The Berry-Esseen Theorem for Functionals of Discrete Markov Chains

E. Bolthausen

Technische Universität Berlin, Fachbereich Mathematik, Straße des 17. Juni 135, 1000 Berlin 12

Summary. The error bound $O(1 / \sqrt{n})$ is derived in the central limit theorem for partial sums $\sum_{j=1}^{n} f\left(\check{\zeta}_{j}\right)$ where $\breve{\zeta}_{j}$ is a recurrent discrete Markov chain and f is a real valued function on the state space. In particular it is shown that for bounded f and starting distribution dominated by some multiple of the stationary one, it is sufficient for the chain to have recurrence times with third moments on order to get this bound.

§ 1. Introduction

Let I be an at most countable set of states, $\left(p_{i j}\right)_{i, j \in I}$ a stochastic matrix (i.e. $p_{i j} \geqq 0, \sum_{j \in I} p_{i j}=1$ for all $\left.i \in I\right)$ and $X=\left(\Omega, \mathfrak{A}, \xi_{n}, P_{i}\right)$ a Markov chain with transition probabilities $p_{i j}$; i.e. for $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} \xi_{n}: \Omega \rightarrow I$ is \mathfrak{Q}-measurable and for $i \in I P_{i}$ is a probability measure on (Ω, \mathfrak{A}) with $P_{i}\left(\zeta_{0}=i\right)=1$ and $P_{i}\left(\xi_{n}=i_{n} \mid \xi_{0}=i_{0}, \ldots, \xi_{n-1}\right.$ $\left.=i_{n-1}\right)=p_{i_{n-1} i_{n}}$ if the left side is defined. We assume that I is one recurrent class, i.e. for each $i \in I \quad \xi_{n}$ visits each state infinitely often with P_{i}-probability 1 . For a probability μ on $I P_{\mu}$ is the probability $\sum_{i \in I} \mu(i) P_{i}$ on (Ω, \mathfrak{N}).

We fix once for all a distinguished point $O \in I$. Let $T_{k}: \Omega \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ be defined as follows:

$$
\begin{aligned}
& T_{0}=\inf \left\{n \geqq 0: \xi_{n}=0\right\} \\
& T_{k}=\inf \left\{n>T_{k-1}: \xi_{n}=0\right\}, \quad k \geqq 1 .
\end{aligned}
$$

It is well known that for any starting probability μ and all $k \in \mathbb{N}_{0} T_{k}<\infty P_{\mu}$-a.s., so the

$$
\tau_{k}=T_{k}-T_{k-1}, \quad k \geqq 1
$$

are well defined if we restrict everything on a subspace of Ω which has full
measure for all P_{μ}. For the sake of notational convenience we write τ for τ_{1}. The τ_{k} are well known to be independent and identically distributed.

If $f: I \rightarrow \mathbb{R}$, we call the sequence $f\left(\xi_{0}\right), f\left(\xi_{1}\right), \ldots$ a functional of X.
If the chain is positive, i.e. $E_{0}(\tau)<\infty$, then there exists a unique stationary probability distribution $\Pi=(\pi(i))_{i \in I}$, i.e. we have $\Sigma_{i} \pi(i) p_{i j}=\pi(j)$ for all $j \in I$. ξ_{0}, ξ_{1}, \ldots with the law P_{π} is then a stationary process. We call it the stationary chain.

In the sequel the chain X is assumed to be positive recurrent. The following central limit theorem is due to Doeblin (see [3], I. 16, Theorem 1).

Theorem A. If the chain is positive and if $E_{0}\left(\sum_{i=1}^{\tau}|f|\left(\xi_{i}\right)\right)^{2}<\infty$ then $\Pi(f)$ $=\sum_{i \in I} \pi(i) f(i)$ is well defined, and if

$$
\sigma^{2}(f)=E_{0}\left(\sum_{n=1}^{\tau}\left(f\left(\xi_{n}\right)-\Pi(f)\right)\right)^{2}>0
$$

then

$$
\lim _{n \rightarrow \infty} P_{0}\left(\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{n}\left(f\left(\xi_{j}\right)-\Pi(f)\right) \leqq t\right)=\Phi(t)
$$

where Φ is the standard normal distribution function and $\alpha=E_{0}(\tau)$.
Our main result is the following Berry-Esseen type bound:
Theorem 1. Let μ be a starting probability on I. If

$$
\begin{align*}
& E_{0}\left(\tau^{3}\right)<\infty \tag{1.1}\\
& E_{0}\left(\sum_{j=1}^{\tau}|f|\left(\xi_{j}\right)\right)^{3}<\infty \tag{1.2}\\
& E_{\mu}\left(T_{0}\right)<\infty \tag{1.3}\\
& E_{\mu}\left(\sum_{j=1}^{T_{0}}|f|\left(\xi_{j}\right)\right)<\infty \tag{1.4}
\end{align*}
$$

then

$$
\begin{equation*}
\sup _{t}\left|P_{\mu}\left(\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{n}\left(f\left(\xi_{j}\right)-\Pi(f)\right) \leqq t\right)-\Phi(t)\right|=O\left(n^{-1 / 2}\right) \tag{1.5}
\end{equation*}
$$

The proof will be given in $\S 3$.
Taking in particular $\mu=\Pi$, (1.3) and (1.4) are entailed by (1.1) and (1.2). To see this, the following result of Pitman [9] is useful:

Pitman's Occupation Measure Identity

Let $g: I^{\mathbb{N}_{0}} \rightarrow[0, \infty)$ be measurable, let S be a stopping time for ξ_{0}, ξ_{1}, \ldots and let v be the occupation measure on I defined by $v(i)=E_{0}\left(\sum_{n=0}^{S-1} 1_{i}\left(\xi_{n}\right)\right)$. Then

$$
E_{0}\left(\sum_{n=0}^{S-1} g\left(\xi_{n}, \xi_{n+1}, \ldots\right)\right)=\sum_{i \in I} v(i) E_{i}\left(g\left(\xi_{0}, \xi_{1}, \ldots\right)\right) .
$$

With this result one easily proves the following
Lemma 1. If $\mu=\Pi$ then (1.3) and (1.4) follow from (1.1) and (1.2).
Proof. (1.3) is well known to follow from (1.1) (see e.g. [9]).
Let $S=\inf \left\{n>0: \xi_{n}=0\right\}, h(i)=\max (|f(i)|, 1)$. Then

$$
\begin{aligned}
& E_{I}\left(\sum_{j=1}^{T_{0}}|f|\left(\xi_{j}\right)\right) \leqq E_{I}\left(\sum_{j=1}^{S} h\left(\xi_{j}\right)\right) \\
& \quad \leqq E_{\Pi}\left(\sum_{j=0}^{S-1} h\left(\xi_{j}\right)\right)+h(0) \\
& \quad \leqq E_{I I}\left(h\left(\xi_{0}\right) \sum_{j=0}^{s-1} h\left(\zeta_{j}\right)\right)+h(0) \\
& \quad=\pi(0) E_{0}\left(\sum_{i=0}^{S-1} h\left(\xi_{i}\right) \sum_{j=1}^{S-1} h\left(\xi_{i}\right)\right)+h(0) \\
& \quad \leqq \pi(0) E_{0}\left(\sum_{i=0}^{S-1} h\left(\xi_{i}\right)\right)^{2}+h(0) \\
& \quad \leqq 2 \pi(0) E_{0}\left(\sum_{i=0}^{S-1}|f|\left(\xi_{i}\right)\right)^{2}+2 \pi(0) E_{0}\left(\tau^{2}\right)+h(0)
\end{aligned}
$$

where the equality is by Pitman's identity, using the fact that the occupation measure for S is $\pi(0) \Pi$. So it is seen that (1.4) follows from (1.1) and (1.2).

From Lemma 1 and Theorem 1 one derives the following
Corollary 1. If the starting probability μ is dominated by some multiple of Π and if (1.1) and (1.2) hold then (1.5) is true.

It is desirable to have conditions based on more familiar entities. The following so-called strong mixing coefficients have been introduced by Rosenblatt (see [10]):

Let $\mathfrak{F}_{k}=\sigma\left(\xi_{0}, \ldots, \xi_{k}\right) \mathfrak{F}^{k}=\sigma\left(\xi_{j}, j \geqq k\right) . \alpha(k), k \geqq 0$ is defined to be

$$
\sup _{n \in \mathbb{N}_{0}} \sup _{A \in \widetilde{\mho}_{n}} \sup _{B \in \widetilde{\mathscr{Y}}^{n+k}}\left|P_{\pi}(A \cap B)-P_{\pi}(A) P_{\pi}(B)\right|
$$

The following theorem will be proved in $\S 4$.
Theorem 2. Let $\lambda \geqq 0, \in \mathbb{R}$ then $\sum_{n=0}^{\infty} n^{\lambda} \alpha(n)<\infty$ if and only if the chain is aperiodic
and $E_{0}\left(\tau^{\lambda+2}\right)<\infty$.
With this result and Corollary 1 one has
Corollary 2. If some multiple of Π dominates μ, if f is bounded and $\sum_{n} n \alpha(n)<\infty$ then (1.5) holds true.

For unbounded functions one obtains for $p>3$

$$
\begin{aligned}
E_{0}\left(\sum_{j=1}^{\tau}|f|\left(\xi_{j}\right)\right)^{3} & \leqq E_{0}\left(\tau^{p-1} \sum_{j=1}^{\tau}|f|^{p}\left(\xi_{j}\right)\right)^{3 / p} \\
& \leqq\left(E_{0}\left(\tau^{3(p-1) /(p-3)}\right)\right)^{(p-3) / p}\left(E_{0}\left(\sum_{j=1}^{\tau}|f|^{p}\right)\right)^{3 / p}
\end{aligned}
$$

So one has
Corollary 3. If some multiple of Π dominates μ and for a real number $p>3$ $\Pi\left(|f|^{p}\right)<\infty$ and $\sum_{n} n^{(p+3) /(p-3)} \alpha(n)<\infty$ then (1.5) holds true.

Bounds of order $O\left(n^{-1 / 2}\right)$ for bounded functions f have been obtained by Lifshits [7] under conditions based on the maximum correlation coefficients, i.e. the cosinus of the angle between the spaces $L_{2}\left(\mathscr{F}_{n}\right)$ and $L_{2}\left(\mathscr{F}^{n+k}\right)$. Such conditions seem to be quite strong for Markov chains. If any of these angles is larger than zero $\alpha(n)$ converges to zero exponentially fast ([7], Theorem 5). It follows from our theorem 2 that for any chain with recurrence times with moments only of a finite order all maximal correlation coefficients equal 1.

The method of proof used here is the renewal approach which goes back to Doeblin:

Let $\rho_{n}=\max \left\{k: T_{k} \leqq n\right\}$ and $l_{n}=T_{\rho_{n}}$; let further $X_{n}=\sum_{j=T_{n-1}+1}^{T_{n}}\left(f\left(\xi_{j}\right)-\Pi(f)\right)$. The X_{j} are independent and identically distributed.

Obviously

$$
\begin{align*}
\sum_{j=1}^{n}\left(f\left(\xi_{j}\right)-\Pi(f)\right)= & \sum_{j=1}^{T_{0}}\left(f\left(\xi_{j}\right)-\Pi(f)\right)+\sum_{j=1}^{\rho_{n}} X_{j} \tag{1.6}\\
& +\sum_{j=l_{n}+1}^{n}\left(f\left(\xi_{j}\right)-\Pi(f)\right) .
\end{align*}
$$

Theorem A then follows from the independence of the X_{j}, a central limit theorem with random summation and the asymptotic negligibility of first and third summand in (1.6) (after appropriate norming). However, error bounds of order $n^{-1 / 2}$ for central limit theorems with random summation are known only if X_{j} and ρ_{n} are independent, which certainly is not true in our case. Landers and Rogge in [5] derived bounds under rather general conditions, but applied to the situation in theorem 1 they only yield $O\left(n^{-1 / 4}(\log n)^{1 / 4}\right)$ (see [6]). Bounds of order $O\left(n^{-1 / 3+\delta}\right)$ under stronger conditions had previously been obtained by me with a modification of Landers' and Rogge's method [2]. Theorem 1 follows upon a close look at the dependence between ρ_{n} and the X_{j}.

A straightforward simplification of our proof also gives the following theorem which refutes the seemingly general belief that bounds of order $n^{-1 / 2}$ in central limit theorems with random summation are obtainable only in the independent case.

Theorem 3. Let $\left(\eta_{i}, r_{i}\right)_{i \in \mathbb{N}}$ be independent identically distributed two-dimensional random variables with

$$
E\left(\eta_{i}\right)=0, E\left(\eta_{i}^{2}\right)=1, E\left(\left|\eta_{i}\right|^{3}\right)<\infty, \quad r_{i} \in \mathbb{N}, E\left(r_{i}^{3}\right)<\infty
$$

Let $\alpha=E\left(r_{i}\right)$ and $\rho_{n}=\max \left\{k: \sum_{j=1}^{k} r_{j} \leqq n\right\}$. Then

$$
\sup _{t}\left|P\left(\sqrt{\alpha / n} \sum_{j=1}^{\rho_{n}} \eta_{j} \leqq t\right)-\Phi(t)\right|=O\left(n^{-1 / 2}\right) .
$$

§2. A Semi-Local Berry-Esseen Bound

We prepare for the proof of Theorem 1 with a special Berry-Esseen theorem for two-dimensional i.i.d. random variables $\left(\left(\zeta_{n}, \gamma_{n}\right), n \in \mathbb{N}\right.$, which are lattice in one component. So we assume there is a $\rho \in \mathbb{R}$ such that $\gamma_{n} \in \rho+\mathbb{Z}$ a.s. It is further assumed that $E \zeta_{n}=E \gamma_{n}=0, E\left|\zeta_{n}\right|^{3}<\infty, E\left|\gamma_{n}\right|^{3}<\infty$ and that the covariance matrix $\Sigma=\left(\sigma_{i j}\right)_{i, j=1,2}$ has full rank 2.

Let $A=\{n \in \mathbb{N}: \exists k \in \mathbb{Z}$ with $P(\gamma-\rho=k)>0, P(\gamma-\rho=k+n)>0\}$. Clearly $\Lambda \neq \emptyset$, and for the sake of convenience we assume the largest common divisor d of A to be 1 . This is not essential. The modifications needed in the case when this is not true are straightforward and therefore omitted.

Let φ be the two-dimensional density function of the centred normal distribution with covariance Σ, and let $\psi(x, y)=\int_{-\infty}^{x} \varphi(s, y) d s$. Let $S_{n}=\sum_{i=1}^{n} \zeta_{i}, T_{n}$ $=\sum_{i=1}^{n} \gamma_{i}, \lambda_{n}\left(t_{1}, t_{2}\right)$ be the characteristic function of $\left(S_{n} / \sqrt{n}, T_{n} / / \sqrt{n}\right)$ and $g\left(t_{1}, t_{2}\right)$ be the characteristic function of $\left(\zeta_{i}, \gamma_{i}-\rho\right)$. Obviously

$$
\begin{equation*}
\lambda_{n}\left(t_{1}, t_{2}\right)=\left[g\left(t_{1} / \sqrt{n}, t_{2} / \sqrt{n}\right) \exp \left(i t_{2} \rho / \sqrt{n}\right)\right]^{n} \tag{2.1}
\end{equation*}
$$

Lemma 1. Given $\delta>0$, there exist $\delta^{\prime}>0,0<r<1$ and $C>0$ such that $\lambda_{n}\left(t_{1}, t_{2}\right)$ and all partial derivatives up to the third (or any fixed) order are dominated in absolute value by $C r^{-n}$ for $\left|t_{1}\right| \leqq \delta^{\prime} \sqrt{n}, \delta \sqrt{n} \leqq\left|t_{2}\right| \leqq \pi \sqrt{n}$.

Proof. From the assumption $d=1$ it follows that $|g(0, v)|$ is bounded away from 1 uniformly in $\delta \leqq|v| \leqq \pi$. From continuity of g it follows that there is a $\delta^{\prime}>0, r<1$ with $|g(u, v)| \leqq r$ for $|u| \leqq \delta^{\prime}, \delta \leqq|v| \leqq \pi$. The lemma now follows from (2.1) and the chain rule.

Proofs of the following two propositions may be found in [1] (Theorem 9.10 and Theorem 22.1).
Proposition A. Let $\lambda_{0}\left(t_{1}, t_{2}\right)=\exp \left(-\frac{1}{2} \sum_{j, k=1}^{2} t_{j} t_{k} \sigma_{j k}\right)$. There exist constants $\tilde{\varepsilon}, \beta, c>0$ (depending only on Σ and $E\left|\zeta_{i}\right|^{3}, E\left|\gamma_{i}\right|^{3}$) such that for $u, v \in \mathbb{N}_{0}, u+v \leqq 3$

$$
\left\lvert\, \frac{\partial^{u+v}}{\partial t_{1}^{u} \partial t_{2}^{v}}\left(\lambda_{n}\left(t_{1}, t_{2}\right)-\left.\lambda_{0}\left(t_{1}, t_{2}\right)\left|\leqq \frac{c}{\sqrt{n}}\right| t\right|^{3-u-v} e^{-\beta|t|^{2}}\right.\right.
$$

for $\left|t_{1}\right|,\left|t_{2}\right| \leqq \tilde{\varepsilon} \sqrt{n}$, where $t=\left(t_{1}, t_{2}\right)$ and $|t|=\left(t_{1}^{2}+t_{2}^{2}\right)^{1 / 2}$.
For $\alpha \in \mathbb{Z}$ let $y_{\alpha, n}=(n \rho+\alpha) / \sqrt{n}$.

Proposition B.

$$
\sup _{\alpha \in \mathbb{Z}}\left(1+\left|y_{\alpha, n}\right|^{3}\right)\left|P\left(T_{n} / \sqrt{n}=y_{\alpha, n}\right)-\psi\left(\infty, y_{\alpha, n}\right) / \sqrt{n}\right|=O\left(n^{-1}\right) .
$$

The main result of this section is
Theorem 4. Under the above stated conditions

$$
\sup _{x \in \mathbb{R}} \sup _{\alpha \in \mathbb{Z}}\left(1+y_{\alpha, n}^{2}\right)\left|P\left(\frac{S_{n}}{\sqrt{n}} \leqq x, \frac{T_{n}}{\sqrt{n}}=y_{\alpha, n}\right)-\frac{1}{\sqrt{n}} \psi\left(x, y_{\alpha, n}\right)\right|=O\left(\frac{1}{n}\right) .
$$

Remark. The proof given below easily gives the stronger statement where $y_{\alpha, n}^{2}$ is replaced by $\left|y_{\alpha, n}\right|^{3-\delta}(\delta>0)$. The statement with $\left|y_{\alpha, n}\right|^{3}$ may also be true but would probably require more refined techniques. The above theorem is sufficient for our purpose.

Proof. Let $\quad F_{n}\left(x, y_{\alpha, n}\right)=P\left(S_{n} / \sqrt{n} \leqq x, \quad T_{n} / \sqrt{n}=y_{\alpha, n}\right) \quad$ and $\quad \hat{F}_{n}\left(x, y_{\alpha, n}\right)$ $=F_{n}\left(x, y_{\alpha, n}\right) / F_{n}\left(\infty, y_{\alpha, n}\right)$ if $F_{n}\left(\infty, y_{\alpha, n}\right)>0, \hat{F}_{n}\left(x, y_{\alpha, n}\right)=1_{[0, \infty)}(x)$ if $F_{n}\left(\infty, y_{\alpha, n}\right)=0$. For fixed $\alpha \in \mathbb{Z} \quad \hat{F}_{n}\left(\cdot, y_{\alpha, n}\right)$ is a distribution function. Let $\hat{\psi}\left(x, y_{\alpha, n}\right)$ $=\psi\left(x, y_{\alpha . n}\right) / \psi\left(\infty, y_{\alpha . n}\right)$. For $T>0$ let $v_{T}(x)=(1-\cos (T x)) /\left(\pi T x^{2}\right) . v_{T}$ is the density of a probability distribution with characteristic function $\omega_{T}(\lambda)=$ $\max (0,1-|\lambda| / T)$.

Let $F_{n}^{T}(x, y)=\int_{-\infty}^{\infty} F_{n}(x-u, y) v_{T}(u) d u$ and $\hat{F}_{n}^{T}, \psi^{T}, \hat{\psi}^{T}$ be defined by similar convolutions. (We drop indices α, n in $y_{\alpha, n}$ for the sake of notational simplicity.)

From Lemma 3.1, Ch. XVI of [4]

$$
\begin{aligned}
& \sup _{x}\left|\hat{F}_{n}(x, y)-\hat{\psi}(x, y)\right| \\
& \quad \leqq 2 \sup _{x}\left|\hat{F}_{n}^{T}(x, y)-\hat{\psi}^{T}(x, y)\right|+\frac{12}{\pi T} \sup _{x}\left|\frac{\partial}{\partial x} \hat{\psi}(x, y)\right| .
\end{aligned}
$$

After some elementary calculations it follows that

$$
\begin{gathered}
\sup _{x}\left|F_{n}(x, y)-\psi(x, y) / \sqrt{n}\right| \leqq 2 \sup _{x}\left|F_{n}^{T}(x, y)-\psi^{T}(x, y) / \sqrt{n}\right| \\
+3\left|F_{n}(\infty, y)-\psi(\infty, y) / \sqrt{n}\right|+12 \sup _{x} \varphi(x, y) /(\pi T \sqrt{n})
\end{gathered}
$$

Combining this with Proposition B and taking $T \sim \sqrt{n}$ one has

$$
\begin{align*}
& \sup _{x \in \mathbb{R}, \alpha \in \mathbb{Z}}\left(1+y_{\alpha, n}\right)^{2} \mid F_{n}\left(x, y_{\alpha, n}\right)-\psi\left(x, y_{\alpha, n}\right) / \sqrt{n \mid} \tag{2.2}\\
& \quad \leqq 2 \sup _{x, \alpha}\left(1+y_{\alpha, n}^{2}\right)\left|F_{n}^{T}\left(x, y_{\alpha, n}\right)-\psi^{T}\left(x, y_{\alpha, n}\right) / \sqrt{n}\right|+O\left(\frac{1}{n}\right) .
\end{align*}
$$

From now on we take $T=\varepsilon \sqrt{n}, \varepsilon=\min \left(\tilde{\varepsilon}, \delta^{\prime}\right)$ where $\tilde{\varepsilon}$ comes from Proposition A, δ^{\prime} from lemma 1 , and in this lemma $\delta=\tilde{\varepsilon}$. Now

$$
\begin{align*}
F_{n}^{T}(x, y)-\psi^{T}(x, y) / \sqrt{n}= & \frac{1}{(2 \pi)^{2} \sqrt{n}} \int_{-\varepsilon \sqrt{n}}^{\varepsilon \sqrt{n}} \int_{-\pi \sqrt{n}}^{\pi \sqrt{n}} \frac{1}{-i t_{1}} e^{-i t_{1} x-i t_{2} y} \omega_{T}\left(t_{1}\right) \\
& \cdot\left(\lambda_{n}\left(t_{1}, t_{2}\right)-\lambda_{0}\left(t_{1}, t_{2}\right)\right) d t_{2} d t_{1} \tag{2.3}
\end{align*}
$$

and therefore if $z<x$.

$$
\begin{align*}
& y^{2}\left(F_{n}^{T}(x, y)-\psi^{T}(x, y) / \sqrt{n}-\left(F_{n}^{T}(z, y)-\psi^{T}(z, y) / \sqrt{n}\right)\right) \\
&= \frac{1}{(2 \pi)^{2} \sqrt{n}} \int_{-\varepsilon \sqrt{n}}^{\varepsilon \sqrt{n}} \int_{-\pi \sqrt{n}}^{\pi \sqrt{n}} \frac{1}{t_{1}}\left(e^{-i t_{1} x}-e^{-i t_{1} z}\right) e^{-i t_{2} y} \\
& \cdot \omega_{T}\left(t_{1}\right) \frac{\partial^{2}}{\partial t_{2}^{2}}\left(\lambda_{n}\left(t_{1}, t_{2}\right)-\lambda_{0}\left(t_{1}, t_{2}\right)\right) d t_{2} d t_{1} \\
&= \frac{1}{(2 \pi)^{2} \sqrt{n}} \int_{-\varepsilon \sqrt{n} n}^{\varepsilon \sqrt{n}}\left\{\int_{-\tilde{\varepsilon} \sqrt{n}}^{\tilde{\varepsilon} \sqrt{n}} \cdots \frac{\partial^{2}}{\partial t_{2}^{2}}\left(\lambda_{n}\left(t_{1}, t_{2}\right)-\lambda_{0}\left(t_{1}, t_{2}\right)\right) d t_{2}\right. \tag{2.4}\\
&+\int_{\left|t_{2}\right| \in \sqrt{n}[\varepsilon, \pi]} \cdots \frac{\partial^{2}}{\partial t_{2}^{2}} \lambda_{n}\left(t_{1}, t_{2}\right) d t_{2} \\
&\left.-\int_{\left|t_{2}\right| \in \sqrt{n}[\bar{\varepsilon}, \pi]} \cdots \frac{\partial^{2}}{\partial t_{2}^{2}} \lambda_{0}\left(t_{1}, t_{2}\right) d t_{2}\right\} d t_{1} \\
&= I_{1}+I_{2}+I_{3} \text { say. }
\end{align*}
$$

We write

$$
\begin{align*}
h\left(t_{1}, t_{2}\right)= & \frac{\partial^{2}}{\partial t_{2}^{2}}\left(\lambda_{n}\left(t_{1}, t_{2}\right)-\lambda_{0}\left(t_{1}, t_{2}\right)\right) \\
h\left(t_{1}, t_{2}\right)= & \left(1-e^{-\beta t_{1}^{2}}\right) h\left(t_{1}, t_{2}\right)+e^{-\beta t_{1}^{2}}\left(h\left(t_{1}, t_{2}\right)-h\left(0, t_{2}\right)\right) \\
& +e^{-\beta t_{1}^{2}} h\left(0, t_{2}\right), \tag{2.5}
\end{align*}
$$

where β is from Proposition A. From this proposition one has for $\left|t_{1}\right| \leqq \varepsilon,\left|t_{2}\right| \leqq \tilde{\varepsilon}$:

$$
\begin{aligned}
& \left|h\left(t_{1}, t_{2}\right)\right| \leqq \frac{c}{\sqrt{n}}|t| e^{-\beta|t|^{2}}, \quad\left|h\left(t_{1}, t_{2}\right)-h\left(0, t_{2}\right)\right| \leqq \frac{c}{\sqrt{n}}\left|t_{1}\right| e^{-\beta t_{1}^{2}}, \\
& \left|h\left(0, t_{2}\right)\right| \leqq \frac{c}{\sqrt{n}} e^{-\beta t_{2}^{2}} .
\end{aligned}
$$

Further $\mid 1-e^{-\beta t_{1}^{2}} \leqq \equiv t_{1}^{2}$. Implementing these estimates in (2.4) and (2.5) one has

$$
\begin{aligned}
\left|I_{1}\right| \leqq & \frac{c^{\prime}}{\sqrt{n}}\left\{\int _ { - \varepsilon \sqrt { n } } ^ { \varepsilon \sqrt { n } } \left\{\int_{-\tilde{\varepsilon} \sqrt{n}}^{\varepsilon \sqrt{n}}\left|t_{1}\right| \omega_{T}\left(t_{1}\right) e^{-\beta|t|^{2}} d t_{2}\right.\right. \\
& \left.+\int_{-\tilde{\varepsilon} \sqrt{n}}^{\tilde{\varepsilon} \sqrt{n}}\left|\omega_{T}\left(t_{1}\right)\right| e^{-\beta| |^{2}} d t_{2}\right\} d t_{1} \\
& \left.+\left.\int_{-\varepsilon \sqrt{n} \sqrt{n}}^{\varepsilon \sqrt{n}} \frac{1}{i t_{1}}\left(e^{-i t_{1} x}-e^{-i t_{1} z}\right) \omega_{T}\left(t_{1}\right) e^{-\beta t_{1}^{2}} d t_{1}\right|_{-\tilde{\varepsilon} \sqrt{n}} ^{\tilde{\varepsilon} \sqrt{n}} e^{-\beta t_{2}^{2}} d t_{2}\right\} \\
= & O\left(n^{-1}\right)
\end{aligned}
$$

uniformly in x, z, α,
I_{2} can be handled similarly by using Lemma 1 instead of Proposition B and splitting as follows:

$$
\frac{\partial^{2}}{\partial t_{2}^{2}} \lambda_{n}\left(t_{1}, t_{2}\right)=\frac{\partial^{2}}{\partial t_{2}^{2}}\left(\lambda_{n}\left(t_{1}, t_{2}\right)-\lambda_{n}\left(0, t_{2}\right)\right)+\frac{\partial^{2}}{\partial t_{2}^{2}} \lambda_{n}\left(0, t_{2}\right) .
$$

In this way one obtains $\left|I_{2}\right|=O\left(\delta^{-n}\right)$ and in the same way, using exponential decrease of λ_{0}, one has exponential decrease of $\left|I_{3}\right|$. So $\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{3}\right|=O\left(n^{-1}\right)$, and letting $z \rightarrow-\infty$ one has

$$
y^{2}\left(F_{n}^{T}(x, y)-\psi^{T}(x, y) / \sqrt{n}\right)=O\left(n^{-1}\right)
$$

In the same way

$$
\left(F_{n}^{T}(x, y)-\psi^{T}(x, y) / \sqrt{n}\right)=O\left(n^{-1}\right)
$$

and from these estimates and (2.2) the theorem follows.

§3. Proof of Theorem 1

In this section $c, c^{\prime}, \varepsilon, \varepsilon^{\prime}$ are always constants $>0, c, c^{\prime}$ "sufficiently large" and $\varepsilon, \varepsilon^{\prime}$ "sufficiently small" which do not depend on n, m, t, s etc. They may vary from formula to formula but not in the same.

We resume the notation of $\S 1$. We have from (1.6)

$$
\begin{aligned}
& \left\{\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{n}\left(f\left(\xi_{j}\right)-\Pi(f)\right) \leqq t\right\} \\
& \quad=\bigcup_{m=0}^{n} \bigcup_{s=0}^{n} \bigcup_{r=0}^{n}\left\{\frac { \sqrt { \alpha } } { \sigma \sqrt { n } } \left(\sum_{j=1}^{r}\left(f\left(\xi_{j}\right)-\Pi(f)\right)+\sum_{j=1}^{m} X_{j}\right.\right. \\
& \left.\left.\quad+\sum_{j=n-s+1}^{m}\left(f\left(\xi_{j}\right)-\Pi(f)\right)\right) \leqq t, T_{0}=r, \sum_{j=1}^{m} \tau_{j}=n-s-r, \tau_{m+1}>s\right\}
\end{aligned}
$$

By the Markov property

$$
\begin{align*}
& P_{\mu}\left(\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{n}\left(f\left(\xi_{j}\right)-\Pi(f)\right) \leqq t\right) \\
& =\sum_{m=0}^{n} \sum_{s=0}^{n} \sum_{r=0}^{n} \iint P_{0}\left(\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{m} X_{j} \leqq t-u-v, \sum_{j=1}^{m} \tau_{j}=n-s-r\right) \tag{3.1}\\
& \quad \cdot P_{\mu}\left(R_{r} \in d v, T_{0}=r\right) P_{0}\left(R_{s} \in d u, \tau>s\right)
\end{align*}
$$

where

$$
R_{k}=\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{k}\left(f\left(\xi_{j}\right)-\Pi(f)\right)
$$

The sum on the right side of (3.1) may be splitted as

$$
\sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=0}^{n}+\sum_{s=\sqrt{n}+1}^{n} \sum_{r=0}^{n} \sum_{m=0}^{n}+\sum_{r=\sqrt{n}+1}^{n} \sum_{s=0}^{n} \sum_{m=0}^{n}
$$

where it is understood that summation begins or ends at the integer part of a number. The second summand is bounded by

$$
\sum_{s=1 / \sqrt{n}+1}^{\infty} P_{0}(\tau>s)=O\left(n^{-1}\right)
$$

and the third by

$$
\sum_{r=\sqrt{n}+1}^{\infty} P_{\mu}\left(T_{0}=r\right)=O\left(n^{-1 / 2}\right)
$$

so in order to prove the theorem it suffices to consider summation over s, r up to \sqrt{n} in (3.1). Clearly $m=0$ may then be excluded.

Let $\zeta_{k}=X_{k} / \sigma, \gamma_{k}=\tau_{k}-\alpha$. For the moment we assume that $\left(\zeta_{k}, \tau_{k}\right)$ has covariance matrix of rank 2 , so we can apply theorem 4 of $\S 2$. We assumed there d $=1$ which means that the chain is aperiodic. However, this is only for notational convenience and is easily seen to be of no importance. We have

$$
\begin{align*}
& P_{\mu}\left(\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{m} X_{j} \leqq t-u-v, \sum_{j=1}^{m} \tau_{j}=n-s-r\right) \tag{3.3}\\
& \quad=\frac{1}{\sqrt{m}} \psi\left(\sqrt{\frac{n}{\alpha m}}(t-u-v), \lambda_{r, s, m}\right)+O\left(\frac{1}{m\left(1+\lambda_{r, s, m}^{2}\right)}\right)
\end{align*}
$$

for $m \geqq 1$ where $\lambda_{r, s, m}=(n-s-r-\alpha m) / \sqrt{m}$.
The O-term on the right side of (3.3) does not depend on u, v, so from (3.1)(3.3) follows

$$
\begin{align*}
& P_{\mu}\left(\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{n}\left(f\left(\xi_{j}\right)-\Pi(f)\right) \leqq t\right) \\
& =\sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n}\left\{\iint \psi\left(\sqrt{\frac{n}{\alpha m}}(t-u-v), \lambda_{r, s, m}\right)\right. \tag{3.4}\\
& \quad \cdot P_{\mu}\left(R_{r} \in d v, T_{0}=r\right) P_{0}\left(R_{s} \in d u, \tau_{1}>s\right) \\
& \left.\quad+O\left(\frac{1}{m}\left(1+\lambda_{r, s, m}^{2}\right)^{-1}\right) P_{\mu}\left(T_{0}=r\right) P_{0}\left(\tau_{1}>s\right)\right\} .
\end{align*}
$$

The theorem then follows from the following three relations

$$
\begin{equation*}
\sum_{s=0}^{V /} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n} O\left(\frac{1}{m}\left(1+\lambda_{r, s, m}^{2}\right)^{-1}\right)=O\left(n^{-1 / 2}\right) \tag{3.5}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n} \left\lvert\, \iint \frac{1}{\sqrt{m}} \psi\left(\sqrt{\frac{n}{\alpha m}}(t-u-v), \lambda_{r, s . m}\right)\right. \\
\cdot P_{0}\left(R_{s} \in d u, \tau>s\right) P_{\mu}\left(R_{r} \in d v, T_{0}=r\right) \tag{3.6}\\
\left.-\frac{1}{\sqrt{m}} \psi\left(t, \lambda_{r, s, m}\right) P_{0}(\tau>s) P_{\mu}\left(T_{0}=r\right) \right\rvert\,=O\left(n^{-1 / 2}\right) \\
\sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}}\left|\sum_{m=1}^{n} \frac{1}{\sqrt{m}} \psi\left(t, \lambda_{r, s, m}\right)-\frac{1}{\alpha} \int_{-\infty}^{\infty} \psi(t, x) d x\right| P_{0}(\tau>s) P_{\mu}\left(T_{0}=r\right)=O\left(n^{-1 / 2}\right) \tag{3.7}
\end{gather*}
$$

everything uniformly in t.
Indeed (3.3)-(3.7) imply

$$
\begin{aligned}
& P\left(\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{n}\left(f\left(\xi_{j}\right)-\Pi(f)\right) \leqq t\right) \\
& \quad=\left(\sum_{s=0}^{V^{n}} \sum_{r=0}^{n} \frac{1}{\alpha} P_{0}(\tau>s) P_{\mu}\left(T_{0}=r\right)\right) \int_{-\infty}^{\infty} \psi(t, x) d x+O\left(n^{-1 / 2}\right) \\
& \quad=\phi(t)+O\left(n^{-1 / 2}\right)
\end{aligned}
$$

So the theorem is proved in the case where the covariance matrix of (ζ, γ) is nondegenerated. It remains to prove (3.5)-(3.7) for this case.

Proof of (3.5). For $r, s \leqq \sqrt{n}$

$$
\frac{1}{m}\left(1+\lambda_{r, s, m}^{2}\right)^{-1} \leqq\left\{\begin{array}{cc}
1 / m \leqq c / n & \text { for }|n-\alpha m| \leqq 2 \sqrt{n} \\
(n-\alpha m)^{-2} & \text { for } \alpha m>n+2 \sqrt{n} \\
(n-2 \sqrt{n}-\alpha m)^{-2} & \text { for } \alpha m<n-2 \sqrt{n}
\end{array}\right.
$$

From this (3.5) follows by some elementary calculations
Proof of (3.6). Let $I_{m}(t, u, v)$ be the interval between t and $\sqrt{\frac{n}{\alpha m}}(t-u-v)$. We
have

$$
\begin{aligned}
& \left|\psi\left(\sqrt{\frac{n}{\alpha m}}(t-u-v), \lambda_{r, s, m}\right)-\psi\left(t, \lambda_{r, s, m}\right)\right| \\
& \leqq\left(\sqrt{\frac{n}{\alpha m}}(|u|+|v|) \sup _{x \in \mathbb{R}} \varphi\left(x, \lambda_{r, s, m}\right)\right. \\
& \left.\quad+|t| \sqrt{\frac{n}{\alpha m}}-1 \right\rvert\, \sup _{x \in I_{m}} \varphi\left(x, \lambda_{r, s, m}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
& \sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n} \left\lvert\, \iint \frac{1}{\sqrt{m}} \psi\left(\sqrt{\frac{n}{\alpha m}}(t-u-v), \lambda_{r, s, m}\right)\right. \\
& \quad \cdot P_{0}\left(R_{s} \in d u, \tau>s\right) P_{\mu}\left(R_{r} \in d v, T_{0}=r\right) \\
& \left.\quad-\frac{1}{\sqrt{m}} \psi\left(t, \lambda_{r, s, m}\right) P_{0}(\tau>s) P_{\mu}\left(T_{0}=r\right) \right\rvert\,
\end{aligned}
$$

$$
\begin{align*}
& \leqq \sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n}\left\{\int \frac{1}{\sqrt{m}} \sqrt{\frac{n}{\alpha m}}|u| \sup _{x \in \mathbb{R}} \varphi\left(x, \lambda_{r, s, m}\right) P_{0}\left(R_{s} \in d u, \tau>s\right) P_{\mu}\left(T_{0}=r\right)\right. \tag{3.8}\\
& \quad+\int \frac{1}{\sqrt{m}} \sqrt{\frac{n}{\alpha m}}|v| \sup _{x \in \mathbb{R}} \varphi\left(x, \lambda_{r, s, m}\right) P_{0}(\tau>s) P_{\mu}\left(R_{r} \in d v, T=r\right) \\
& \quad+\iint \frac{1}{\sqrt{m}}|t|\left|\sqrt{\frac{n}{\alpha m}}-1\right|_{x \in I_{m}(t, u, v)}\left|\varphi\left(x, \lambda_{r, s, m}\right)\right| P_{0}\left(R_{s} \in d u, \tau>s\right) \\
& \quad \cdot P_{\mu}\left(R_{r} \in d v, T_{0}=r\right) \\
& =A_{1}+A_{2}+A_{3} \quad \text { say. }
\end{align*}
$$

Obviously $\sup _{x \in \mathbb{R}} \varphi(x, \lambda) \leqq c \exp \left(-\varepsilon \lambda^{2}\right)$ and on $\{\tau>s\}$

$$
\left|R_{s}\right| \leqq \frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{\tau}\left|f\left(\xi_{j}\right)-\Pi(f)\right|=Z \quad \text { say } .
$$

So

$$
\begin{aligned}
\int|u| P_{0}\left(R_{s} \in d u, \tau>s\right) & =E_{0}\left(\left|R_{s}\right| 1_{\{\tau>s\}}\right) \leqq E\left(Z 1_{\{\tau>s\}}\right) \\
& \leqq \frac{1}{s^{2}} E\left(Z \tau^{2}\right) \leqq c /\left(\sqrt{n s^{2}}\right)
\end{aligned}
$$

by Hölder's inequality. So

$$
\begin{equation*}
A_{1} \leqq c \sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}}\left(\frac{1}{s^{2}} \wedge 1\right) P_{\mu}\left(T_{0}=r\right) \sum_{m=1}^{n} \frac{1}{m} \exp \left(-\varepsilon \lambda_{r, s, m}^{2}\right) \tag{3.9}
\end{equation*}
$$

Let now

$$
\begin{array}{ll}
A_{0}=\{m: n-3 \sqrt{n} \leqq \alpha m \leqq n+\sqrt{n}\} & \\
A_{k}=\{m: n+k \sqrt{n}<\alpha m \leqq n+(k+1) \sqrt{n}\} ; & k \geqq 1 \\
A_{k}^{\prime}=\{m: n-(k+1) \sqrt{n} \leqq \alpha m<n-k \sqrt{n}\} ; & k \geqq 3 .
\end{array}
$$

Remarking now that for $s, r \leqq \sqrt{n}, m \leqq n, m \in A_{k}$ one has $\left|\lambda_{r, s, m}\right| \geqq \frac{k}{\sqrt{2}}$, and for $m \in \Lambda_{k}^{\prime}\left|\lambda_{r, s . m}\right| \geqq(k-2)$ one obtains by splitting the sum $\sum_{m=1}^{n}$ into the sums over
the Λ^{\prime} 's after some elementary calculations the Λ 's after some elementary calculations

$$
\sum_{m=1}^{n} \frac{1}{m} \exp \left(-\varepsilon \lambda_{r, s, m}^{2}\right)=O\left(n^{-1 / 2}\right) \quad \text { for } s, r \leqq \sqrt{n}
$$

so $A_{1}=O\left(n^{-1 / 2}\right)$ follows. A_{2} can be handled similarly. We consider now A_{3}.
Let Z be as above and

$$
Z^{\prime}=\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{T_{0}}\left|f\left(\xi_{j}\right)-\Pi(f)\right|
$$

For $|u|+|v| \leqq \frac{2|t|}{3}$

$$
\sup _{x \in I_{m}(t, u, v)} \varphi\left(x, \lambda_{r, s, m}\right) \leqq c \exp \left(-\varepsilon \frac{n}{\alpha m} t^{2}\right) \exp \left(-\varepsilon \lambda_{r, s, m}^{2}\right) .
$$

Therefrom

$$
\begin{align*}
& \sup _{t \in \mathbb{R}} \iint|t| \sup _{x \in I_{m}(t, u, v)} \varphi\left(x, \lambda_{r, s, m}\right) P_{0}\left(R_{s} \in d u, Z \leqq \frac{|t|}{3}, \tau>s\right) \\
& \cdot P_{\mu}\left(R_{r} \in d v, Z^{\prime} \leqq \frac{|t|}{3}, T_{0}=r\right) \tag{3.10}\\
& \leqq c \sqrt{\frac{\alpha m}{n}} \exp \left(-\varepsilon \lambda_{r, s, m}^{2}\right) P_{0}(\tau>s) P_{\mu}\left(T_{0}=r\right) \\
& \sup _{t \in \mathbb{R}}|t| P_{\mu}\left(Z^{\prime}>\frac{|t|}{3}, T_{0}=r\right) \leqq c E_{\mu}\left(Z^{\prime} 1_{T_{0}=r}\right) \tag{3.11}\\
& \quad \sup _{t \in \mathbb{R}}|t| P_{0}\left(Z>\frac{|t|}{3}, \tau>s\right) \leqq c\left(\frac{1}{s^{2}} \wedge 1\right) \tag{3.12}
\end{align*}
$$

Combining (3.10)-(3.12) gives

$$
\begin{aligned}
A_{3} \leqq c & \sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n} \frac{1}{\sqrt{m}}\left|\sqrt{\frac{n}{\alpha m}}-1\right| \exp \left(-\varepsilon \lambda_{r, s, m}^{2}\right) \\
& \cdot\left(\left(\frac{1}{s^{2}} \wedge 1\right)\left(E_{\mu}\left(Z^{\prime} 1_{T_{0}-r}\right)+P_{\mu}\left(T_{0}=r\right)\right)\right)
\end{aligned}
$$

Splitting the sum over m into subsummations over the Λ 's one obtains after some elementary calculations for $s, r \leqq \sqrt{n}$

$$
\sum_{m=1}^{n} \frac{1}{\sqrt{m}}\left|\sqrt{\frac{n}{\alpha m}}-1\right| \exp \left(-\varepsilon \lambda_{r, s, m}^{2}\right)=O\left(n^{-1 / 2}\right)
$$

So $A_{3}=O\left(n^{-1 / 2}\right)$ follows.
Proof of (3.7). For fixed $s, r \lambda_{r, s, m}$ decreases as m increases and

$$
\begin{array}{r}
\lambda_{r, s, m}-\lambda_{r, s, m+1}=\alpha \frac{1}{\sqrt{m}}+\lambda_{r, s, m+1} \underbrace{\left(\sqrt{1+\frac{1}{m}}-1\right.}) \\
=O\left(\frac{1}{m}\right)
\end{array}
$$

From this one easily derives

$$
\begin{align*}
\sum_{s=0}^{\sqrt{n}} & \sum_{r=0}^{\sqrt{n}}\left|\frac{1}{\sqrt{m}} \psi\left(t, \lambda_{r, s, m}\right)-\frac{1}{\alpha}\left(\lambda_{r, s, m}-\lambda_{r, s, m+1}\right) \psi\left(t, \lambda_{r, s, m}\right)\right| \tag{3.13}\\
& \cdot P_{0}(\tau>s) P_{\mu}\left(T_{0}=r\right)=O\left(n^{-1 / 2}\right) .
\end{align*}
$$

Further

$$
\sup _{x \in\left[\lambda_{m}+1, \lambda_{m]}\right]}\left|\psi(t, x)-\psi\left(t, \lambda_{m}\right)\right| \leqq c\left(\lambda_{m}-\lambda_{m+1}\right) \exp \left(-\varepsilon \lambda_{m}^{2}\right)
$$

and therefore

$$
\begin{aligned}
& \sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \left\lvert\, \sum_{m=1}^{n} \frac{1}{\alpha}\left(\lambda_{r, s, m}-\lambda_{r, s, m+1}\right) \psi\left(\mathrm{t}, \lambda_{r, s, m}\right)\right. \\
& \quad \cdot P_{0}(\tau>s) P_{\mu}\left(T_{0}=r\right)-\int_{\lambda_{r, s, n}}^{\lambda_{r, s, 1}} \psi(t, x) d x P_{0}(\tau>s) P_{\mu}\left(T_{0}=r\right) \mid \\
& \leqq c \sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n}\left(\lambda_{r, s, m}-\lambda_{r, s, m+1}\right)^{2} \exp \left(-\varepsilon \lambda_{r, s, m}^{2}\right) \\
& \quad \cdot P_{0}(\tau>s) P_{\mu}\left(T_{0}=r\right)=O\left(n^{-1 / 2}\right) .
\end{aligned}
$$

Obviously

$$
\int_{\lambda_{n}}^{\lambda_{1}} \psi(t, x) d x=\int_{-\infty}^{\infty} \psi(t, x)+O\left(n^{-1 / 2}\right)
$$

so (3.13)-(3.14) entail (3.7).
The case where Σ is degenerated is much more simple. First, if τ is norandom it can easily be reduced to the standard Berry-Esseen theorem. If τ is nondegenerated but Σ has rank 1 , then there exists a constant $a \in \mathbb{R}$ such that $\zeta_{i}=a \gamma_{i}$ a.s. A typical example for this is if $f=1_{\{0\}}$. In this special case the statement of theorem 1 (with fixed starting point) has been proved by Landers and Rogge in [6] (theorem 1). Their proof can easily be adapted to the general case where ζ_{i} $=a \gamma_{i}$. We omit the details.

§4. Proof of Theorem 2

Rosenblatt ([10], VII.3, Lemma 1) obtained the result that a Markov chain is strongly mixing, i.e. $\lim _{n \rightarrow \infty} \alpha(n)=0$, if and only if

$$
\sup \left\{\sum_{i \in I} \pi(i)\left|E_{i}\left(f\left(\xi_{n}\right)\right)-\Pi(f)\right|: f: I \rightarrow \mathbb{R},\|f\|_{\infty} \leqq 1\right\}
$$

goes to 0 as $n \rightarrow \infty$. His proof easily gives the following stronger statement:
Lemma 2. $\alpha(n) \leqq \frac{1}{2} \sup _{\|f\|_{\infty} \leqq 1} \Pi\left(\left|E \cdot\left(f\left(\xi_{n}\right)\right)-\Pi(f)\right|\right)$

$$
\begin{aligned}
& \leqq 2 \sup _{A, B \subset I}\left|P_{I I}\left(\xi_{0} \in A, \xi_{n} \in B\right)-\pi(A) \pi(B)\right| \\
& \leqq 2 \alpha(n) .
\end{aligned}
$$

Proof of Theorem 2. (I) It is assumed that $\sum_{n=1}^{\infty} n^{p} \alpha(n)<\infty$ for some $p \geqq 0$. Let A_{n} $=\left\{\xi_{j} \neq 0\right.$ for $\left.j=n+1, n+2, \ldots, 2 n\right\}$. For any starting probability μ

$$
P_{\mu}\left(A_{n}\right)=\sum_{m=1}^{n} P_{\mu}\left(\xi_{m}=0\right) P_{0}(S>2 n-m)+P_{\mu}(S>2 n)
$$

Taking $\mu=\delta_{0}$ and $\mu=\Pi$ one obtains

$$
\begin{aligned}
& \left|P_{0}(S>2 n)-P_{\pi}(S>2 n)\right| \\
& \quad \leqq\left|P_{0}\left(A_{n}\right)-P_{I I}\left(A_{n}\right)\right|+P_{0}(S>n) \sum_{m=1}^{\infty}\left|P_{0}\left(\xi_{m}=0\right)-\pi(0)\right| .
\end{aligned}
$$

Now $\left|P_{0}\left(A_{n}\right)-P_{I I}\left(A_{n}\right)\right| \leqq \alpha(n) / \pi(0)$ and $\left|P_{0}\left(\xi_{m}=0\right)-\pi(0)\right| \leqq \alpha(m) / \pi(0)$. So for q, $0 \leqq q \leqq p$,

$$
\begin{aligned}
\pi(0) & \sum_{n=1}^{\infty} n^{q}\left|P_{0}(S>2 n)-P_{\Pi}(S>2 n)\right| \\
& \leqq \sum_{n=1}^{\infty} n^{q} \alpha(n)+\left(\sum_{n=1}^{\infty} \alpha(n)\right)\left(\sum_{n=1}^{\infty} n^{q} P_{0}(S>n)\right)
\end{aligned}
$$

So it follows that if $E_{0}\left(S^{q+1}\right)<\infty$ then $E_{I I}\left(S^{q+1}\right)<\infty$. On the other hand it is well known that for any $r \geqq 0 E_{0}\left(S^{r+1}\right)<\infty$ if and only if $E_{\Pi}\left(S^{r}\right)<\infty$. So it clearly follows that $E_{0}\left(S^{p+2}\right)<\infty$.
(II) Let us prove the converse, so we assume $E_{0}\left(S^{p+2}\right)<\infty$ for some $p \geqq 0$ or, what is the same, $E_{\Pi}\left(S^{p+1}\right)<\infty$.

We use the Pitman coupling technique (see [8]), so let $\xi_{n}, \xi_{n}^{\prime}$ be two independent chains with transition probabilities $p_{i j}$. We write \hat{P}. for the law of the pair $\left(\xi_{n}, \zeta_{n}^{\prime}\right)$. Let $R=\inf \left\{n \geqq 0: \xi_{n}=0, \xi_{n}^{\prime}=0\right\}$ and let $f: I \rightarrow \mathbb{R},\|f\|_{\infty} \leqq 1$. As in Pitman [8]

$$
\left|E_{i}\left(f\left(\xi_{n}\right)\right)-E_{\Pi}\left(f\left(\xi_{n}\right)\right)\right| \leqq 2 \hat{P}_{\delta_{i} \times \Pi}(R \geqq n)
$$

so

$$
\Pi\left(\left|E \cdot\left(f\left(\xi_{n}\right)\right)-\Pi(f)\right|\right) \leqq 2 \hat{P}_{\Pi \times \Pi}(R \geqq n)
$$

If $E_{I}\left(S^{p+1}\right)<\infty$ Pitman proved in [8] that $E_{\Pi \times \Pi}\left(R^{p+1}\right)<\infty$ so $\sum_{n=1}^{\infty} n^{p} \hat{P}_{\Pi \times \Pi}(R \geqq n)<\infty$ and $\sum_{n=1}^{\infty} n^{p} \alpha(n)<\infty$ follows from Lemma 2.

References

1. Battacharga, R.N., Rao, R.R.: Normal approximation and asymptotic expansions. New York: Wiley 1976
2. Bolthausen, E.: On rates of convergence in a random central limit theorem and in the central limit theorem for Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 38, 279-286 (1977)
3. Chung, K.L.: Markov chains with stationary transition probabilities. Berlin, Heidelberg, New York: Springer 1967
4. Feller, W.: An introduction to probability theory and its applications, Vol. II. New York: Wiley 1966
5. Landers, D., Rogge, L.: The exact approximation order in the central limit theorem for random summation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 169-183 (1976)
6. Landers, D., Rogge, L.: On the rate of convergence in the central limit theorem for Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 169-183 (1976)
7. Lifshits, B.A.: On the central limit theorem for Markov chains. Theory Probab. Appl. 23, 279295 (1978)
8. Pitman, J.W.: Uniform rates of convergence for Markov chain transition probabilities. Z. Wahrscheinlichkeitstheorie verw. Gebiete 29, 193-227 (1974)
9. Pitman, J.W.: Occupation measures for Markov chains. Adv. in Appl. Probab. 9, 69-86 (1977)
10. Rosenblatt, M.: Markov processes. Structure and asymptotic behaviour. Berlin, Heidelberg, New York: Springer 1971

Received January 15, 1980

