum_{r=k}^{n-j} \frac{T(n-r, j)}{(n-r)!} \sum_{d_{1}+\cdots+d_{k}=r} \prod_{h=1}^{k} \frac{u\left(d_{h}, 1\right)}{d_{h}!} .
$$

The known invariance of the arc sine frequencies $T(n, j)$, together with the invariance of the frequencies $u(d, 1)$ which results from the lemma, establishes that $t(n, j, k)$ does not depend on x_{1}, \ldots, x_{n}, and hence that $E(n, j, k)$ has an invariant probability. The latter is found, dividing by $2^{n} n!$:

$$
p(n, j, k)=\sum_{r=h}^{n-j} P(n-r, j) \sum_{d_{1}+\cdots+d_{k}=r} \prod_{h=1}^{k} q\left(d_{h}, 1\right)
$$

According to the lemma, $q\left(d_{h}, 1\right)$ is the probability of first return to zero after $2 d_{h}$ steps of random walk, while $P(n-r, j)$ is known to be the probability that $2 j$ out of $2 n-2 r$ steps, counted from an equilibrium position, are spent on the positive side. The conclusion follows.

3. Derivation of the Probabilities

A recursion formula can be obtained for $t(n, j, k)$ by following the procedure used in [5]. Consider the $n-1$ components $x_{2}<x_{3}<\cdots<x_{n}$, for which (2) holds for sums \sum_{2}^{n}. Let

$$
d=\min \left\{\left|\sum_{2}^{n} a_{i} x_{i}\right|: a_{i}=-1,0,1 ; i=2, \ldots, n ; a_{i} \neq 0 \text { for at least one } i\right\}
$$

Choose $0<x_{1}<d$. For convenience, set

$$
t(n,-1, k)=t(n, j,-1)=t(n-1, n, k)=t(n-1, j, n)=0
$$

For $j, k \geqq 0, j+k \leqq n$, the paths of type (n, j, k) can be obtained from paths of length $n-1$ constructed with x_{2}, \ldots, x_{n}, by insertion of $\pm x_{1}$ in the following ways:
a) In any path of type $(n-1, j-1, k)$, insert $+x_{1}$ just behind the k-th ladder sum $s_{i_{k}}$, or $\pm x_{1}$ just behind one of the $j-1$ sums larger than $s_{i_{k}}$. This yields $(2 j-1) t(n-1, j-1, k)$ paths.
b) In any path of type ($n-1, j, k-1$), insert $+x_{1}$ just behind one of the ladder sums $s_{0}=0, s_{i_{1}}, \ldots, s_{i_{k-1}}$. This yields $k t(n-1, j, k-1)$ paths.
c) In any path of type ($n-1, j, k$), insert $-x_{1}$ just behind one of $s_{0}, s_{i_{1}}, \ldots$, $s_{i_{k}}$, or $\pm x_{1}$ just behind one of the $n-1-j-k$ sums which are neither ladder sums, nor larger than $s_{i_{k}}$. This provides the last term in:

$$
\begin{align*}
t(n, j, k)= & (2 j-1) t(n-1, j-1, k)+k t(n-1, j, k-1)+ \\
& +(2 n-2 j-k-1) t(n-1, j, k), \quad j, k \geqq 0, j+k \leqq n . \tag{3}
\end{align*}
$$

For $k=0$ and the boundary values $T(1,0)=T(1,1)=1$, the solution is given by the arc sine frequencies $T(n, j)$. For $j=0$, one knows from random
walk theory [3] that the solution is necessarily given by

$$
U(n, k)=2^{-n+k} n!\binom{2 n-k}{n}, \quad k=0,1, \ldots, n
$$

corresponding to the probabilities

$$
\begin{equation*}
Q(n, k)=2^{-2 n+k}\binom{2 n-k}{n} \tag{4}
\end{equation*}
$$

This is easy to obtain also by induction, from the values $U(1,0)=U(1,1)=1$, and $U(n, 0)=(2 n-1)!!=2^{-n} n!\binom{2 n}{n}$. As is known [2], the most likely numbers of ladder indices are, for all $n>0,0$ and 1 . More precisely,

$$
Q(n, 0)=Q(n, 1)>Q(n, 2)>\cdots>Q(n, n)=2^{-n}
$$

Rather than solve (3) directly, it is easier to proceed via $u(n, k)$. This again is known from random walk [3], but a derivation based on counting paths is instructive. One has, for $k=1, \ldots, n$:

$$
\begin{equation*}
2 n U(n-1, k-1)-U(n, k-1)=u(n, k)-u(n, k-1) \tag{5}
\end{equation*}
$$

In fact, consider for each choice of $n-1$ of the numbers x_{1}, \ldots, x_{n}, the $U(n-1, k-1)$ paths having $k-1$ ladder sums. Complete them to length n by adding \pm the missing x_{i} in last position. This yields $2 n U(n-1, k-1)$ paths, namely the $u(n, k)$ paths having s_{n} as k-th ladder sum, plus all those having $k-1$ ladder sums, s_{n} not being one of them. They number $U(n, k-1)-u(n, k-1)$, hence (5).

Let us write (3) for $j=0$. This gives, with $t(n, 0, k)=U(n, k)$ and with k replaced by $k-1$:

$$
U(n, k-1)=(k-1) U(n-1, k-2)+(2 n-k) U(n-1, k-1)
$$

Comparison with (5) now yields, for $k=1, \ldots, n$,

$$
u(n, k)-u(n, k-1)=k U(n-1, k-1)-(k-1) U(n-1, k-2) .
$$

Summation from 1 to k leaves simply,

$$
\begin{equation*}
u(n, k)=k U(n-1, k-1) \tag{6}
\end{equation*}
$$

The probability that n is k-th ladder index is therefore

$$
q(n, k)=2^{-2 n+k} \frac{k}{2 n-k}\binom{2 n-k}{n}, \quad k=1, \ldots, n
$$

Notice the index of the maximum partial sum is n if and only if n is a ladder index, so that one has:

$$
P(n, 0)=\sum_{k=1}^{n} q(n, k)=\frac{1}{2 n} \sum_{k=1}^{n} k Q(n-1, k-1)
$$

From this, an easy calculation gives the expected number of ladder sums among S_{1}, \ldots, S_{n} to be $(2 n+2) P(n+1,0)-1$. Furthermore, the known relation $\sum_{1}^{n} k^{-1} q(n, k)=(2 n)^{-1}$ reduces to $\sum_{0}^{n-1} Q(n-1, k)=1$.

For a path to be of type (n, j, k), the k-th ladder index must take one of the values $r=k, \ldots, n-j$. The initial portion of r segments must correspond to " k-th ladder index is r ", the terminal portion of $n-r$ segments to " j positive partial sums". Taking into account the $\binom{n}{r}$ choices of r initial x_{i} 's, this gives

$$
t(n, j, k)=\sum_{r=k}^{n-j}\binom{n}{r} u(r, k) T(n-r, j)
$$

which becomes in terms of probabilities:

$$
p(n, j, k)=\sum_{r=k}^{n-j} q(r, k) P(n-r, j)
$$

Noticing that $P(n-r, j)=\binom{2 j}{j} P(n-r, 0)$, one obtains

$$
\begin{aligned}
p(n, j, k) & =\binom{2 j}{j} \sum_{r=k}^{n-j} q(r, k) P(n-j-r, 0) \\
& =\binom{2 j}{j} p(n-j, 0, k)=\binom{2 j}{j} Q(n-j, k)
\end{aligned}
$$

This establishes (1).
Let us also point out that there are two ways in which to evaluate the probability of obtaining at least k ladder indices: they correspond to the two members in the equality

$$
\sum_{j=0}^{n-k} p(n, j, k)=\sum_{j=0}^{n-k} Q(n, k+j)
$$

4. Some Remarks

If L_{n} is the index of the maximum partial sum and if we call ladder* indices the successive indices $L_{n}=I_{1}^{*}<I_{2}^{*}<\cdots<n$ for which $S_{I^{*} j}>S_{i}, i=I_{j}^{*}+1, \ldots, n$, the probability of having k ladder indices and m ladder* indices $(0<k+m \leqq n)$ is invariant. In fact, if $P^{*}(n, k, m)$ is said probability, the map

$$
\left(x_{1}, \ldots, x_{L_{n}}, x_{L_{n+1}}, \ldots, x_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{L_{n}},-x_{n}, \ldots,-x_{L_{n}+1}\right)
$$

shows that

$$
P^{*}(n, k, m)=q(n, k+m)
$$

The pair (k, m) takes one of the possible values corresponding to $k, m=0,1, \ldots, n$, $0<k+m \leqq n$, thus

$$
\sum_{r=1}^{n}(r+1) q(n, r)=1
$$

On the other hand, if down-ladder indices of S_{1}, \ldots, S_{n} are defined to be ladder indices of $-S_{1}, \ldots,-S_{n}$, the joint distribution of ladder and downladder indices is not invariant.

It is obvious, for reasons of symmetry, that $P[n$ is first ladder index $]=P[$ there is no ladder index]. In the language of random walk, this yields the wellknown equality P [first return to zero is at step $2 n]=P$ [no return to zero in the first $2 n$ steps].

Consider now the $2^{n} n$! paths ($x ; e, \sigma$) determined by a vector x for which (2) holds. To each particular path, corresponding to $e_{1} x_{\sigma_{1}}, \ldots, e_{n} x_{\sigma_{n}}$, make correspond its reverse, determined by $-e_{n} x_{\sigma_{n}}, \ldots,-e_{1} x_{\sigma_{1}}$. For $0<m \leqq n$, let $C_{m, n}$ be the set of all paths for which one at least of the indices $m, m+1, \ldots, n$ is a ladder index. One realizes at once that a path does not belong to $C_{m, n}$, if and only if its reverse belongs to $C_{n-m+1, n}$. In other words, if $A_{m, n}$ is the event: "one at least of the indices $m, m+1, \ldots, n$ is a ladder index for the sequence S_{1}, \ldots, S_{n} ",

$$
P\left[A_{m, n}\right]+P\left[A_{n-m+1, n}\right]=1
$$

In the language of random walk, this gives (when n is replaced by $m+n-1$) the formula established by Blackwell, Deuel and Freedman [1].

I thank an Editor for suggesting improvements of the manuscript.

References

1. Blackwell, D., P. Deuel, and D. Frefdman: The last return to equilibrium in a cointossing game. Ann. math. Statistics 35, 1344 (1964).
2. Feller, W.: An introduction to probability theory and its applications, Vol. 1, 2nd ed. New York: Wiley 1957.
3. - The number of zeros and changes of sign in a symmetric random walk. Enseignement math., II. Sér. 3, 229-235 (1957).
4. Friedman, N., M. Katz, and L. H. Koopmans: On tests of symmetry for continuous distributions. Technical Report No. 119. Department of Math., Univ. of New Mexico 1966.
5. Hobby, Ch., and R. Pyke: Combinatorial results in fluctuation theory. Ann. math. Statistics 34, 1233-1242 (1963).

Institut de Mathématiques
16, Blvd. d'Yvoy
CH 1211 Genève 4

