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1. Introduction

This paper is the second part of a study, of inference problems on stochastic
processes, started in [16] where the m-decision (m = 2) problem of certain conti-
nuous ‘parameter’ stochastic processes was treated. In the present paper some
discrete parameter (or index) processes will be considered, restricting the attention
to certain general estimation problems centering around the asymptotic properties
of the estimators. In [16] as well as here the processes need not be stationary. As
application, certain previously known results on general stochastic difference
equations are unified and extended. These relate to the consistency and asymptotic
efficiency of the estimators of certain “structural parameters”. Some earlier results
of this paper were announced in [17], and others in [19]. Subsequently, the results
of the study of other aspects of inference theory of processes, such as the filtering
and prediction problems, will be published (cf. [18]). The paper can be read inde-
pendently of [16] and the exposition is self-contained.

After preliminaries and notation in the next section, the main problem and the
previous work are discussed in Section 3. This reveals the difficulties and limita-
tions of the previously known work, and points out the significance of the problem.
In Section 4 a solution to the general problem is provided (Theorems 2 and 3) if
there is one unknown parameter in the finite dimensional density functions of the
process. When there are several (two or more) parameters in the finite dimensional
densities, some (weaker) extensions of the results are obtained (Theorems 4 and 5)
for a wunified treatment of stable and certain unstable processes. [A process
{Xn, n > 0} is stable if the stochastic dependence of X, on X, decreases to zero
as |m — n| increases; otherwise it is unstable. Precise definitions will be given
later.] As consequences of these results, estimation problems and their efficiencies
are considered in some detail for the “structural parameters’ in linear stochastic
difference equations because of their practical importance. The first rigorous
treatment of such equations was made by Max~ and Warp in [74]; and some of
their results are here extended. The complications appearing in the general study
to include the unstable process will become clear in this application. The special
treatments will only serve as useful motivations. The main problem itself was
partly inspired by Warp’s work in [21].

It should be noted at this point that the maximum likelihood method is both
convenient and natural for estimation problems on processes in the generality in
which they are considered. Therefore its study takes the central position in what
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follows. Certain other aspects, than those considered here, were treated by
GRENANDER in [6].

2. Notion and Preliminaries

Some notation, definitions and a brief discussion of stochastic convergence are
included here for the reader’s convenience. They appear several times later.

A random variable (r.v.) is a finite real valued measurable function and a
(row or column) vector r. v. is one which has a finite number of r. v.’s as its com-
ponents. The symbol P[S] is the probability of the event S and Eg(X) stands for
the expected value (integral) of the r. v. X, when it exists, under the hypothesis

that Py is the true probability measure. The symbols X, 2 X, and X, % X are
used respectively to mean that the sequence of r. v.’s {X,} converges in probabi-
lity to a r. v. X and that the distribution functions (d. f.’s) Fy(.) of X, converge
to F(-), that of X, at all continuity points of the latter. If {X,} and {¥,} are any

sequences of r. v.’s, then Xni Y, means (X, — Y,) o A sequence of r.v.’s
{Xy} is said to be bounded in probability if, for any ¢ > 0, there exists an M, such

that lim P[| X,| = M,] < &. Clearly such a sequence is always bounded in pro-

n—r o0

bability if the means and variances exist and are bounded functions of n.
Let {X,} and {Y,} be two arbitrary sequences of r. v.’s. The following lemmas
are known (cf., eg. [15] and the references there).

Lemma 1. If X, 2> X and Y, > ¥, then X5 Yo, > X Y. Moreover, if
P[Y=0]=0, then (X4/Yn)>(X]Y).

Lemma 2. If X, 5 0 and { Y} is bounded in probability, then X, ¥, = 0.

pord

Lemma 3. If Xni Y, and X, —— X then YniX. (As usual, oll limits are
taken asn — 00.)

3. The Problem

Let {X,, n = 1} be a (discrete) stochastic process. All processes and parame-
ters are assumed to be real. If (X1, X2, ..., Xj) is a set of r. v.’s, then, for each =,
let P, (21, %2, ..., %0301, ..., 0%), or P, for short, denote their joint d.f. which
depends on k parameters. In what follows only those processes whose d. f.’s are
absolutely continuous (relative to the Lebesgue measure) with density functions
Py, ..., Ty301, ..., Or), or py for short, will be considered. Also £ is assumed to
be a (known) fixed positive integer independent of » (i. e., for all p,)1. The problem
is to study the asymptotic properties of the maximum likelihood (m. 1.) estimators
0 of 0 appearing in py.

In the single parameter case (i.e., &k = 1 above) WALD proved in [21], the
following theorem which is the most general result known thus far:

1 Since the sequence of 1.v.’s {X,} is supposed given (i.e. the r.v.’s and the measure space
on which they are defined are given) the d.f. ’s {P,} always satisfy the compatibility relations

o
Pn = [ Pr1dani1. When the sequence of d.f.’s {Pp} is supposed given, (which may alternately
—co

be assumed) then one has to assume, in addition, these compatibility relations.
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Theorem 1. (WALD) Lel the irue parameter value, 0, be an interior point of a
finite non-degenerate interval A on the 0 axis such that the following conditions hold.

Condition 1. The derivatives 666 (t=1,2,3), exist for all 0 € A, and for all

samples (1, ..., Tq) except perhaps for a set of measure zero. Further,
1) f flub ap" dxl,...,dxﬂ<oo,i:1,2.
oo co fGed |
.. . 0 log pn
Condition 2. For any 0 € 4, one haslim C,(0) = oo, where Cp (6) = Eo{( 50 ) J
n—co
Condition 3. For any 0e A4, lim [(Varﬁ o lac;%pn)/on (6)} = 0. (‘Var’ means
N—>0

variance.)
Condition 4. There exists a positive 0, such that for any 0 ¢ A4,

Blog ppu(Xq,..., Xn30)
@) ) (6) E"[l i e ]
is a bounded function of n, where ' is restricted to the inferval [ 7 J— \ < 4.
. 0dlog A~ L. . .
Then, the m.l. equation %%p " =0, has a root 8, which is a consistent estimator

of 0. Furthermore, any root of the m. 1. equation which is a consistent estimator of 8 is
also asymplotically efficient at least in the wide sense. (The concept of wide sense
efficiency is given below in Section 5. )

To see the domain of applicability of this theorem, the case of a first order
linear homogeneous stochastic difference equation is considered. This example has
important applications. It will be shown that the conditions of Wald’s theorem are
satisfied if, and only if, the equation is non-explosive (i. e., o in (3) below satisfies
|| <1

Example. Let the process {X;, t = 1} satisfy the relation (¢ integer)

3) X =aXig -+ u

where o € A, a bounded non-degenerate interval including the origin, and the
sequence of r. v.’s u; (¢ = 1) are independent, Gaussian distributed with mean zero
and variance unity. Further, let u; = 0 for { < 0. To determine the consistency of
the m. 1. estimator of « it suffices to verify the conditions of Theorem 1.
The density of Xy, ..., X, is given by
"

(4) P = Pa(@1, ..., Zn;0) = (2 7) P exp [— > (2, — ows1)%/2].

i=1

The differentiability conditions clearly are satisfied here. From the fact that 4 is
bounded, follows the existence of the integrals in (1) for the p, given by (4). Hence
Condition 1 of the theorem is satisfied.

¢
Let gy (o) = al%ip” .Then gy (o) = Z’LLth 1and from (3) X; = zoci“lut_iﬂ.

t=1 i=1
Noting that u; and X;_4, for ¢ = 1, are independent, one gets
nt—1
(5) Cn o) = Ho(pp(@) = 2 o0 )= (n—1).

t=2 j=1
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It follows that Cj, (¢) — o0, as # —> oo for all « € A, and Condition 2 holds. Since

" 931 " . . .
@, ) = az%fi = 0, for all «’ € 4, Condition 4 is automatically satisfied. Hence

Conditions 1, 2 and 4 are satisfied even if |o| = 1. Condition 3, on the other hand,

will be shown to hold if, and only if, |« | < 1.

Cr ()
v

From (5), it is seen that lim = (1 — o)t if |a| < 1. It was shown in

n—> o0

([14], p. 180) that, for |a| < 1, Var, g, (x) = 0(n). These two statements imply the
truth of Condition 3 at.once. That this condition fails if [«| = 1 is seen as follows.

n—1
Note that (P;L(o() = — ZX? and Eoc((P;L(OC)) — _On (O(.) (Here (;U,:L( ) — a‘Pn( ) ) If

= T 0w

Condition 3 holds then clearly ——— ) L z X? must converge in probability to a con-

stant (= —1). But lim %: glf |o] =1, and X; = w1 4 -+ 4 v; where the

n—-o00
ve(= " uy_s+1) are independent Gaussian r.v.s each with mean zero and
variance 1 (since || = 1). So the above expression converges in probability to a

" .
constant if and only if Lz Z X? converges in the same sense. But this is impossible
"z
n
since by a result of Erpos and Kac [4], % Z X? has a proper limit distribution.
i=1

K3
If |o| > 1L, then lim =22 Cy(a) = («? — 1)71, and 2" ZX? converges in pro-
n—>00 t=1

bability to a random variable by ([1], Theorem 2.1 or [15], Lemma 15), which is
not a constant. Hence Condition 3 fails if loc] = 1. It follows that Theorem 1 can
be used to show that the m. 1. equation ¢, («) = 0 has a root &, which is a consistent
estimator of «, of the stochastic equation (3), if |« | < 1; it gives no information if
|| = 1. The consistency of the m.l. estimator in the latter case (of (3)) was
proved by RuBIx [20].

The above illustration shows that Condition 3 fails in the unstable case. This

condition was used by Wald in his proof to show that (g, (6)/Cx (6 )5 —1, as

n — oo, where @, (0) = (ﬂ%g@pn) and Oy (6) = Eo(¢2 (6)). This condltlon may be

replaced by the following weaker condition and the conclusions of the theorem
remain valid.
Condition 3'. For all 6 in A, a finite non-degenerate open interval,
: el :
(6) lim Eg (7; v )= 0 Yo = 9n(0) + Ca(0).

n—>0

Note that Eg(Y,) =0 for all n. This condition is the best to show that

[Yn(0)/Cr(D ]—>0 because of
Lemma 4. A sequence of r.v.'s {Zy}, with E(Zy) = 0, converges in probability to
zero if, and only if,
Z2
nlin;E(lJrZz)—O.

(A proof of the lemma may be found in [5], Section 20.)
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However, for the example given after Theorem 1, in the explosive case, the

Condition 3’ also fails, since [Y,(8)/Cr(6)] Loy, (# 0). This indicates that a
different procedure, not requiring this type of condition, is needed to treat the
class of problems which include the unstable cases. A general result containing all
these cases is proved in the next section if, in p, (, ), 0 is a scalar parameter.

4, Solution of the Single Parameter Problem

It is convenient to introduce a concept of weak sense efficiency which is
meaningful for the unstable cases, but which coincides with the wide sense concept
introduced by WarLD [21] as soon as the process under consideration becomes
stable. Since the estimators may not always have limit distributions, in the gene-
rality in which they are now considered, the weak sense (or wide sense) concept
will be relevant here. (For a discussion on this point, see [21].)

Definition 1. A sequence of estimators {7} of 0 is said to be asymptotically
efficient in the weak sense if there exist two sequences of r.v.’s {W} and {V,} such
that (the W’s and V’s being defined on the same probability space as 77s)

lim Bo(Wq) =0, LmEo(W2) =1,

and
limBg(Vy)=1, lim P[V,=0]=0,
implies
[Cr(0)]42 (T — 6) = ?]/Z , where Cy(0) = Eolei(0)].

If the process is stable, this definition coincides with the wide sense concept of
Wald, where he needs only one sequence { W}, since then a sequence {V,} always
exists. In fact, taking V, = 1, with probability one, this definition becomes
identical with the wide sense conocept. (See also the next section.) The concept of
stability used above is given precisely in the following

Definition 2. Let p, (x, 0) be a finite dimensional density of a process

{Xpt=0,1,...} where x=(21,...,2,),0=(01,...,0;) and k(=1)
is fixed. Then the process is said to be stable or unstable according as M = 0 or
0 < M = oo, where M :}jglwma;)i(Vara <—é~éi~a—e;—> [C2(0, n)), and where C(0, n) is
the maximum (over all ¢) of Cy; (0, n) = E¢[0 log pnfa0;12,¢.5=1,..., k.

For example, if {X,} is an “m-dependent” sequence of r.v.’s [7], with two

moments then it turns out that M = 0, so the sequence is stable by this definition.
[Here and elsewhere M is a generic constant.]

Remark. In case M =0, it follows, by the Tshebyshev inequality, that
0%log pr 02log py 2 aY] . . .
ae?%g}.iEg (ﬁ) Such a sequence of r.v.’s {(93;(:%—;;)} is included in the
concept of the stable sequence introduced by GNEDENKO and Kotmocorov ([15];
Section 22). Thus the above definition may be considered as a specialized version

of the classical concept.
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Theorem 2. Suppose the finite dimensional density py(x1, ..., Zy;0), or p, for
short, of the process {X,, t > 0} depending on a parameter 0 satisfies the following
conditions.

0pn

Condition (a). -z~ 6662
finite non-degenerate open inierval. Further the absolute values of these functions are
domenated by G (") and Hy(-) where Gy, and H, are integrable on the cartesion
n-space.

Condition (b). Cp(0) = E¢{(pn(0))?] exists and lim Cp(0) = oo, for all 6 € 4,

exist for all 0 in A and for almost all x, where A is

where @y (0) = alc;gep" . e
Condition (c). If ¢, (0) = 8(;0”(0 (which exists), then @, satisfies a Lipschitz

condition of order o.. More explwztly, for a given B > 0, there exists 0 << o0 = 1 such
that |@, (0) — @, (0)] = |0 — 0'|* My (0, 0), for almost all x, where lim

n—rco

By (L. -Mg(‘f’e;’ )> < oo, forall 0, 0" € A satisfying |6 — 0| < .
P n
Condition (d). Given 0 << § < 1, there is an g5 > 0, such that for all 6 € A one
kashmPHgZ(a ‘_ (5} 1— 6.

n—

Condition (e). If Pg is the measure generated by py(x, 0) on the sample space,
then Py, = Py, implies 01 = O and that Py is a continuous function in 0, (i. e., the
variation of (P, — Py,) tends to zero as (01 — 02) — 0).

Then the m.l. equation (pn(B) = 0 has a root HAn which satisfies the condition
(5 —0) 2 0asn — oo, (i. e., by is @ consistent estimator of 0).

Remark. In the work of WALD [21] and CrRaMER [3], as well as in most earlier
studies the Condition (e) was implicitly assumed. This may be seen in their proofs.
The absence of an explicit statement, when taken literally as being unnecessary,
leads to difficulties, as was pointed out by Krary and LECAM in [10].

Proof. Using part (a) of the hypothesis, ¢, (0) may be expanded by the Taylor’s
formula as

) Pn(0) = @a(0°) + (6 — 09 @, (09) + (0 — 69 Un(0)
where 00 is the true parameter value in A, @n(0%) = @n(0)|s—g; and Uy(6)

= @ (00 4 8, (6 — 69)) — @, (0°) with 0 < d, < 1. From the same hypothesis
it follows that, for all § in A4,

Eo(pn(0)) = f f alog el Ppdxy ... dey = T f fpndxl Ldxy, =0.

Similarly B (@Z(0)) = Crn(0) = — Eo(q,(0)). Consider (7) in the following form
(which can clearly be written),

n(0) _ [ On(6%) | _gn(0) Cn(0°) ) Unl6)
& iy = Lot | Gy O~ 0 | G| ey 0 — 09

Cal09)
Bt (0 09+ Ball 00

where the B,’s are defined by the corresponding terms on the right side. Now the
By’s are simplified as follows.
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<Pn(6 )

First consider By,. It1sclearthatEog T, (60) =0, and Vare 0 (60) = [Cr (0971,
the latter tends to zero as n — oo by Condition (b). It therefore follows that
[pn (690, (09)] % 0. From Condition (d), since [¢,, (89)/Cy (6°)] is bounded away

from zero in probability, one obtains the following. For any ¢ > 0, there exists a
positive number L, such that

) P\

N—>00

L4<e

Hence from the preceding and Lemma 2 it follows that B, % 0.

Next consider By,. Using Condition (c) the second term of By can be written for
almost all , as follows: (0 < o < 1)
Un(h) . M (6,69
O (69) Cn(60) °
where for | — 0] << B, [M4(0, 0°)/C,(0%)] is bounded in probability. Conse-
quently (8) can be rewritten, using (10), as

(10) < [0 — g0

) T = But (6 69) 4 (0 — o0y~ B,
where B, = [C (09) 0, (09)][ M (6, 69)/C'y, (69)]8y in which |6a] << 1. It follows,
with (9), that B, is bounded in probahbility for all |6 — 6] < B.

Let &), 62 be any two small positive numbers less than f. If f; = P[| By
= ¢17%], then the result on the asymptotic behavior on B, established above
shows that there exists an 7 (e1, £2) such that n = % (g1, £2) implies f; =< £9/2. Also

from the result on B, of the preceding paragraph it follows that there is an L,

and an n; (g2) such that, if fo = P[] l~?n[ = Lg,] and n = nq(s2) then fo < £9/2.
Let ng (e1, €2) = max (n{e1, e2), n1{e2)), and let

= {X = (X1, ..., Xn):| Ba| <&l%%, | By| < L}
If 8’ is the complement of S, then for n = ng (e, €2),
(12) P[S] = P[(| Bu| Z ) U (| By| = Le)| < f1 + fo Sea.

Hence P[S] > 1 —e&s. Consequently for § = 60 L ¢, the first and last terms on
the right side of (11) are less than (1 + L, )e1 '™ with probability greater than
1 — &g for n = ng(ey, €2). If now &1 is chosen such that (1 + L, )e;* << 1, then the
whole expression on the right side of (11) is determined, in sign, for § = 69 4- £ by
the second term, i. e.,

n (0 .
(13) (p((eo))>0 if =001 ¢,

<0 if 0=00—¢;.

Since by Condition (a) ¢, (0) is differentiable in 6 for almost all z, it is conti-

nuous in ¢, and hence [, (0)/¢,(0°)] = 0 has a root HAn in the interval (00 — &,
6% + &1) if n > no(e1, £2) with probability > 1 — &9, in view of the continuity of
the probability measures Py by Condition (e) of the hypothesis. Since &1, &2 are
arbitrary the theorem is proved.
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An important property of the consistent m.l. estimator is given in

Theorem 3. Every consistent m.l. estimator GAn of 0, established in Theorem 2, is
asymptotically efficient in the weak sense.

Proof. Let OAn be a root of ¢, (0) = 0 which is a consistent estimator of 6 as
given by Theorem 2. Setting ¢, (0) = 0 in (8), and rearranging, the following
equation obtains.

(14) Wn=VuZn+ 0nZn,
where
V= @u(09)/Cn (0%, Zn = [C (09]12(B,, — 69), Wy = — @ (09)/[C (60)]12,

and on = Uy 6 )/C'r (6% . By hypothesis (0 <a = 1)

My B, 0
(15) IQ”I<l9"_GI T (60) )

and the right side terms are such that the last factor is bounded in probability and
B, >6° So 0,->0. This means Vi == (V, —+ gn). But He (Ws) = 0 and
Eg(W2) = 1, for all n, which implies, by a remark in the penultimate paragraph of
Section 2, that {W,} is bounded in probability. Thus from (14) it follows that the
right side is bounded in probability. Since E4(V,) = 1 and by Condition (d) of
Theorem 2, {V,} is bounded away from zero in probability, it must be true {in (14)]
that {Z,} is bounded in probability as well. [It may be of interest to note that the
preceding statement implies that (Cj (69))2 is the correct normalizing factor for

(GAn — 09).] Hence
(16) (Wn— VaZn)>0.

The properties established for {V,} and {W,} above satisfy the conditions
of Definition 1, so that

(17) [C (B0Y]H2 (B, — 69) 2 [W 1) V)

Thus the consistent estimator 0, is asymptotically efficient in the weak sense,
completing the proof.

Remark. If only (¢) is assumed, as here, Condition (d) of Theorem 2 cannot be
dropped, as easy counter-examples show. It may also be noted that the conditions
given in Theorem 2 are different from, and much weaker than, the classical ones
(see the application below). Another set of conditions (variant of the above) was
given in [19]. Several different sets (and even weaker) conditions can be produced.
The point of the result here is that it seems to be the first of its kind which deals with
the stable and unstable cases together.

Application. Consider the first order stochastic equation X; = o Xy—1 -+ U,
given by (3) of Section 3 with the same assumptions as there. From (4), the likeli-
hood equation is given by [expanding ¢y (-) around ag, in A, the true value]

n n
(18) Pnle) = D Xp1lymg— (6 —o0) D X7y
1=1 =1
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For this the Conditions (a) and (b) of Theorem 2 have been checked in the preceding
section. Conditions (c) and (e) are trivial in the present case.

The Condition (d) is that Z X? /02 () is bounded away from zero (in proba-

bility) if || = 1 or o] < L. If || = 1, this result is a consequence of the results
of Erpos and Kac [4], and if |«| > 1, it follows from the fact that it converges

n
stochastically to a r.v. (+ 0) as shown in Lemma 15 of [15]. If |a| < 1, [> X7,

t=1
2 (a)] Eay| {(by Tshebyshev’s theorem, [3]). Consequently Condition (d) is also
satisfied for all & in 4, a bounded open non-degenerate interval containing, say,
(—2, 2). Hence by Theorem 2, it follows that the m. 1. estimator &y, of «, a Toot of
@n ey = 0, is consistent and, by Theorem 3, it is asymptotically efficient in the
weak sense. Since there is only one root here, &n is also unique.

The part on consistency of &, for this particular process was proved by Rupmy
[20] using a special method.

Remarks. It is also of interest to consider a constant term, 8¢ in the above
example. However, this case cannot be subsumed under Theorem 1, because there
will be two parameters. Several difficulties arise in the consideration of this multi-
parameter case. Certain matrices appearing in the proofs corresponding to reci-
procals used in Theorems 2 and 3, for instance, become singular for large », if the
process is unstable (cf. Section 6). Hence the multiparameter extensions of these
results in this generality seem rather difficult with the present methods. In the
following section, some extensions will be given, for a certain class of unstable and
all stable processes, which may be used for some cases of the above problems.
Using special methods, certain more general, unstable (or explosive) processes
satisfying kth order (k¥ = 2) linear stochastic difference equations have been
studied in [15], but unfortunately no general methods are available at present.

5. Some Extensions to the k-parameter Problem

At the outset it is convenient to state the concept of efficiency in the wide sense,
of the estimators, in the vector case. (See the discussion preceding Definition 1
above.)

Definition 3. A sequence of (row) vector estimators {én} of 0 = (61, ..., 0%), of
Pulz, 0), is said to be asymptotically efficient in the wide sense, if there exists
another sequence of vector r. v.’s {W,} such that lim E¢(W,) = 0, lim Eo(W, W)

n—> 00 —> 00

= I, the identity matrix of order k& (prime denotes transposition), and that

(Ba — 0)Bu(0) Z W, where BZ(8) = I'n(6) = (Cy(6,n)) with Cy(6,n) =

= Blgi(, mgs(0,m) i.j =1, ...k Here qi(0,n) = 25" and o0, n)

= log p, (x, 0) (and similarly g (0, n) is the second order mixed partial derivative)
which are assumed to exist.

If the {W,} have a limt normal (multidimensional) distribution, then the effi-
ciency defined above coincides with the (classical) sirict sense concept, [3]. If I'(,6)
is singular, such a {I¥,} may not exist, and thus this definition will be of interest
whenever I, (6) is non-singular, in which case I, (f) is positive definite. In any
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case it is positive semidefinite (and symmetric) so that the positive (semi-) definite
B, (0) is uniquely defined.

With the notations used above, the following result, which applies to the
stable processes, can be given.

Theorem 4. Suppose that § € A, where A is a finite non-degenerate open interval
in the k-dimensional Euclidean space. Let p,, satisfy the following conditions:

" o 02 .. .
Condition 1. ?%L’ ae—fégj—, t,7=1,2,...,k, exist for almost all x and for all

O0e A, and that the absolute values of these functions are dominated by Gy (-) and
Hy, () for all i, j, where Gy (*) and Hp (+) are integrable on the cartesian n-space.
Condition I1. C(, n) = max Cy; (0, n) exists and C(0,n) — o0 as n —> oo, all 0
in A. :
Condition III. For all 6 e A, lim [C(0, n)]"1 1, (0) exists as a nonsingular
matrix. o0

Condition IV. For any 0 € A, and oll i, j, lim Var,

n—>0c0

@i'(e, n) _
S| =0

Condition V. For any 6 and 0" in A, and a given § > 0 and almost all x, pi;(0, n)
k
satisfies: | @i (0,m) — @i (0, n)| = [ (0; — 0212 My(0, 6", m), for 0 <a <1,

t=1

%
< oo whenever Z 0 — 02 <p.

p=1

where lim Hg [1, w b.

N—>00

My(0,0,n) 7
) —J

Condition VI. If Pg1is the measure generated by the py (x, 6)’s on the sample space,
then Py == Py« only 1f G = 6% and that the total variation of (P — Pgs) — 0 as
k

> (6 — 052 0.
i=1
Then, the m.l. equation 0 = @p(0) = (ps(0,n), ¢ =1, ..., k) has a (vector ) root

6, which is a consistent estimator of 0, and which is asymplotically efficient in the
wide sense.

Corollary 4.1. If the matriz Wa(0) = [py(B,n), 4, =1,2,..., k] has the
property that [C (09, n)]"1 W, (0) is negative definite for all 6 € A a non-degenerate
open convex tnterval and for all large n with probability one, then the consistent m.1.
estimator 5n of 0 is also unique.

The proofs of the theorem and its corollary run on classical lines. As the algebra
is complicated and the hypothesis is somewhat different, the essential steps in the
proof will be briefly sketched below.

Remark. If the r.v.’s {X,} are independent and identically distributed, and
Cy:(0, 1) is positive for all 4, then Conditions IT and IV are always satisfied. Note
that for Condition ITI to hold it is necessary that Cy (8, n)/Cy(0, n) = O(1), so
that €' (8, n) of the theorem may be replaced by Cy; (8, n).

Sketch of Proof. Let @, (6°) and ¥, (%) be the (random) quantities given in the
theorem evaluated at 6 = 69, the true parameter value. By Condition I and
Taylor’s expansion,

(19) @ (6) = n (69 + (0 — 6°) ¥ (6%) + (6 — 0°) Un(6)
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where Uy (0) = Pu (00 + 6,(0 — 09) — ¥, (69, and 0 < dy < 1. From the

same condition it follows that
Egw(@n(0%) =0, and Eu[¥,(09)]= — (09,

where I'y(0) is given in Definition 3. Let # be large. Now post-multiply (19) by
I, (09)-1 (ef. Condition ITT), so that

(20)  Pn(0) 1,7 (6°) = G (00) 1" (6%) + (6 — 60) Wy (69) ", " (69) +
+ (6 — 0 UL (0) ;7 (6) .

The stochastic limits of various terms on the right of (20) must be considered.
(All limits are taken as n — o0.)

First, consider @y (69) ",/ (6%). It was noted that By (g, (09) 1", 1(6%) = 0. Let
g > 0 be given, ¢ = 1,...,k, and ¢ = (e1, ..., &). By Conditions IIl and IV,
(absolute value of a matrix or vector means absolute value for each element)

P ’U‘(?}')TJI%(W)I Zej = Pllei(6%n)| ZaC(%n), i=1,..., k]

k
< 0-2(6%,0) Y OL(EEO’_”), -0,

which implies o
21) @u (8017 71(69) 5 0.

Next consider ¥, (60) 1", 1(6°). Since Eg (¥, (601, *(6%) = — I, to show
that W, (60 "1 (6% 3 — I, it suffices to show (by Condition IIT) that ¥, (69)
C-1 (6%, n) LT, (6% C-1(69, n) (element-wise). But this follows from Condition
IV, so that

(22) UZNC OV A (/) Sy

Finally, consider U, (0)1",;1(69). Since [C (60, n)]-1 1", (#°) is, by Condition ITT,
non-singular for large n, it suffices to consider [C (09, )71 U, (6).

If wi;(0,n) is the (4, j)th term of U, (), then by Condition V, |us (6, n)]|
=| 0 — 092 M;(0, 0, n), for almost all , where |6 — 69 is the Euclidean norm

(=[ Z — 6;)2]42). From this it follows easily that
1=1

(23) (6 — 69U, (8)/C(6°, m)| < |6 — 60 H1+oc’ (ﬂfij(@, 89, n))

C(6° n)

H

for almost all x. The last norm symbol on the right side of (23) is the matrix norm
(=[trace (4 A")]*2 for any matrix A). The hypothesis on [My;(0, #)/C (6, n)] of
Condition V implies that it is bounded in probability and hence the first and last
terms on the right side of (20), in norm, are together bounded by (1 4 ) |6 —
— 09|+, for some A, > 0, with large probability (>1 — &) where ¢ > 0 is arbi-
trary. So the final argument of Theorem 1 is applicable.

Thus from (21)— (23) it follows that g, (f) = 0 has a (vector) root in the interval
(60 — n, 60 + %) where p = (91, ..., B&), 7: > O being arbitrary, with probability
tending to one. Hence there exists a root 5,, of (;En(O) = 0, which is a consistent
estimator of 6.
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The proof of the last part of the theorem proceeds as that of Theorem 3. Let
8, be a consistent estimator of 6 and a root of @ (6) = 0. Then (20) can be written
as,
(24) 0 = ¢, (6% B, 1(6°) -+ (@n — 69) B,(6°) B, 1 (6% ¥, 0% B, 1 (69 +

(6. — 00) By, (09 B, (69) Uy (6a) B, (69,

where B, (09 is the unique square root of Tn(ﬂo) Set Y, = ¢u(6° B, 1(69),
Zp = (B — 09 B, (0%, and V,, = B;; (69 Un(en) . 1 (09).

From (22), it follows that

B 1(6%) Wa(6°) B, (69)

From (23) and the fact that 00 >0, it is seen that ¥, —>0. Now (24) can be
rewritten as

(25) n="2n(Ix+ Va).
But Eg(Yy) =0, and Eg (Y, Y,) = Iy which implies that {Y,} is a (vector)
r.v. bounded in probability and from (25) the same must hold for {Z,}. So

Y, 2= Zy. Thus from Definition 3, it follows that én is asymptotically efficient in
the wide sense, since the sequence { W} of that definition may be identified with
the { ¥} sequence here. This completes the sketch of proof.

L B0 I Bn(09) = — I.

Remark. The above argument shows that the matrix B, (69) is the correct

normalizing factor for (t§n — 09} in case Z,, hasg a limit distribution.

Proof of Corollary 4.1. If Gn were not unlque let 6, be another consistent m. 1.

estimator of 0; i.e., (pn(ﬂn) = 0 and (pn(Gn) = 0, or equivalently
C1(0%,7) gu(fa) = 0 and O-1(89, ) G (6) = 0.

But, for n sufficiently large, 9An and En both lie in the interior of A4, for otherwise
the consistency hypothesis will be violated. Since 4 is convex, it contains also the

line segment joining én and 6,. Consequently, by the k-dimensional Rolle’s
theorem, there exists a value of 6, say 6% in A such that C-1(6% n) X
det [¥,(6%)] = 0. (‘det’ stands for determinant.) But by hypothesis, for all § in 4
and all large n, C—1 (69, n) ¥, (6) is negative definite with probability one. Therefore,
C-1(69, n) det [P, (6*)] = O can occur only with probability zero. This implies
that 0, and 05, for large 7, become equal with probability tending to unity.

Alternate proof (due to the referee). If 0, and 6, are two distinct consistent estimators,
lot g(A) = O-1(6%) (B + A(Br — D)), where 0 =< 4 < 1 and ¢(-) is the log-likelihood func-
tion. Then g(-) takes its minimum at an interior point Ao of the interval. This is because
g(1) < g(0) for small enough 4 > 0 and g(4) < g(1) for Z close to 1, (1 << 1), which is a conse-
guence of the hypothesis that ¥, (8) = (¢i;(0)) is negative definite, a. e. Clearly g” (4o) = 0.
But a simple computation yields

g () = CL(60) z% (G + Ao0(6n — Ba)) (0: — Bi) (B — 6) <0,

,§=1

a.e., since Gn + Oy [Hence 02» (0,;) is the ¢th component of 6y (6,)].

The contradiction contained in the precading two sentences proves the result.



Inference in Stochastic Processes. 11 329

Remark. If the X, are identically distributed independent r.v.’s, the result
of this corollary reduces to that of [2]. The above theorem in that case can be
sharpened along the lines of [11] and [12]. Again various other sets of conditions
may be given, and moreover the corresponding results for the independent r. v.’s
of [13] may be generalized.

The following result is a partial extension of Theorem 2, to k-parameters,
which includes some unstable processes. The notations of the above theorem will
be used without further explanation.

Theorem 5. Let pp(x1, ..., Zn:01, ..., 0k), or py for short, be the finite dimen-
stonal densities, of the process, depending on a parameter 0 = (01, ..., 0) which
belongs to a finite non-degenerate open cell A in the Euclidean k-space. Suppose py
satisfies the following conditions:

Condition (). Same as Condition I of Theorem 4.

Condition (ii). Cy (0, n) exists and Cyu(0,n) o0 as n—>o0, i =1,..., k, all
fed.

Condition (iil). Same as Condition V of Theorem 4.

Condition (iv). Given 0 << § << 1, there exists an g5 > 0 such that for all § ¢ A,

one has lim P[ldet(Fn(0) ;1)) =eo] > 1 — 8, where det’ stands for the deter-

n—o0

minant of the matriz, and ¥y, and I'y were defined before.
Condition (v). Same as Condition VI of Theorem 4.
Then the m.1. equation @, () = 0 has a (vector ) root 0, which satisfies (@n — 00

£ 0;7.e., 5n 18 @ consistent estimator of 6. Moreover, such én 18 also efficient in the
weak sense (where the latter concept is an obvious vector analogue of Definition 1).

The proof of this result is obtained with a judicious mixture of the arguments
(and methods) of Theorems 2, 3 and 4 and need not be repeated here. It may be
noted that this result includes the consistency part of Theorem 4. This and the
fact that Theorem 5 is not a full extension of Theorem 2 will become clear in the
following section.

6. Applications to Linear Stochastic Equations

Consider a stochastic process {X;, t = 1} which satisfies, for each integer ¢, the
following conditions.

Condition 1. X3 = a1 Xp1 + +++ + oapXi—p + U, (—o0 < 5 < o), where
{1, ..., ar)e A, a bounded non-degenerate cell in the Euclidean k-space, and the
uz are independent Gaussian r.v.’s each having mean zero and unit variance.

Condition 2. The k roots my, ..., myg of the characteristic equation

(26) mk———o(lynk—l,_ "'—0(](;—:0,

are simple (i. e., my += myif ¢ =+ §).
Condition 3. For non-positive ¢, u; = 0.

It is required to examine the consistency of the m.l. estimators &, of «. Since

the u; are independent Gaussian r.v.’s, the density of X;is given by p, = pn (%1,...,
n
Ty A1, ..., 0r) = (27) " M2exp [— Z (wg—-—oagx;—r)2/2]. To find the consistency
t=1

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 5 23
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of «y, one has only to verify the conditions of Theorems 4 and 5. It should be
pointed out that this problem is of considerable importance in many applications
and numerous special studies have been made (cf., [14], [8], [20], [1], [15] among
others) with special methods of attack. In what follows, a unified account of
the problem emerges.

Since the p, is a Gaussian density and A4 is bounded, Conditions I and VI are
satisfied here. The other conditions of Theorem 4 will be verified first.

Now Conditions IT and III can be checked together. With n > £, define

@n(@) = (0log ppfOos, i =1,..., k) = (gi(2,m), i =1,..., k)
Ypla) = (02log ppfooi 0oy, 5,7 =1, ..., k) = (ggi(ee, m), 1,7 =1,..., k).

Substituting for p,, these expressions become

n
(27) @i(o,n) = > u; Xoq,
t=i+1
"
(28) gis(es m) = — > X1 Xyy, [i, ] = max (i, 7) .
t=[4d]+1

Here it is required to compute (¥ stands for E, below)
Cig (o, m) = B @i, n) @j (o, m)] = — E (i (o, m)) -

To simplify the right side of Cy;(x, n), X; has to be expressed in terms of u;, and
for this some properties of difference equations are needed.

Since the roots of (26) are simple, from the theory of difference equations (cf.,
[9] p. 564, or [14]2, p. 178), it follows that

Xi=a1(Q)ur +az(B)uz + - + ar(t)u,

where

k k
ar(t):a(t—r):Zlqm‘q“’,rzl,...,t, with z)»qzl.
g=1 g=1
Here the constants 1, are the solutions of the equations (because «; = 0, for ¢ non-
positive implies that X; = 0,  non-positive),

k
6lt: zlqmtq*l,t: 1307 _17"‘7 _(k_z)v
g=1
where, if for any ¢ an my = 0, the corresponding 1, is taken as zero, and d;; = 1 or
0 according ast = 1 or¢ =+ 1. Hence, one obtains
t

k
(29) Xo=3S Xigm T,

F=1¢=1

If the roots m; of (26) are allowed to be multiple also, then the 4,4 of (29) will be
functions of (polynomials in) ¢, and the computations become more complicated.

2 On page 178 of MaNN and WaLD [14], equation (11} is @, (f) = Z}” pit —r+1, Therightside
should be Z Jipit—7, since g (t) = 1 should hold when k& = 1. This correctlon does not affect the

i=1
main results of [74].
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Thus, the variable 4, case suggests the study of processes satisfying Condition 1
but with «; as functions of ¢. This general problem is quite realistic in non-statio-
nary processes, and some instances of it have been studied in the past [§]. Howe-
ver, the computations needed are lengthy in this general case. So, for the present,
Condition 2 of this section will be assumed.

From (29), on noting that £ (X;) = 0 and the u; are independent, the simplifi-
cations proceed as follows:

‘ t—{igl & _ : .
(29 B(XpiXpg) = 2, (2 hgmiy ") (D Agmg' 777,
r=1 ¢g=1 g=1

and hence, after reduction, one obtains

(30) Cylo,n Z Za Aq

g=1¢=1

. Mgy (Mgmg ) —[E71+1
( | ) )

my’)

provided mgmg, * 1. It will be seen below that Theorem 4 is a multi-dimensional
extension of Wald’s theorem but not that of Theorem 2.

Case 1. Let |mg| < 1,¢ =1, ..., k. Then from (30), it follows that

. Cijla,n) ml
hml z 2/1 - T wiamia) = Dyj(say).
n— o0 g=1¢=1
k
Since z Aq=1, and mg are distinet, it is seen that lim Cy (o, n) = co0,i=1, ..., k. If
g=1 n—>00

max Cy (o, n) = C (o, n), then C(x,n)=0(n) and it is found that hm ( ) —— (o)

= (Dy) is a non-singular matrix. (For example, taking & = 2, one readﬂy verifies
that D13 D1z — Dy + 0, because | mq| < 1.)

Thus in this case Conditions IT and ITT are satisfied.

Case 2. Let [mgy| = 1 for at least one ¢(g = 1, ..., k). Suppose that m; = 1
and |m;| < 1,7 =2, ..., k. Then (30) becomes, on simplification,

Vs .. ..
Cijloem) = 3 (0 — [6,§]) (0 — [5,7] + 1) + O(n).
It follows that

lim OI](O;’ ) ‘%_1_ b, ) = 1, 2, » k
n
n-—>00
If my =1, mp = —1 and |m/| < 1,7 =3, ..., k, then from a similar analysis

it is seen that
Cylo,n) A+ A

o N 1 T
N—>00
Finally, if all combinations occur, say m; = 1, mg = — 1, mz = €% so that

for some q1, mq1 = e, ete., the above discussion reveals that, for all ¢, §, (since
mgmg, = 1, one starts from (29') instead of (30))

Ciylam) _ Wi+ 23+ Jalgy
n2 o 2 '

lim

>0

Thus summarizing the above for the case |m;| = 1, it is found that C~1(x, n) 'y ()
tends to a singular matrix of rank one. Consequently Condition TIT fails.

23*
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Case 3. Suppose ¢ = my, |¢| > 1 and || > maximum |m;|, for j = 2. From
(30), one can easily identify the matrix of Condition IIT to be the matrix of the
expected values of the r. v.’s considered in Lemma 15 of [15]. Consequently, in
this case also, the matrix in Condition III tends to a singular matrix of rank one,
and Condition IIT fails. (Of course, this statement can be directly verified, without
the above reference, by an independent computation.)

Out of the above cases, one has to determine those that satisfy Condition IV.
Since Condition I1I has failed in Cases 2 and 3 above, the theorem is not applicable
to those cases, and hence only the Case 1, | m,| < 1 for all ¢, need be considered in
the following.

In the case | mql < 1, however, Var, g;; (o, n) has been computedin [14;p.180],
and was found to be

Va’ra Pig (OC, n) = 0(7’1, - [@: 7]) = O(n) .

Since Var, (piy(a, #))/C%(x, n) = O(1jn) -0, as n — oo, Condition IV holds.
Condition V is trivial in the present case.

Thus in the case |mq| < 1,9 =1, ..., k, the Conditions I—VI of Theorem 4
are satisfied. If |mq] = 1, Conditions ITI and IV are not satisfied and hence this
theorem is not applicable in the unstable case. However, a certain subclass of
unstable processes are covered by Theorem 5, as seen below.

k
Case 4. Let ]mql > 1forg =1, ..., k. Then from the fact that Zlq =1, and
=1
(30), it follows that Cy(x, n) = (n — ¢) so that Condition (iii) qu Theorem 5 is
satisfied. Conditions (i), (iii) and (v) hold in the present case also. This follows
easily in all cases whatever the magnitudes of the roots are. The remaining Condi-
tion (iv) also holds in the present case since the roots are distinct and lie outside the
unit circle. This follows from the results of ({1], Theorem 3.1 and Corollary 3.1),

since ¥y, («) here is just B, of ([1], p. 682) and the « there is the kX k matrix given
by

0Ly eey Ok
0.0
*=lo1,...,0
0,...,1,0.

Thus in case |my| > 1,4 =1, ..., k, the Conditions (i)—(v) of Theorem 5 are
satisfied. However, if some roots of the characteristic equation (26) lie outside and
some inside or on the unit circle then (by ([15], Remark 2 on p. 216) the Condition
(iv) of Theorem 5 fails and in this case the theorem is not applicable. In summary,
the results of [14] and certain others on consistency may be obtained from Theo-
rems 4 and 5. More precisely the following result holds.

Theorem 6. Suppose the Conditions 1 to 3 (given at the beginning of this section)
on the process {Xn, n = 1} are satisfied. If either |mg| <1, or [mq| > 1, where
mg, ¢ = 1, ..., k, are the roots of (26), then the m.l. estimator o of o = (o1, ..., %)
is consistent and asymptotically efficient (in the wide sense in the first case and in the
wealk sense in the second case). Moreover, the consistent estimator .y, is also unique.

For the last part of the theorem one notes that the likelihood equation has only
one root in the present case.
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Note. The a, are known to have a limit normal distribution when |mq| < 1,
i==1,..., k, (for the stable processes), [14], so that the efficiency in that case
becomes a strict sense one. It may be noted that the result on the efficiency of oy,
was possible because of the foregoing results, and such an analysis could not be
given in ([14], [1], or [15]).

7. Final Remarks

If Condition II of Theorem 4 is strengthened, the conclusion there on the
efficiency of the consistent estimator may also be strengthened. For this, consider

Condition 11'. If Cy; (8, n) = E4(0 log py/00;)2, then Oy (0, n) — oo with n, and
for every integer r (independent of n) the correlation between

dlog pn 0log puir
a6, 4 T

tends to one as n —> oo, uniformly in r.

Now the following result holds.

Theorem 7. The consistent m.l. estimator given by Theorem 4 (with Condition 11
replaced by 11" above ) has a joint limit distribution with meas vector 6 and covariance
matriz lim (Cy (0)I",71(0)); (i.e., (@n — 0) By (0) has a limit d.f.).

n—>00
Remark. If the limit distribution of 6, (the m.l. estimator) is also Gaussian
then they are efficient in the strict sense. However, further conditions are needed
for the latter conclusion.

Proof. In Theorem 4 it is shown that (cf. (25) and the following)
(Yn—Zn) >0, as n-—>oo,
where Y, = @, (09 By (09, B2(6) = I'n(0), and Z, = (B, — 69) B,(6%). If
Yn—d> Y, then by Lemma 3, Zn—d> Y. Consequently to prove this theorem, it

suffices to show that Y, 4 Y.
First note that Eg(Y,) = 0 and By (Y, Y,) = I, for all n. Next consider

Boo(Yoir — Y3) Ynir — Yu) = Boo (Y1 Yr) + Hoo (YY) — 2 Bgo(Y 1, ¥ )
(31) :211(: _2E00(Y;L+7.Yn).

By Condition III of the theorem [C(6° n)]-117;(6%) — a non-singular matrix
== D(6°), say. Furthermore, [C (69, 2)]"1 Eys(@;, . ,(8%) Gy (00)) =

(o (P15 )

and, by Condition IT’, it follows that

- 9 log pp.r 0log p 5\2
[C(00, m))72 By (=5 mer — T2E2 R g

uniformly in r, for each ¢ =1, ..., k. Consequently, for » large and any fixed
positive r,

[C(0°% m)] B[y (6°) g (09)] ~ [C(69, )] T (89) — D(69)
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where “~"" stands for asymptotic equality. Hence Conditions I1" and III together
imply that

Eo(Y s Y) = Byl (69) Boo(@rar (00)@u (69)) B (69) —> I,

uniformly in 7, as n — oo. Therefore the right side of (31) tends to the zero matrix,
uniformly in r, as 7 — oo.
The above two facts imply that Y, converges in mean square to a r.v. Y, so

that ¥, 2 ¥, with mean vector zero, and covariance matrix I;. Consequently
Ly = (én — B9)[C(6°, n)]V/2 B,, (%) [C(6°, n)]ﬂ/z_‘i Y.

However, this is equivalent to the statement that 6n has a limit distribution with
mean vector 60 and covariance matrix D (%) (when normalized by [C(6°, n)]1/2).
This completes the proof.

Now to show that this limit distribution of Y, is Gaussian, further regularity
conditions, on py, should be imposed, so that one may work, for instance, with the
right side of

(32) Pul@1, ..., @n30) = p1(w1;0) pa(we|x1;0) ... pu(@n|21, ..., 2u-1;0),

and consider the type of reasoning used in the central limit theorems for m-depen-
dent r.v.’s (cf., e.g., [7]). However, the precise conditions are not yet available.
Also the study of [13] for stable processes, with the above results, would be useful.

A more general form of Theorem 5 can also be obtained. For instance the
following statement holds. (The notation of Theorem 4 will be used.)

Proposition. Suppose Conditions (i), (i), (ili) and (iv) of Theorem 5 hold and let
Condition (iv) be replaced by

Condition (iv)'. gn(6) ¥, (6) 50asn — oo for all 6 € A. Then the m.l. equation

@n(0) = 0 has a root b, which is a consistent estimator of 0.

The proof of this result follows as stated in the remarks after Theorem 5. This
result applies to and includes more cases of the unstable processes, (for instance
the result of [15], Part II is implied). However, this type of result is unsatisfactory
since the essential point of the study on the asymptotic properties of m.l. estima-
tors is to obtain certain verifiable conditions in applications. Thus the verification
of Condition (iv)’ above for more general stochastic difference equations (e. g. those
of [15]) often involves independent and lengthy computations. A better extension
of Theorem 2 will therefore be of interest.
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