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1. Introduction 

This paper is the second part  of a study, of inference problems on stochastic 
processes, started in [16] where the m-decision (m > 2) problem of certain conti- 
nuous 'parameter '  stochastic processes was treated. In  the present paper some 
discrete parameter  (or index) processes will be considered, restricting the attention 
to certain general estimation problems centering around the asymptotic properties 
of the estimators. In  [16] as well as here the processes need not be stationary. As 
application, certain previously known results on general stochastic difference 
equations are unified and extended. These relate to the consistency and asymptotic 
efficiency of the estimators of certain "structural  parameters".  Some earlier results 
of this paper were announced in [17], and others in [19]. Subsequently, the results 
of the s tudy of other aspects of inference theory of processes, such as the filtering 
and prediction problems, will be published (ef. [18]). The paper can be read inde- 
pendently of [16] and the exposition is self-contained. 

After preliminaries and notation in the next section, the main problem and the 
previous work are discussed in Section 3. This reveals the difficulties and limita- 
tions of the previously known work, and points out the significance of the problem. 
In  Section 4 a solution to the general problem is provided (Theorems 2 and 3) if 
there is one unknown parameter  in the finite dimensional density functions of the 
process. When there are several (two or more) parameters in the finite dimensional 
densities, some (weaker) extensions of the results are obtained (Theorems 4 and 5) 
for a unified t rea tment  of stable and certain unstable processes. [A process 
(Xn, n > 0) is stable if the stochastic dependence of Xn on Xm decreases to zero 
as I m --  n I increases; otherwise it is unstable. Precise definitions will be given 
later.] As consequences of these results, estimation problems and their efficiencies 
are considered in some detail for the "structural  parameters"  in linear stochastic 
difference equations because of their practical importance. The first rigorous 
t rea tment  of such equations was made by M A ~  and WALl) in [14] ; and some of 
their results are here extended. The complications appearing in the general s tudy 
to include the unstable process will become clear in this application. The special 
t reatments  will only serve as useful motivations. The main problem itself was 
par t ly  inspired by  WALD'S work in [21]. 

I t  should be noted at this point tha t  the maximum likelihood method is both 
convenient and natural  for estimation problems on processes in the generality in 
which they are considered. Therefore its s tudy takes the central position in what 
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follows. Certain other aspects, than  those considered here, were t reated by  
Gg:ENANDER in [6]. 

2. Notion and Preliminaries 

Some notation,  definitions and a brief discussion of stochastic convergence are 
included here for the reader 's  convenience. They  appear  several times later. 

A random variable (r. v.) is a finite real valued measurable function and a 
(row or column) vector r. v. is one which has a finite number  of r. v. 's  as its com- 
ponents. The symbol P [S] is the probabil i ty of the event  S and Eo (X) stands for 
the expected value (integral) of  the r. v. X, when it exists, under  the hypothesis  

tha t  Pc is the true probabil i ty measure. The symbols Xn -> X,  and Xn d X are 
used respectively to mean tha t  the sequence of r. v. 's  {Xn} converges in probabi- 
li ty to a r. v. X and tha t  the distr ibution functions (d. f.'s) Fn  (.) of  Xn converge 
to F (.), t ha t  of  X, at  all cont inui ty  points of the latter. I f  {Xn} and { Yn} are any  

' X A sequences of r. v. s, then n --  Yn means (Xn -- Yn) ~2> 0. A sequence of r. v. 's  
{Xn} is said to be bounded in probability if, for any  e > 0, there exists an Me such 

tha t  lim P[[  Xn ] ~ M~] _--< e. Clearly such a sequence is always bounded  in pro- 
f / ~ o o  

babili ty ff the means and variances exist and are bounded functions of n. 
Let  {Xn} and { Yn} be two arbi t rary  sequences of  r. v. 's. The following lemmas 

are known (cf., eg. [15] and the references there). 
P 

Lemma 1.1/ Xn ~ X and Yn p> Y, then Xn Yn -~ X Y. Moreover, i] 

P [ Y = O ] = O ,  then ( X n l Y n ) s  

Lemma 2. If  Xn -+ 0 and { Yn} is bounded in probability, then Xn Yn ~ O. 
pord ~T d 

Lemma 3. I / X n  ~ Yn and X n - - - > A  then Yn-+X.  (As usual, all limits are 
taken as n --> co.) 

3. The Problem 

Let  {Xn, n >~ 1} be a (discrete) stochastic process. All processes and parame- 
ters arc assumed to be real. I f  (X1, X2 . . . . .  Xn) is a set of  r. v. 's, then, for each n, 
let Pn(Xl, x2, . . . ,  xn;O1, . . . ,  0~), or Pn for short,  denote their joint d. f. which 
depends on k parameters.  I n  wha t  follows only those processes whose d. f. 's are 
absolutely continuous (relative to the Lebesgue measure) with density functions 
Pn (Xl . . . . .  Xn ; 01 . . . . .  0~), or pn for short,  will be considered. Also k is assumed to 
be a (known) fixed positive integer independent  of n (i. e., for all pn) 1. The problem 
is to s tudy  the asymptot ic  properties of the m ax imum likelihood (m. 1.) est imators 

0n of 0 appearing in Pn. 
I n  the single parameter  case (i. e., k = 1 above) WALD proved in [21], the 

following theorem which is the most  general result known thus far : 

1 Since the sequence of r.v.'s {Xn} is supposed given (i.e. the r.v.'s and the measure space 
on which they are defined are given) the d.f. 's {Pn} always satisfy the compatibility relations 

c o  

pn = S pn+ldXn+l. When the  sequence of d. f,'s {Pn} is supposed given, (which may alternately 

be assumed) then one has to assume, in addition, these compatibili ty relations. 
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Theorem 1. ( W A L D )  Let the true parameter value, O, be an interior point o/ a 
finite non-degenerate interval A on the 0 axis such that the ]ollowing conditions hold�9 

O@n (i = l,  2, 3), ex i s t /or  all 0 ~ A ,  a n d / o r  all Condition 1. The derivatives ~ N -  

samples (xl . . . . .  Xn) except perhaps/or a set o] measure zero. Further, 

(1) --�9 1. a~Pn dxl ,  . . . ,  dxn < oo, i = l, 2 .  
�9 " a O ~  L c o  i 

n - - > c ~  

�9 [ [  ~2 logpn \ ] 
h m  Var  0 ..... .,-;,~ | (War '  means Condition Z. For any 0 A ,  / /Cn = O. 

variance.) 

Condition ~. There exists a positive 6, such that/or any 0 ~ A ,  

l [ 'O31ogpn(X1 . . . . .  Xn;O') ] 
(2) C~(O) Eo 1. u. b. I 00'3 - 

0 t J 

is a bounded [unction o /n ,  where O' is restricted to the interval [ O' - -  O ] <= 6. 

Then, the m. ]. equation 0 log pn O, has a root On which is a consistent estimator O0 - -  

o ]  O. Furthermore, any root o[ the m. ]. equation which is a consistent estimator o[ 0 is 
also asymptotically e[ficient at least in the wide sense�9 (The  concept o/ wide sense 
e[ficiency is given below in Section 5.) 

To see the domain  of appl icabi l i ty  of  this theorem,  the case of a first order 
linear homogeneous stochastic difference equat ion is considered. This example  has 
i m p o r t a n t  applications.  I t  will be shown t h a t  the conditions of Wald ' s  theorem are 
satisfied if, and  only if, the equat ion is non-explosive (i. e., ~ in (3) below satisfies 

< 1). 
E x a m p l e .  Let  the process {Xt,  t >= 1} satisfy the relat ion (t integer) 

(3) X t  = o:Xt-1 + ut 

where ~ ~ A, a bounded  non-degenerate  in terval  including the origin, and the 
sequence of r. v . ' s  ut (t >--_ 1) are independent ,  Gaussian dis t r ibuted with mean  zero 
and  var iance unity.  Fur ther ,  let ut = 0 for t ~ 0. To determine the consistency of 
the m. 1. es t imator  of ~. it suffices to ver i fy the conditions of Theorem 1. 

The densi ty  of X1 . . . .  , X n  is given by  

(4) Pn = pn(x l  . . . . .  Xn ;C~) = (2 7~) -n/2 exp [ - -  ~ (xt - -  o~x t -1)2 /2]  . 
t = l  

The differentiabil i ty conditions clearly are satisfied here. F r o m  the fact  t ha t  A is 
bounded,  follows the existence of the integrals in (1) for the Pn given by  (4). Hence  
Condition 1 of the theorem is satisfied. 

n l 
0 logp,  . Then  ~vn (c~) = ~ u t X t _  1 and f rom (3) X t  = ~ ~ i - l u t - i + l .  Let  ~0n (~) -- O~ 

t=l i = l  

Noting t ha t  ut and Xt- i ,  for i ~ 1, are independent ,  one gets 
n t - - 1  

(5) Cn(~) = E~(T~(g)) = ~ ~2(] ) > (n-- 1). 
t = 2  j = l  
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I t  follows tha t  Cn (g) -> co, as n -> co for all ~ e A, and Condition 2 holds. Since 
a ~ log Pn 

Hn" (~') - -  0/~ - -  0, for all ~' e A, Condition 4 is automat ical ly  satisfied. Hence 

Conditions 1, 2 and 4 are satisfied even if ] ~[ >_ 1. Condition 3, on the other hand, 
will be shown to hold if, and only if, ] ~] < 1. 

F rom (5), it is seen tha t  lira Cn(~) _ (1 - -  cr -1 if ]~] < 1. I t  was shown in 
n 

n --> oo  

([14], p. 180) that ,  for ] ~ ] < 1, Var~ H~ (~) = 0 (n). These two s ta tements  imply the 
t ru th  of Condition 3 a t  once. Tha t  this condition fails if I ~ ] ~ 1 is seen as follows. 

n - - 1  

Note tha t  H;(~) = - -  ~ X~ and E~(H~(e)) = - -  Cn(~). Here H~(c~) --  0~ " 
/ = 1  

I e Condition 3 holds then clearly - -  ~ X Z must  converge in probabil i ty to a con- 

C~ (~) 
s tant  ( =  - -  1). But  lira ~ - -  �89 if ] ~] ~- 1, and Xt  = Vl + " "  + vt where the 

n --> oo  

vt(= ~i-lut-i+l) are independent  Ganssian r . v . ' s  each with mean zero and 
variance 1 (since I~1 --~ 1). So the above expression converges in probabil i ty to a 

n 

constant  if and only if ~ ~ Xt 2 converges in the same sense. Bu t  this is impossible 
n t : l  

1 n 2 
since by a result of ERDhs and KAc [4], n2 ~ X~ has a proper limit distribution. 

t = l  

I f  l~ ] ~ 1, then lim o~-2nCn(~)= ( ~ 2 _  1)-1 and ~-2n ~ X~ converges in pro- 
n - - > o o  t = 1 

bability to a random variable by ([I], Theorem 2.1 or [15], Lemma 15), which is 
not a constant. Hence Condition 3 fails if [ ~ 1 ~ 1. It follows that Theorem l can 
be used to show that the m. I. equation Hn (~) = 0 has a root ~n which is a consistent 
estimator of ~, of the stochastic equation (3), if I ~I < I ; it gives no information if 
I~I ~ 1. The consistency of the m. I. estimator in the latter case (of (3)) was 

proved by RuBzs [20]. 
The above illustration shows that Condition 3 fails in the unstable case. This 

condition was used by Wald in his proof to show that (H~ (O)/Cn (0)) ~ -- I, as 

n ---> co, where Hn(O)--_- " ( a l ~ ) a n d  Cn(O)= Eo(H~ (0)). This condition may  be 

replaced by  the following weaker condition and the conclusions of the theorem 

remain valid. 
Condition 3'. For  all 0 in A, a finite non-degenerate open interval, 

(6) lim Eo y~ + C~(O) 
n - - > o o  

Note tha t  Eo(Yn) ~ 0 for all n. This condition is the best to  show tha t  

[ Yn (O)/Cn (0)] ~ 0, because of  
Lemma 4. A sequence o/r.v.'s {Zn}, with E (Zn) ~ O, converges in probability to 

zero i/, and only i], 

(A proof  of the lemma m a y  be found in [8], Section 20.) 
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However, for the example given after Theorem 1, in the explosive case, the 

Condition 3' also fails, since [Yn(O)/Cn(O)] ~ r .v.  (:~0). This indicates tha t  a 
different procedure, not requiring this type of condition, is needed to treat  the 
class of problems which include the unstable cases. A general result containing all 
these cases is proved in the next  section if, in Pn (x, 0), 0 is a scalar parameter.  

4. Solution of the Single Parameter Problem 

I t  is convenient to introduce a concept of weak sense efficiency which is 
meaningful for the unstable cases, but which coincides with the wide sense concept 
introduced by  WALD [21] as soon as the process under consideration becomes 
stable. Since the estimators may not always have limit distributions, in the gene- 
rali ty in which they are now considered, the weak sense (or wide sense) concept 
will be relevant here. (For a discussion on this point, see [21].) 

Definition 1. A sequence of estimators {T~} of 0 is said to be asymptotically 
efficient in the weak sense if there exist two sequences of r. v. 's { Wn} and { Vn} such 
tha t  (the W~ and V's being defined on the same probabili ty space as iV's) 

l i m E 0 ( W n ) = O ,  l imE0(W 2 ) = 1 ,  
n - +  o o  n > r  

and 

implies 

l i m E 0 ( V n ) - - 1 ,  l i m P [ V n = O ] = O ,  
n - - >  o o  n ~ o o  

W n  
[Cn(O)]l/2(Tn -- O) ~ Vn ' where Cn(O) = Eo[q)2(O)]. 

I f  the process is stable, this definition coincides with the wide sense concept of 
Wald, where he needs only one sequence {Wn}, since then a sequence {Vn} always 
exists. In  fact, taking Vn = 1, with probabili ty one, this definition becomes 
identical with the wide sense concept. (See also the next  section.) The concept of 
stability used above is given precisely in the following 

Definition 2. Let  Pn (x, O) be a finite dimensional density of a process 

{Xt, t = O ,  1 , . . . }  where x - - ( x l  . . . . .  xn) ,O=(O1, . . . ,Ok)  and k(_>l) 

is fixed. Then the process is said to be stable or unstable according as M ---- 0 or 

�9 (02l~ 0 < M ~ co, where M = lira ma.x.(Var 0 ~ C 2 (0, n)), and where C (0, n) is 

the maximum (over all i) of Cu (0, n) = Eo [0 log pn/O0~] 2, i, j = 1 . . . .  , k. 
For example, if {Xn} is an "m-dependent" sequence of r .v . ' s  [7], with two 

moments  then it turns out tha t  M = 0, so the sequence is stable by this definition. 
[Here and elsewhere M is a generic constant.] 

t ~ e m a r k ,  In  ease M = 0, it follows, by the Tshebyshev inequality, tha t  
O~logPn P Eo [ O~logpn l { [O~l~ l } 
00~00~ \ 00~00~ /" Such a sequence of r .v . ' s  \ 00i00j ] is included in the 

concept of the stable sequence introduced by GNEDENKO and KOLMOGO~OV ([15] ; 
Section 22). Thus the above definition may  be considered as a specialized version 
of the classical concept. 
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Theorem 2. Suppose the finite dimensional density Pn (xl . . . . .  Xn; 0), or pn /or 
short, o / the  process {Xt,  t > 0} depending on a parameter 0 satisfies the [ollowing 
conditions. 

apn a2pn 
Condition (a).  00 ' 002 exist/or all 0 in A and /or  almost all x, where A is a 

finite non-degenerate open interval. Further the absolute values o/ these /unctions are 
dominated by Gn(') and Hn(')  where Gn and Hn are integrable on the cartesian 
n-space. 

Condition (b). Cn(O) = Eo[(~vn(O)) 2] exists and lim Cn(O) ---- o%/or  all 0 ~ A,  
0 log Pn n~oo 

where 9)n (0) --  00 

a%dO) (which exists), then cf~ satisfies a Lipsehitz Condition (c). I /  •n (O) -  00 

condition o/ order ~.. More explicitly,/or a given fl > O, there exists 0 < o~ <~ 1 such 
that [~0~(0) - -  @~(0')[ g 10 - -  0 ' ] ~ i n  (0, 0'), /or almost all x, where l im 

n - - +  o o  

( 0 Eo 1.ou. b < oo, /or all O, A sat i4ying l O -- O' l < 8 .  

Condition (d).  Given 0 < c5 < 1, there is an eo > 0, such that/or all 0 c A one 
[! ~,(0) ] 

h a s l i m P [ i c ~  ~ -  >__co > 1 - -  d. 
n - + o o  

Condition (e). I /  Pc is the measure generated by Pn (x, O) on the sample space, 
then Po~ = Pc2 implies 01 = 02 and that Pc is a continuous/unction in O, (i. e., the 
variation o/(Pc1 --  Po~) tends to zero as (Or --  02) -+ 0). 

Then the m.1. equation q)n(O) ~ 0 has a root On which satisfies the condition 

(On --  O) ~ 0 as n -+ 0% (i. e., 0n is a consistent estimator o/ 0). 

R e m a r k .  I n  the work of WALI) [21] and CRAm~R [3], as well as in most  earlier 
studies the  Condition (e) was implici t ly assumed. This m a y  be seen in their  proofs. 
The absence of an explicit s ta tement ,  when t aken  li terally as being unnecessary,  
leads to difficulties, as was pointed  out  by  KRAF~ and L~CAM in [10]. 

Pro@ Using pa r t  (a) of the hypothesis,  ~0n (0) m a y  be expanded  by  the Taylor ' s  
formula  as 

(7) ~ (o) = ~ (o o) + (o - 0 o) ~ (o o) + (o - 0 o) u ~  (o) 

where 0 ~ is the t rue  pa rame te r  value in A,  q~n(O o) = cfn(O) lo=oo; and Un(O) 
= q~(O ~ + cSn(O - -  0~ - -  ~vs ~ with 0 < dn < 1. F r o m  the same hypothesis  
it  follows tha t ,  for all 0 in A, 

"" 00 O0 "'" p n d x l . . . d x n = O .  
- - o o  - - o o  - - 0 0  - - c o  

Similarly E ( ~ ] ( O ) ) =  Cn(O): --Eo(cf~(O)). Consider (7) in the following form 
(which can clearly be writ ten),  

~n(O) _ [~ . (0~  l ~ (00)  ic~(oo) 1 u~(o)  ~n 
(8) ~,(oo) [ ~-(oo) j ~ ( ~ o )  + (0 - 0 o) + [ ~,(oo) l on(co)  ,~ - 0o ) .  

= B n  + (0 - -  0 ~ + Bn(O - -  0 ~  

where the  Bn's are defined by  the corresponding te rms  on the r ight  side. Now the 
Bn's are simplified as follows. 
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Firstconsider Bn.Itisclearthat Eoo(-~-((O0:[) =0 ,  and V a r 0 ( ~ : l  ) =  [Cn (O~ -1, 

the la t ter  tends to zero as n - ~  oo by  Condition (b). I t  therefore follows t h a t  

' 0 [~n(O~176 ~ O. F r o m  Condition (d), since [q% (0)/Cn(O~ is bounded  away  
f rom zero in probabi l i ty ,  one obtains  the following. For  any  e ~ 0, there exists a 
posit ive number  Le such t h a t  

i on(?~ ] (9) lim P ~',,(0~ ~ Le ~ e .  
n - - >  o o  

P 
Hence  f rom the preceding and L e m m a  2 it  follows tha t  Bn -+ O. 

Next  consider Bn. Using Condition (c) the second t e rm of Bn can be wri t ten for 
a lmost  all x, as follows: (0 < ~ =< 1) 

(10) < 1 o -  0~ M.<O, OO> 
On(0 ~ = C~(0 0) ' 

where for ] 0 -- 0 o I < t 3, [Mn (0, O~ (0~ is bounded in probabil i ty .  Conse- 
quent ly  (8) can be rewrit ten,  using (10), as 

(]]) ~ . ( 0 )  _ B n  + (0 - -  00) + (0 - -  00)~+~ ~n ~-(0o) 

where /~n : [Cn(O~176 O~176 in which I~nl < 1. I t  follows, 

with (9), t h a t  Bn is bounded  in probabi l i ty  for all I 0 - -  00 ] < 13. 
Le t  e~, e2 be any  two small  posi t ive numbers  less than  13. I f  [1 ---- P[I Bn] 

e~+~], then  the result  on the a sympto t i c  behavior  on Bn established above 
shows t h a t  there exists an n (el, e 2) such t h a t  n _>_ n (el, e 2) implies [1 --<_ s 2/2. Also 

f rom the result  on /~n  of the preceding pa rag raph  it follows t h a t  there is an L ~  

and an nl(e2) such tha t ,  if [2 = P[]Bn[ >= L J  and n ~ hi(e2) t h e n / 2  ~ ez/2. 
Le t  no (el, e2) = m a x  (n (el, e2), nl (e 2)), and let 

Z =  { X =  (X 1 . . . . .  X.):IB.[ < ~+~ ,  I < L ~ 3 .  

I f  S'  is the complement  of  S, then  for n ~ no (el, e2), 

(12) P [ S ' ] = P [ ( I B n [  ~e~+~)~9 (]/3n] >=Le~)]<~/I+/Z<=s2. 

Hence P[S] > 1 --e2. Consequent ly  for 0 = 0 ~ • el, the first and last  t e rms  on 
the r ight  side of  (11) are less t han  (1 ~- L J e l  l+~ with probabi l i ty  greater  t han  
1 - -  e2 for n ~ no(el, e2). I f  now el is chosen such t ha t  (l + L~,)el ~ < 1, then  the 
whole expression on the r ight  side of  (11) is determined,  in sign, for 0 = 0 ~ J= el by 
the second term,  i. e., 

~n(0) _ 00 (13) ~ , ( ~ -  > 0 if 0---- + e l ,  

< 0  if 0 - - - - 0 0 - - e l .  

Since by  Condition (a) ~0n (0) is differentiable in 0 for a lmost  all x, it is conti- 

nuous in 0, and hence [~n(0)/Fn(0~ ---- 0 has a root  On in the in terval  (0 ~ - -  el, 
0 ~ + el) ff n > no (el, ez) with probabi l i ty  > 1 - -  s2, in view of the cont inui ty  of 
the probabi f i ty  measures  Po by  Condition (e) of  the hypothesis.  Since el, ez are 
a rb i t r a ry  the theorem is proved.  
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An important property of the consistent m. 1. estimator is given in 

Theorem 3. Every consistent m.l. estimator in o/O, established in Theorem 2, is 
asymptotically e[ficient in the weak sense. 

Pro@ Let in be a root of Fn (0) = 0 which is a consistent estimator of 0 as 
given by Theorem 2. Setting ~n (0) = 0 in (8), and rearranging, the following 
equation obtains. 

(14) w n  = VnZn + anZn, 

w h e r e  

v n  = ~ (oo ) / c~  (oo),  z n  = [Cn (0o)]~/2 (6n - -  0o) ,  Wn = - -  ~n (O~ (0o)]1/~, 

and an : U n ( O n ) / ( J n ( O ~  �9 By hypothesis (0 < ~ =< 1) 

~. ,~ Mn(On, 0 ~ 
(15) l a n l  < Ib'n ~~ - -  

= - 1 cn(oo) 

and the right side terms are such that  the last factor is bounded in probability and 
P 

O n t o  ~ So an-+0. This means Vn ~- (Vn ~ an). But  Eoo (Wn) = 0 and 
Eoo (W2n) = 1, for all n, which implies, by a remark in the penultimate paragraph of 
Section 2, that  {Wn} is bounded in probability. Thus from 04)  it follows that  the 
right side is bounded in probability. Since Eoo (Vn) = 1 and by Condition (d) of 
Theorem 2, { Vn} is bounded away from zero in probability, it must be true [in (]4)] 
that  {Zn} is bounded in probability as well. [It may be of interest to note that  the 
preceding statement implies that  (Cn (00)) 1/2 is the correct normalizing factor for 

(On - 0%] H e n c e  

(16) (W~ --  VnZn) L o .  

The properties established for {Vn} and {Wn} above satisfy the conditions 
of Definition 1, so that  

(17) [Cn (00)] 1/2 (in -- 0 ~ ~ [ Wn/Vn]. 

Thus the consistent estimator On is asymptotically efficient in the weak sense, 
completing the proof. 

R e m a r k .  I f  only (c) is assumed, as here, Condition (d) of Theorem 2 cannot be 
dropped, as easy counter-examples show. I t  may also be noted that  the conditions 
given in Theorem 2 are different from, and much weaker than, the classical ones 
(see the application below). Another set of conditions (variant of the above) was 
given in [19]. Several different sets (and even weaker) conditions can be produced. 
The point o/the result here is that it seems to be the first o[ its kind which deals with 
the stable and unstable cases together. 

A p p l i c a t i o n .  Consider the first order stochastic equation Xt  = ~Xt-1 ~- ut, 
given by (3) of Section 3 with the same assumptions as there. From (4), the likeli- 
hood equation is given by [expanding Fn (') around ~0, in A, the true value] 

n n 
X 2 . (18) ~ n ( ~ ) =  ~ u , X ,  ~l . . . .  - ( ~ - ~ o ) ~  , 

t = l  t = l  
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For this the Conditions (a) and (b) of Theorem 2 have been checked in the preceding 
section. Conditions (c) and (e) are trivial in the present case. 

The Condition (d) is that  ~ X~_I/C~(~ ) is bounded away from zero (in proba- 
t = l  

bility) if ]e ] >_ 1 or 1~ [ < 1. I f  I~ ] = 1, this result is a consequence of the results 
of ERDOS and KAC [4], and if 1 ~] > 1, it follows from the fact that  it converges 

stochastically to a r.v. ( ,  0) as shown in Lcmma 15 of [15]. I f  [~1 < 1, [ ~ X p _  1 
t = l  

/C~(e)] & 1 (by Tshebyshev's theorem, [3]). Consequently "Condition (d) is also 
satisfied for all ~ in A, a bounded open non-degenerate interval containing, say, 
(-- 2, 2). Hence by Theorem 2, it follows that  the m. 1. estimator ~n of ~, a root of 
~n (g) = 0, is consistent and, by Theorem 3, it is asymptotically efficient in the 
weak sense. Since there is only one root here, :~n is also unique. 

The part  on consistency of ~n for this particular process was proved by I~UHN 
[20] using a special method. 

R e m a r k s .  I t  is also of interest to consider a constant term, fl0 in the above 
example. However, this ease cannot be subsumed under Theorem 1, because there 
will be two parameters. Several difficulties arise in the consideration of this multi- 
parameter ease. Certain matrices appearing in the proofs corresponding to reci- 
procals used in Theorems 2 and 3, for instance, become singular for large n, if the 
process is unstable (ef. Section 6). tIence the multiparameter extensions of these 
results in this generality seem rather difficult with the present methods. In the 
following section, some extensions will be given, for a certain class of unstable and 
all stable processes, which may be used for some eases of the above problems. 
Using special methods, certain more general, unstable (or explosive) processes 
satisfying kth order (/c >_ 2) linear stochastic difference equations have been 
studied in [15], but unfortunately no general methods are available at present. 

5. Some Extensions to the k-parameter Problem 

At the outset it is convenient to state the concept of efficiency in the wide sense, 
of the estimators, in the vector case. (See the discussion preceding Definition 1 
above.) 

Definition 3, A sequence of (row) vector estimators (0n} of O = (01 . . . .  , O,~), of 
Pn (x, 0), is said to be asymptotically efficient in the wide sense, if there exists 

_ W / another sequence of vector r. v.'s { Wn} such that  lira Eo (Wn) 0, lim Eo ( ~ Wn) 
n ~ o o  ~ o o  

---= I~, the identity matrix of order /c (prime denotes transposition), and that  

(~On -- O)Bn(O)• Wn where Bn 2 (0) ~ fin(O) = (C~j(0, n)) with Cij(O, n) = 

. . . .  - -E[q; t (O,n)qpi (O,n)] , i , ]= 1, , k. Here q;t(O,n) -- Oq)(O,n)ooi and ~(0, n) 

= log Pn (x, 0) (and similarly Fo" (0, n) is the second order mixed partial derivative) 
which are assumed to exist. 

I f  the {Wn} have a limt normal (multidimensional) distribution, then the effi- 
ciency defined above coincides with the (classical) strict sense concept, [3]. I f  F(nO) 
is singular, such a { Wn} may not exist, and thus this definition will be of interest 
whenever fin (0) is non-singular, in which case fin (0) is positive definite. In any 
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ease it is positive semidefinite (and symmetric) so that  the positive (semi-) definite 
Bn (0) is uniquely defined. 

With the notations used above, the following result, which applies to the 
stable processes, can be given. 

Theorem 4. Suppose that 0 ~ A ,  where A is a finite non-degenerate open interval 
in the k-dimensional Euclidean space. Let Pn satis/y the/ollowing conditions: 

apn a~p~ Condition I. ~0~ ' O0~00j' i, ] : 1, 2 . . . . .  k, exist [or almost all x and /or all 

0 e A ,  and that the absolute values o/these [unctions are dominated by Gn (') and 
Hn (') [or all i, ], where Gn (') and Hn (') are integrable on the cartesian n-space. 

Condition I I .  C(O, n) ~- max Ci~(O, n) exists and C(O, n) --> co as n --> 0% all 0 
in A .  i 

Condition I I I .  For all 0 ~ A,  lira [C(O, n)]-lFn(O) exists as a nonsingular 
matrix. ~ ~ o~ 

t ~,j(O, n) ] Condition I V .  For any 0 ~ A ,  and all i, j, lira Var0 [ C~-~, n)-] ~ 0. 
n - ~ -  o o  

Condition V. For any 0 and O' in A ,  and a given fi > 0 and almost all x, qoil (0, n) 
lc 

satisfies: ] cfij (0, n) --  q~lj (0', n)] g [ ~ (0~ -- 01)2]~/2M~ (0, 0', n), /or 0 ~ ~ • 1, 
i ~ 1  

k 

[ Mij(O, O',n) i ~ c~ whenever ~ (0 - -  0:)  2 ~ /~. where lim E0 1. u .b .  C(O, n) 
n--->c~ i ~ 1 

Condition V I.  I] Po is the measure generated by the pn (x, O) ' s on the sample space, 
then Po = Po* only i[ 0 = O* and that the total variation o[ (Po - -  Po*) --> 0 as 

k 

Z - o. 
i = ]  

Then, the m.l.  equation 0 = q~n(O) = (q~i(O, n), i = 1 . . . .  , k) has a (vector) root 

On which is a consistent estimator o/ O, and which is asymptotically e/fieient in the 
wide sense. 

Corollary 4.1. I] the matrix ~n(O) = [q~ij(O, n), i, j ~ 1, 2, . . . ,  k[ has the 
property that [C(O ~ n)]- l~n(O)  is negative definite [or all 0 ~ A a non-degenerate 
open convex interval and ]or all large n with probability one, then the consistent m. 1. 

estimator On o/0  is also unique. 
The proofs of the theorem and its corollary run on classical lines. As the algebra 

is complicated and the hypothesis is somewhat different, the essential steps in the 
proof will be briefly sketched below. 

R e m a r k .  I f  the r.v. 's {Xn}  are independent and identically distributed, and 
Cii (0, 1) is positive for all i, then Conditions II  and IV are always satisfied. Note 
that  for Condition I I I  to hold it is necessary that  Cg~(O, n)/Cz(O, n) ~ O(1), so 
that  C (0, n) of the theorem may be replaced by Ci~ (0, n). 

Sketch o/Proo[. Let ~n (0 ~ and hrxn (0 ~ be the (random) quantities given in the 
theorem evaluated at 0 ~ 0 ~ the true parameter value. By Condition I and 
Taylor's expansion, 

(19) ~n(O) = ~n(O ~ -~ (0 --  O~ ~ -~ (0 --  0 ~ Un(O) 
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where Un(O)=Tn(O ~ 1 7 6 1 7 6  and 0 < 6 n <  1. F rom the 
same condition it  follows t h a t  

Eoo(~n(O~ = 0, and Eoo[Tn(O~ = --  Fn  (0~ 

where Fn(O) is given in Definition 3. Le t  n be large. Now pos t -mul t ip ly  (19) by  
Fn  (0o) -1 (cf. Condition I I I ) ,  so t h a t  

(20) ~(O)Fs  o) = ~,(0O)F,71(0 o) + (0 -- Oo)T~(Oo)Fj I (0 o) + 
+ (0 -- 0 o) Un(O)F~(O) .  

The stochast ic  limits of various te rms  on the r ight  of  (20) mus t  be considered. 
(All limits are t aken  as n --~ c~.) 

First ,  consider ~n (0 ~  1 (0o). I t  was noted t h a t  Eoo (~n (0~ F j  1 (0 o) =_ 0. Le t  
si  > 0 be given, i = 1 . . . .  , k, and e = @1 . . . . .  ek). By  Conditions I I I  and IV, 
(absolute value of a ma t r ix  or vector  means  absolute value for each element) 

P -o~(~o, ~) I~ (0~  >--~] = P [ I ~ ( 0 ~  > = ~ c ( o o , ~ ) ,  ~ = 1 . . . . .  ~] 

Cii (0% n) < c-~ (0o ~) ~ ~ ~ o ,  
i =  1 8i 

which implies 

(21) ~n(0~ (0 ~ ~ 0 .  

Nex t  consider I/]n(00) f'nl(00). Since Eoo(Tn(O~176 : -- Ik, to show 

t h a t  Tn(OO)F~l(O o) ~ - -  I~, i t  suffices to show (by Condition I I I )  that, T n  (0 ~ 

C -~ (0 ~ n) ~= - - / ' n  (0 ~ C -1 (0 ~ n) (element-wise). Bu t  this follows f rom Condition 
IV, so t h a t  

(22) T n  (0 ~ F ~  1 (0 ~ P - -  I ~ .  

Finally,  consider Un (0)/'~T 1 (00). Since [C (0 ~ n)] - 1 / ' n  (0 ~ is, by  Condition I I I ,  
non-singular  for large n, it suffices to consider [C (0 ~ n)] -1 Un (0). 

I f  ui~(O,n) is the ( i , ] ) th  t e r m  of Un(O), then  by  Condition V, luij(O, n)] 
< ][ 0 - -  O~ 0', n), for a lmost  all x, where il 0 - -  0 ~ [] is the Euclidean norm 

k 

( =  [ ~ (Oi -- 0~)2]1/z). F r o m  this it follows easily t h a t  
i = 1  

(23) ][ (0 - -  00) Un (O)/C(O O, n)][ ~< ][ 0 - -  00 i[l+c~ k ~0(0o~)_ ) , (  Mij(O, 0 ~ n) 

for a lmost  all x. The last  no rm symbol  on the r ight  side of (23) is the ma t r ix  norm 
( =  [trace(AA')] 1/2 for any  mat r ix  A). The hypothesis  on [Mij(O, n)/C(O, n)] of 
Condition V implies t ha t  i t  is bounded in probabi l i ty  and hence the first and last  
t e rms  on the r ight  side of  (20), in norm, are together  bounded by  (1 + 2~) ][ 0 - -  
_ 0o [it+% for some ~ > 0, with large probabi l i ty  ( >  1 - -  e) where e > 0 is arbi- 
t rary .  So the final a rgumen t  of Theorem i is applicable.  

Thus f rom (21)-- (23) it follows tha t  ~n (0) = 0 has a (vector) root  in the in terval  
( 0~ - -  ~, 0~ + ~7) where ~ = (~71, -.-,  ~7~), ~i > 0 being arb i t rary ,  with probabi l i ty  

tending to one. Hence  there exists a root  0n of ~n (0) = 0, which is a consistent 
es t imator  of  0. 
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The proof of the last par t  of the theorem proceeds as t ha t  of Theorem 3. Let  

0n be a consistent est imator of 0 and a root  of ~n (0) = 0. Then (20) can be wri t ten 
as~ 

(24) 0 = ~n(O~ Bnl  ( O ~ ~ ('On -- O~ Bn ( O~ B~ l ( O~ ~P'n O~ Bnl  ( O ~ ~- 
(On -- O~ (O~ O) Un(O:)B~I(O~ 

where Bn(O ~ is the unique square root  of  l~n(OO). Set Yn = ~n(O~176 
Zn = ('On -- O~ Bn(O~ and Vn = B n l ( 0  ~ Un('On)B:l(O~ 

From (22), it follows tha t  

Bnl(00) Tn(OO)B~l(O o) ~= B~I(O~ Bn(O ~ = -- I,~. 

P 
From (23) and the fact  t ha t  0n ~ 0, it is seen tha t  Vn-->O. Now (24) can be 
rewrit ten as 

(25) Yn = Zn (I~ + Vn). 

But  Eoo (Yn) = O, and Eoo (Y~ Yn) = I~ which implies tha t  { Yn} is a (vector) 
r . v .  bounded in probabil i ty and from (25) the same must  hold for {Zn}. So 

Yn p Zn. Thus from Definition 3, it follows tha t  0n is asymptot ical ly  efficient in 
the wide sense, since the sequence {Wn} of tha t  definition may  be identified with 
the { Yn} sequence here. This completes the sketch of  proof. 

R e m a r k .  The above a rgument  shows tha t  the matr ix  Bn(O ~ is the correct 

normalizing factor  for (0n --  0 ~ in case Zn has a limit distribution. 

Proo[ o/Corollary 4.1. I f  0n were not  unique, let 0-n be another  consistent m. I. 

est imator of 0 ; i .  e., ~n (On) = 0 and ~n (0n) = 0, or equivalently 

c -~ (00 ,  n) ~n (0n) = 0 and C-1(~, n) ~ (On) = 0 .  

But,  for n sufficiently large, 0n and On both  lie in the interior of  A, for otherwise 
the consistency hypothesis  will be violated. Since A is convex, i t  contains also the 

line segment joining 0n and On. Consequently, by  the k-dimensional Rolle 's 
theorem, there exists a value of  0, say 0", in A such tha t  C-1(0 ~ n) x 
det  [Tn (0")] = 0. ( 'det '  stands for determinant.)  But  by  hypothesis,  for all 0 in A 
and all large n, C -1 (0 ~ n) Tn  (0) is negative definite with probabil i ty one. Therefore, 
C-1(0 ~ n) det [Tn(0*)] = 0 can occur only with probabil i ty zero. This implies 

tha t  0n and 0-n, for large n, become equal with probabil i ty tending to unity.  

A l t e rna te  p roof  (due to the referee). If On and 0-n are two distinct consistent estimators, 
let g(~) = C-l(O~ + ~(On -- 0n)), where 0 < 2 ~< 1 and ~(') is the log-likelihood func- 
tion. Then g(-) takes its minimum at an interior point 2o of the interval. This is because 
g(2) ~ g(0) for small enough 2 ~ 0 and g(,~) ~ g(1) for Z close to 1, (,~ ~ 1), which is a conse- 
quence of the hypothesis that krln (0) = (~j (0)) is negative definite, ~. e. Clearly g"(~0) ~ 0. 
But a simple computation yields 

V'(Zo) = c-~(oo) y~ w j ( ~  + ~o(O~ - o~)) (o~ - o~) (oj - ~)  < o ,  
i , j : l  

a.e., since "On ~ On. [Hence 0~ (0--~) is the ith component of 0u (On)]. 
The contradiction contained in the precading two sentences proves the result. 
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t~ e m a r  k.  I f  the X n  are identically distr ibuted independent  r .v. 's ,  the result 
of this corollary reduces to t ha t  of  [2]. The above theorem in tha t  ease can be 
sharpened along the lines of [11] and [12]. Again various other  sets of  conditions 
m a y  be given, and moreover  the corresponding results for the independent  r. v. 's  
of [13] m a y  be generalized. 

The following result is a partial  extension of Theorem 2, to /c-parameters, 
which includes some unstable processes. The notat ions of  the above theorem will 
be used wi thout  fur ther  explanation. 

Theorem 5. Let Pn (xl, . . . ,  Xn; Oi . . . . .  Ok), or pn /or short, be the finite dimen- 
sional densities, o] the process, depending on a parameter 0 ~ (01, . . . ,  0k) which 
belongs to a finite non-degenerate open cell A in the Euclidean It-space. Suppose Pn 
satisfies the ]ollowing conditions: 

Condition (i). Same as Condition I o /Theorem 4. 

(ii). C~i (0, n) exists and Cii (0, n) -+ oo as n -+ 0% i = 1 . . . .  , It, all Condition 
O e A .  

Condition (ifi). Same as Condition V o /Theorem 4. 

Condition (iv). Given 0 ~ (~ ~ 1, there exists an s5 > 0 such that/or all 0 ~ A ,  

one has lim P[[  d e t ( T n ( O ) F : i ( O ) ) [  ~s s ]  > 1 -- (5, where 'det '  stands/or the deter- 
n--> c~ 

minant o/the matrix, and (]In and I~n were defined be]ore. 

Condition (v). Same as Condition VI o/Theorem 4. 

Then the m. 1. equation ~n (0) =- 0 has a (vector) root On which satisfies (On - 5") 

P 0; i.e., On is a consistent estimator o/O. Moreover, such a On is also e/fieient in the 
wealc sense (where the latter concept is an obvious vector analogue o/Definition 1). 

The proof  of  this result is obtained with a judicious mixture of  the arguments  
(and methods) of  Theorems 2, 3 and 4 and need not  be repeated here. I t  m a y  be 
noted tha t  this result includes the consistency par t  of  Theorem 4. This and the 
fact  t ha t  Theorem 5 is no t  a full extension of Theorem 2 will become clear in the 
following section. 

6. Applications to Linear Stochastic Equations 

Consider a stochastic process {Xt,  t >= 1} which satisfies, for each integer t, the 
following conditions. 

Condition 1. X t  ~- g l X t - 1  ~- " "  ~- ~ k X t - k  -~ u t ,  (--oo < ~i < c<)), where 
(51 . . . . .  ~k)eA,  a bounded non-degenerate cell in the Euclidean It-space, and the 
gtt a r e  independent  Gaussian r. v. 's  each having mean zero and unit  variance. 

Condition 2. The k roots ml . . . .  , m~ of  the characteristic equation 

(26) m k -- ~(im k-i . . . . .  0~k ~-- O, 

are simple (i. e., m t #  mj if i . ]). 

Condition 3. For  non-positive t, ut = O. 

I t  is required to examine the consistency of  the m.1. estimators ~n of c~. Since 
the ut are independent  Gaussian r. v. 's,  the densi ty of  X t  is given by Pn Pn (xi, �9 .. ,  

Xn ; ai . . . . .  ~k) = (2 7~)-n/2 exp [ - -  ~ (xt . . . . .  o~kxt_~)2/2]. To find the consistency 
t = l  

Z. Wahrscheinlichkeitstheorie verw.  Geb., ]Bd. 5 23  



330 M.M. RAo: 

of ~n, one has only to verify the conditions of Theorems 4 and 5. I t  should be 
pointed out  t ha t  this problem is of considerable importance in m a n y  applications 
and numerous special studies have been made (cf., [14], [8], [20], [1], [15] among 
others) with special methods of a t tack.  I n  what  follows, a unified account  of  
the problem emerges. 

Since the Pn is a Gaussian densi ty and A is bounded, Conditions I and VI  are 
satisfied here. The other  conditions of Theorem 4 will be verified first. 

Now Conditions I I  and I I I  can be checked together.  Wi th  n > k, define 

~n (~) ---- (a log pn/O~i, i = 1, . . . ,  k) = (~i (~, n), i = 1, . . . ,  k) 

Tn(~) ---- (a 2 log pn/&~a~j, i, ] = 1 . . . . .  k) = (Fij(~, n), i, ] = 1 . . . . .  k) . 

Substi tut ing for Pn, these expressions become 

n 

(27) ~l(~, n) = ~ u t X t - i ,  
t = i + l  

(28) ~ij(~, n) = - -  ~Xt-gXt-j, [ i ,  j ]  ----- max (i, j ) .  
t = [i,./] + 1 

Here it is required to compute  (E stands for E~ below) 

C/j (~., n) = E [~i (g, n) ~j (g, n)] = --  E (~/j" (~, n)) .  

To simplify the r ight side of C~j(~, n), X t  has to be expressed in terms of ut, and 
for this some properties of  difference equations are needed. 

Since the roots of (26) are simple, f rom the theory  of  difference equations (cf., 
[9] p. 564, or [14] 2, p. 178), it follows tha t  

X t  = al (t)ul ~- a2(t)u2 • "" -t- at(t)ut , 

where 
k k 

a r ( t ) : a ( t - - r ) =  ~ q m t q - r , r =  l . . . . .  t ,  with ~)~q: ]. 
q = l  q = l  

Here the constants ~q are the solutions of  the equations (because ut = 0, for t non- 
positive implies tha t  Xt  = 0, t non-positive), 

k 

r ~qmq , t = l , 0 , - - 1  . . . .  , - - ( k - -  2),  
q = l  

where, if for any q an mq = 0, the corresponding ~ q  is taken as zero, and (~lt = 1 or 
0 according as t = 1 or t ~ 1. Hence, one obtains 

t k 
t - - r  (29) X t =  ~, E ~qmq Ur. 

r = l  q = l  

I f  the roots m~ of (26) are allowed to be multiple also, then the aq of (29) will be 
functions of (polynomials in) t, and the computat ions  become more complicated. 

k 
2 On page 178 of MaNx andWaLD [14], equation (11) is ~r(t) = ~&p~t r+l. Therightside 

k i = 1  
should be ~ &pi t-r, since ~t(t) = 1 should hold when k = 1. This correction does not affect the 

i = l  
m a i n  r e s u l t s  o f  [14]. 
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Thus,  the  var iab le  2q case suggests  the  s t u d y  of  processes sat isfying Condi t ion 1 
bu t  wi th  ~i as funct ions  of t. This  general  p rob lem is qui te  real is t ic  in non-s ta t io-  
n a r y  processes, and  some ins tances  of i t  have  been s tud ied  in the  pa s t  [8]. Howe- 
ver,  the  computa t ions  needed  are l eng thy  in this  general  case. So, for the  present ,  
Condi t ion 2 of th is  sect ion will be assumed.  

F r o m  (29), on not ing  t h a t  E (Xt)  = 0 and  the  ut are independen t ,  the  simplifi- 
cat ions  proceed as follows : 

t--[i,j] k k 
(29') E ( X t _ i X t _ j  ) ~ ( t - i - r  = ~ 2qmq ) ( ~ q m q t - i - r ) ,  

r = l  q = l  q=l  

and  hence, af ter  reduct ion ,  one ob ta ins  

k k m~ -jl ( mq~Ttq,_ !mqmq,)n- [i,j] + 11 
(30) Co.(g,n ) = ~ ~,~q) ,q,  (1--mqmq,) n - -  [i, ?'] 

q = l  q ' = l  (1 - -  mqmq,) ]' 

prov ided  m q m q ,  ~ l .  I t  will be seen below t h a t  Theorem 4 is a mul t i -d imens iona l  
extens ion of W a l d ' s  theorem b u t  no t  t h a t  of  Theorem 2. 

Case 1. Le t  [ mq] < 1, q = 1 . . . . .  k. Then from (30), i t  follows t h a t  

l im Cij(~,n n) __ ~ ~ ~q2q, (1 - mqmq,) - -  D i j ( s a y ) .  
n-->c~ q = l  q ' = l  

Since ~ ~q = 1, and  mq are dis t inct ,  i t  is seen t h a t  lira Ctt (~, n) = c~, i = 1 . . . .  , k. I f  
q = 1 n--> oo 

1 
m a x  C** (~, n) = C (~, n), then  C (~. n) = 0 (n) and  i t  is found t h a t  l ira ~ 7 ~ . ~ / ' n ( ~ )  

i n-+oo ( ' ) 
= (Dij) is a non-s ingular  mat r ix .  (For  example ,  t ak ing  k = 2, one read i ly  verifies 
t h a t  Dl lD12  - -  D22 4= O, b e c a u s e  ]mql < 1 . )  

Thus in th is  case Condit ions I I  and  I I I  are satisfied. 

Case2 .  Let  ]mq] = 1 for a t  leas t  one q(q = 1, . . . ,  k). Suppose t h a t  ml  = 1 
and  [mjt < 1, ] = 2 . . . . .  k. Then (30) becomes, on simplif icat ion,  

Cij(~, n) = ~ -2-- (n - -  [i, ]]) (n - -  [i, i ] + l )  + O(n) .  

I t  follows t h a t  

l im Cijn 2(cq n) _ ~2 ' i, } --~ l ,  2, . . .  , k.  
n --> oo 

I f  ml  ----- 1, m2 = - - 1  and Ira. '  i '  = . . . .  , ] < 1, 3 k, then  from a s imilar  analysis  
i t  is seen t h a t  

l im Cij (~, n) 2~. + 2~ . . 
n 2 -- 2 , ~ , l = l , . . . , k .  

Tt ----~ oo 

Fina l ly ,  i f  all combina t ions  occur, say  ml  = 1, m2 = - -  1, m3 = e i~ so t h a t  
for some qa, mq l  = e -~~ etc.,  the  above  discussion reveals  tha t ,  for all i, j ,  (since 
mamq~ = 1, one s t a r t s  f rom (29') ins tead  of (30)) 

l ira C~j(~, n) ~ + ~ + 2a~ql 
n 2 2 

n--> r 

Thus summar iz ing  the above  for the  case ] mi [ ~ 1, i t  is found  t h a t  C -1 (c~, n) F n  (~) 
t ends  to  a s ingular  m a t r i x  of  r ank  one. Consequent ly  Condi t ion I I I  fails. 

23* 
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Case 3. Suppose @ = ml, [ @l > 1 and [ @1 > m a x i m u m  Ira j I, for j => 2. F rom 
(30), one ean easily ident ify the ma t r ix  of  Condition I I I  to be the ma t r ix  of  the 
expected values of  the  r. v . ' s  considered in L e m m a  15 of [15]. Consequently,  in 
this ease also, the ma t r ix  in Condition I I I  tends to a singular ma t r ix  of  r ank  one, 
and Condition I I I  fails. (Of course, this s t a t emen t  can be direct ly verified, wi thout  
the above reference, b y  an independent  computat ion.)  

Out  of  the above eases, one has to determine those t h a t  satisfy Condition IV. 
Since Condition I I I  has failed in Cases 2 and  3 above,  the theorem is not  applicable 
to those eases, and hence only the Case 1, Imq[ < 1 for all q, need be considered in 
the following. 

I n  the case Iraqi < l ,  however,  Var~ ~0ii (ct, n) has been e o m p u t e d i n  [14;p. 180], 
and was found to be 

Var :  ~0tj (~, n) = O(n --  [i, j]) = O(n) .  

Since Var~ (?/j(g, n))/C2( o:, n) = O(1/n) ~ O, as n -~ ~ ,  Condition I V  holds. 
Condition V is t r ivial  in the present  case. 

Thus  in the case [ mq] < 1, q = 1 . . . . .  k, the Conditions I - - V I  of  Theorem 4 
are satisfied. I f  I mq] >= 1, Conditions I I I  and  I V  are not  satisfied and hence this 
theorem is not  applicable in the unstable  case. However ,  a certain subclass of 
unstable  processes are covered by  Theorem 5, as seen below. 

k 

Case 4. Let  ] mq] > 1 for q = 1, . . . ,  k. Then f rom the fact  t h a t  ~ Xq = 1, and 
q = l  

(30), it follows t h a t  Cii(a, n) >= (n - -  i) so t h a t  Condition (iii) of Theorem 5 is 
satisfied. Conditions (i), (iii) and (v) hold in the  present  case also. This follows 
easily in all cases wha tever  the magni tudes  of  the roots are. The remaining Condi- 
t ion (iv) also holds in the present  case since the roots are dist inct  and lie outside the 
uni t  circle. This follows f rom the results of  ([1], Theorem 3.1 and  Corollary 3.1), 
since T n  (a) here is just  Bn of ([1], p. 682) and the ~ there is the k • k ma t r ix  given 
b y  

. . . .  

~ =  | l , O , . . . , 0  

| O ,  1 , . . . , O  " 

kO . . . . .  L o .  

Thus  in case Iraqi > 1, q = 1, . . . , /c ,  the Conditions ( i)--(v)  of  Theorem 5 are 
satisfied. However ,  ff some roots  of the characterist ic equat ion (26) lie outside and 
some inside or on the uni t  circle then  (by ([15], R e m a r k  2 on p. 216) the Condition 
(iv) of Theorem 5 fails and in this case the theorem is not  applicable. I n  summary ,  
the results of  [14] and certain others on consistency m a y  be obta ined f rom Theo- 
rems 4 and 5. More precisely the following result  holds. 

Theorem 6. Suppose the Conditions 1 to 3 (given at the beginning o/ this  section) 
on the process {Xn,  n ~ 1} are satisfied. I /  either Iraqi < 1, or Iraqi > 1, where 
mq, q ---- 1, . . . ,  ]~, are the roots o/ (26), then the m.l .  estimator ~n o/o~ = (~1, . . . ,  :ok) 
is consistent and asymptotically e/fieient ( in  the wide sense in the first case and in the 
weak sense in the second case). Moreover, the consistent estimator ~n is also unique. 

For  the last  pa r t  of the theorem one notes t ha t  the likelihood equat ion has only 
one root  in the present  case. 
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N o t e .  The  an are known to have  a l imit  normal  dis tr ibut ion when [mq[ < 1, 
i = 1 . . . . .  k, (for the stable processes), [14], so t h a t  the efficiency in t h a t  case 
becomes a str ict  sense one. I t  m a y  be no ted  t h a t  the  result  on the  efficiency of ~n, 
was possible because of the foregoing results, and such an analysis could not  be 
given in ([14], [1], or [15]). 

7. Final Remarks 

I f  Condition I I  of  Theorem 4 is s t rengthened,  the conclusion there on the 
efficiency of the consistent  es t imator  m a y  also be s t rengthened.  For  this, consider 

Condition I I ' .  I f  Cii (0, n) = Eo (a log pn/OO~) 2, then  Cii (0, n) -+ c~ with n, and 

for every  integer r ( independent  of  n) the correlation between 

0 log Pn and a log pn+r 
00i 00~ 

tends to one as n -+ 0% uniformly in r. 
Now the following result  holds. 

Theorem 7. The consistent m.l.  estimator given by Theorem 4 (with Condition I I  
replaced by I I '  above) has a joint li'mit distribution With mean Vector 0 aiid C6vdr:i~tnCe 

matrix l im (Cn(O)l '~l(O));  (i.e., ( in --  O) Bn(O) has a limit d. / . ) .  
n - - >  o o  

R e m a r k .  I f  the l imit  dis t r ibut ion of 0n (the m.I .  es t imator)  is also Gaussian 
then  they  are efficient in the  strict sense. However ,  fur ther  conditions are needed 
for the la t ter  conclusion. 

Proo/. In  Theorem 4 it  is shown t h a t  (cf. (25) and  the following) 

( Y~ - Z~) ~ ->0,  as n - + o o ,  

where Yn = ~n(O~176 B'2n(O) = In(O),  and Zn = (in --  O~176 I f  

Yn ~ Y, then  by  L e m m a  3, Zn ~ Y. Consequently to prove  this theorem,  it  

suffices to show t h a t  Yn d y .  
Firs t  note  t h a t  Eoo (Yn)  = 0 and Eoo ( Y~ Yn) ~-- I~, for all n. Nex t  consider 

Eoo ( Yn+~. --  Y~) ( Yn+r --  Yn) ~-- Eoo ( Yn+r Yn+r) -k Eoo ( Y~ Yn) --  2 Eoo ( Yn+r Yn) 
(31) = 2 I k  -- 2Eoo(Y~+ r Yn) .  

B y  Condition I I I  of  the theorem [C(00, n)]-lI 'n(O o) --+a non-singular  ma t r ix  
0 ~ t  ~- D (0~ say. Fur thermore ,  [C (0 , n)J-lE0o (~n+r (0~ ~Vn (0~ = 

( O log pn+r 01ogpn 
( [C(O0'n)]-IEO" ' aO~ aO, )) 

and, by  Condition I I ' ,  i t  follows t h a t  

[C(OO, n)]_~EooIO~ogp~+~ 01ogp~ ~ 0  
\ 00~ 00~ 

uniformly  in r, for each i = 1 . . . . .  /c. Consequently,  for n large and any  fixed 
posit ive r, 

[C (0 ~ n)] -1Eoo [ ~ + r  (0~ (}n (0~ ~ [C (0 ~ n)] -1/~n (0 ~ -+ D (0~ 
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where ",,~" stands for asymptot ic  equality. Hence Conditions I I '  and I I I  together 
imply tha t  

Eoo ( Yn+r Yn) = Burr (0 ~ Eoo (~:+r (0~ (0~ B:~(O ~ --~ Ik ,  

uniformly in r, as n --> co. Therefore the r ight  side of (31) tends to the zero matrix,  
uniformly in r, as n -+ c~. 

The above two facts imply  tha t  Yn converges in mean square to a r .v.  Y, so 

that  Yn ~ Y, with mean vector zero, and covariance matr ix I~. Consequently 

Zn = (0:n - -  00) [C(00, n)]i/ZBn(O O) [C(O O, n)] -1/2~d Y. 

However,  this is equivalent  to the s ta tement  tha t  On has a limit distribution with 
mean vector  0 ~ and covariance matr ix  D (0 ~ (when normalized by  [C(0 ~ n)]l/2). 
This completes the proof. 

Now to show tha t  this limit distribution of Yn is Gaussian, fur ther  regulari ty 
conditions, on Pn, should be imposed, so tha t  one m a y  work, for instance, with the 
r ight side of 

(32) pn(xl . . . . .  xn;O) =pl (x l ;O)p2(x~[x l ;O) . . .pn(xn lx l  . . . .  ,xn-1;O), 

and consider the type  of reasoning used in the central limit theorems for m-depen- 
dent  r .v . ' s  (cf., e.g., [7]). However,  the precise conditions are not  ye t  available. 
Also the s tudy  of  [13] for stable processes, with the above results, would be useful. 

A more general form of Theorem 5 can also be obtained. For  instance the 
following s ta tement  holds. (The nota t ion of  Theorem 4 will be used.) 

Proposition. Suppose Conditions (i), (ii), (iii) and (iv) o/ Theorem 5 hold and let 
Condition (iv) be replaced by  

Condition (iv)'. ~n (O) ~ n l  (O) ~-~0 as n --> co/or all 0 E A. Then the m.l. equation 

~n (0) = 0 has a root On which is a consistent estimator o/O. 
The proof  of  this result follows as s tated in the remarks after Theorem 5. This 

result applies to and includes more cases of  the unstable processes, (for instance 
the result of [15], Par t  I I  is implied). However,  this type  of  result is unsat isfactory 
since the essential point  of the s tudy  on the asymptot ic  properties of  m. 1. estima- 
tors is to obtain certain verifiable conditions in applications. Thus the verification 
of  Condition (iv)' above for more general stochastic difference equations (e. g. those 
of  [15]) often involves independent  and lengthy computations.  A bet ter  extension 
of Theorem 2 will therefore be of interest. 
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