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Summary .  The  error bound  O(1/]/n) is derived in the central limit theorem 

for part ial  sums ~ f ( ~ )  where ~ is a recurrent  discrete M a r k o v  chain and f 
j=l  

is a real valued function on the state space. In par t icular  it is shown that  for 
bounded  f and start ing distr ibution domina ted  by some mult iple  of  the 
s ta t ionary  one, it is sufficient for the chain to have recurrence times with 
third m o m e n t s  on order  to get this bound.  

w 1. Introduction 

Let I be an at mos t  countable  set of  states, (Pij)i,j~ a stochast ic  matr ix  (i.e. 
pij>O, ~ pij= 1 for all i~1) and X=(~2, 91, ~,,P/) a M a r k o v  chain with t ransi t ion 

j e I  

probabi l i t ies  Pij; i.e. for n e N O = N ~ {0} ~n: ~2 ~ I is 91-measurable and for i e I P~ 
is a probabi l i ty  measure  on (f2, 9/) with P/(~0 = i) = 1 and Pi(~, = inl 4o = io, ..., C, 1 
= i , , -  1)=Pi,, li, if the left side is defined. We assume that  I is one recurrent  class, 
i.e. for each ieI ~ visits each state infinitely often with P~-probability 1. For  a 
probabi l i ty /~  on I P~ is the probabi l i ty  ~ p(i)Pi on (f2, 91). 

ial 

We fix once for all a distinguished point  OeI. Let  Tk: f 2 ~ N o u { o e  } be 
defined as follows: 

T o = i n f  {n=>0: ~,,=0} 

Tk=inf{n > Tk_ ~: {, =0},  k > l .  

It  is well known that  for any start ing probabi l i ty  # and all k a N  o Tk< oo P,-a.s., 
so the 

rk=  Tk-- Tk_ l, k=>l 

are well defined if we restrict everything on a subspace of ~2 which has full 
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measure for all Pu- For  the sake of notational convenience we write z for z 1 . The 
z k are well known to be independent and identically distributed. 

If f :  1 ~  IR, we call the sequence f(~o),f(~l) . . . .  a functional of X. 
If the chain is positive, i.e. Eo(z)< ~ ,  then there exists a unique stationary 

probability distribution H = ( ~ ( i ) ) ~ ,  i.e. we have Z~(i)p~j=~(j) for all j e I .  
~o, ~ ,  .-. with the law P~ is then a stationary process. We call it the stationary 
chain. 

In the sequel the chain X is assumed to be positive recurrent. The following 
central limit theorem is due to Doeblin (see l-3], I. 16, Theorem 1). 

Theorem A. I f  the chain is positive and if E o [f](~i) <oo 
= ~ zc(i)f(i) is well defined, and if i 

i ~ I  

a z (f) = E o (f(~.) - 1I > 0 
n 1 

then 

lim Po xa]/n j= 1 (f(~j)-II(f))<=t)=~b(t) 
n ~ o o  

where ~ is the standard normal distribution function and c~=Eo(z ). 

Our main result is the following Berry-Esseen type bound: 

Theorem 1. Let I~ be a starting probability on i. I f  

Eo(z3)< oo 

Eo(j~=l]f](~j)) 3<~176 

E~(To) < oo 

E.  (j~l [f l(~)) < ~ 

then 

then H( f )  

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

The proof will be given in w 3. 
Taking in par t icu lar /~=/ / ,  (1.3) and (1.4) are entailed by (1.1) and (1.2). To 

see this, the following result of Pitman [9] is useful: 

Pitman' s Occupation Measure Identity 

Let g: I ~~ --+ [0, co) be measurable, let S be a stopping time for Go, ~1 . . . .  and let C• ) v be the occupation measure on I defined by v( i )=E o li(~n) . Then 
n = O  
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S - 1  

= .-.) = ~ Ez(g(~o,  ~1 . . . .  ))' E~ ) iei v(i) 

With this result one easily proves the following 

Lemma 1. I f  #=FI then (1.3) and (1.4)follow from (1.1) and (1.2). 

Proof (1.3) is well known to follow from (1.1) (see e.g. [9]). 
Let S = i n f { n > 0 :  4,=0}, h(i)=max([f(i)], 1). Then 

S 

\ j =  i 

S - - 1  

S - - 1  

j 0 
s-i )) 

=n(O)E o h(~.~) h(~ +h(0) 
. =  0 j = l  

<~(0)E o h(~ + h(0), 
t 0 

=2~(0)E0 I/l(~-g +2zc(O)Eo(z2)+h(O), 
i - -  

where the equality is by Pitman's identity, using the fact that the occupation 
measure for S is n(O)IL So it is seen that (1.4) follows from (1.1) and (1.2). 

From Lemma 1 and Theorem 1 one derives the following 

Corollary 1. I f  the starting probability # is dominated by some multiple of H and if 
(1.1) and (1.2) hold then (1.5) is true. 

It is desirable to have conditions based on more familiar entities. The 
following so-called strong mixing coefficients have been introduced by Rosen- 
blatt (see [10]): 

Let ~k= a(~o, ..., ~k) 5 k= a ( ~ , j >  k). c~(k), k > 0  is defined to be 

sup sup sup [P~(Ac~B)-P~(A)P~(B)[ 
n e N 0  A ~  BE~ n+k 

The following theorem will be proved in w 4. 

Theorem 2. Let 2> O, elR then ~ nX~(n)< oo if and only if the chain is aperiodic 
and E0(r~+2) < oo. ,=o 

With this result and Corollary 1 one has 

Corollary 2. I f  some multiple of H dominates #, if f is bounded and ~ n~(n)< oo 
then (1.5) holds true. 
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For  unbounded functions one obtains for p > 3 

Eo Ifl(~j) <=Eo(~ p-x IJlP(~fl/3Iv 
j j = l  

~ (Eo(TJ3(P-1)/(P-3)))(P-3)/P (Eo (j~_ I ,f,P) )3/P. 

So one has 

Corollary 3. I f  some mtdtiple of 17 dominates I~ and for a real number p > 3  
H(lfl p) < oo and ~ n (p+ 3)/(p- 3) (X(I'/) < CO then (1.5) holds true. 

n 
Bounds of order O(n -1/2) for bounded functions f have been obtained by 

Lifshits [7] under conditions based on the maximum correlation coefficients, i.e. 
the cosinus of the angle between the spaces Le(~, ) and L2(~"+k). Such con- 
ditions seem to be quite strong for Markov chains. If any of these angles is 
larger than zero ~(n) converges to zero exponentially fast ([7], Theorem 5). It 
follows from our theorem 2 that for any chain with recurrence times with 
moments only of a finite order all maximal correlation coefficients equal 1. 

The method of proof used here is the renewal approach which goes back to 
Doeblin: 

Tn 
Let p~=max{k:  Tk<n } and ln=To~; let further X . =  ~ (f(~j)-H(f)). 

The X i are independent and identically distributed, j= r . - i  + 
Obviously 

TO On 
( f (r  ~ ( f (~j)-II( f ) )+ ~ X i 

i= 1 j= 1 i= 1 (1.6) 

+ ~ (f(~i)-H(f))  �9 
j-ln+ l 

Theorem A then follows from the independence of the X j, a central limit 
theorem with random summation and the asymptotic negligibility of first and 
third summand in (1.6) (after appropriate norming). However, error bounds of 
order n-1/2 for central limit theorems with random summation are known only 
if X i and p, are independent, which certainly is not true in our case. Landers 
and Rogge in 1-5] derived bounds under rather general conditions, but applied 
to the situation in theorem 1 they only yield O(n-1/4 (log n) 1/4) (see [6]). Bounds 
of order O(n-1/3 +a) under stronger conditions had previously been obtained by 
me with a modification of Landers' and Rogge's method [2]. Theorem 1 follows 
upon a close look at the dependence between p, and the X~. 

A straightforward simplification of our proof also gives the following theo- 
rem which refutes the seemingly general belief that bounds of order n -1/2 in 
central limit theorems with random summation are obtainable only in the 
independent case. 

Theorem 3. Let (rli,ri)i~ be independent identically distributed two-dimensional 
random variables with 
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E(rh)=0 , E(~/{)=I, E(l~13)<oo, ri~N , E ( r ? ) < ~ .  

Let ~=E(r~) and pn=max { k: j=l~ l)<n}" Then 

supt P(]/~/n j ~  1 rlj<t)-Cb(t) =0(n-1/2). 

w 2. A Semi-Local Berry-Esseen Bound 

We prepare for the proof of Theorem 1 with a special Berry-Esseen theorem for 
two-dimensional i.i.d, random variables (((,, 7~), n e N ,  which are lattice in one 
component. So we assume there is a p elR such that 7, e P +2g a.s. It is further 
assumed that E~=E7~=O, g[~,13<~, EITnl3<oo and that the covariance 
matrix 22 = (o-i)i.~. = 1, 2 has full rank 2. 

Let A = { n s N :  3keT/ with P(7-p=k)>O, P(7-p=k+n)>O}.  Clearly 
A 4:0, and for the sake of convenience we assume the largest common divisor d 
of A to be 1. This is not essential. The modifications needed in the case when 
this is not true are straightforward and therefore omitted. 

Let q0 be the two-dimensional density function of the centred normal 

distribution with covariance X, and let 0 (x ,y)=  i ~o(s,y)ds. Let S~= ~ (i, T~ 
--co i = l  

= 7~, 2~(tl, t2) be the characteristic function of (SJ]~, Tj/]/~) and g(t~, t2) be 
i=1 

the characteristic function of ((i, 71- P). Obviously 

2~(tl, t2)= [g (t y] /n,  t2/lffs ) exp (i t 2 p/]ffs (2.1) 

Lemma 1. Given 3 > O, there exist 3' > O, 0 < r < 1 and C > 0 such that 2n(tl, t2) and 
all partial derivatives up to the third (or any fixed) order are dominated in 
absolute value by Cr-" for ]tl[<cS'l/n, ~ < _ ~ V n - l t ~ l = < n l ~  

Proof From the assumption d = 1 it follows that Ig(0, v)] is bounded away from 1 
uniformly in b < Iv] <~. From continuity of g it follows that there is a 6' >0, r < 1 
with ]g(u, v)] __<r for ]u] < 6', 6 < Ivl <~.  The lemma now follows from (2.1) and the 
chain rule. 

Proofs of the following two propositions may be found in [1] (Theorem 9.10 
and Theorem 22.1). 

2 tjtkaJ~') Proposition A. Let )~~ - 1 ~  k_2 There exist constants 
= 

?.,fl, c > 0  (depending only on 2 and El(i] 3, EITil 3) such that for u, v~No, u+v<3 

0u+~ - ;~o(tl, t2) - - ~ ( 2 . ( t 1 , t 2  ) < ~ l t l 3  u Ve-~j,j-' 
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- -  ( t  2 A-  t 2 ' ~ l / 2  for ]tll,]t2l=<~]fn, where t=-(tl,t2) and 1t1-,o1-o2, . 

For c~2g let y~,,=(np+c~)/]fln. 

Proposition B. 

sup (1 +lYe, .I a) I P (T./1/~ = y~, . ) -  0(00, y~, .)/l/n[ = 0 (n-~). 

The main result of this section is 

Theorem 4. Under the above stated conditions 

supsup(I+Y~'")P(-S--"~<x' T" ] ~nn 2 / -  O(x,y~,.) = 0  

Remark. The proof given below easily gives the stronger statement where 2 y~.. is 
replaced by ly~,.I 3-~ (6>0). The statement with ly~,.I 3 may also be true but 
would probably require more refined techniques. The above theorem is sufficient 
for our purpose. 

Proof. Let F. (x, y~, .) = P (S./]/n < x, T,]]/n = y~, .) and /~ (x, y~, .) 
=F~(x,y~,,)/F~(oe,y~,,) if F,(ov, y~ ,)>0,  F,(x,y~,,)= 1[0 ~)(x) if F,(ov,y~ ,,)=0. For 
fixed ~ ~ ~ I~(., y~.,,) is ' a distribution function. Let ' ~(x, y~.,) 
=O(x,y~.,)/O(o%y~.,). For T > 0  let VT(X)=(1-cos(Tx))/(rcTx2). v T is the 
density of a probability distribution with characteristic function cot(2)= 
max (0, 1 - ]),l/T). 

Let F,r(x,y)= ~ F,(x-u,y)vT(U)du and F,T, oT,~ T be defined by similar 
--eJO 

convolutions. (We drop indices c~, n in y~,, for the sake of notational simplicity.) 
From Lemma 3.1, Ch. XVI of [4] 

supx I/~ (x, y ) -  ~(x, y)] 
r 12 0 

<2 SUPx IF, T(x,y)--~ (x,y)[ + ~ - s u p x  ~x ~(X,y). 

After some elementary calculations it follows that 

supx [F,(x, y) - 0 (x, y)/1/-nl < 2 SUPx ]F,r (x, y) - O T (x, y)/]f n] 

+ 3 IF. (oo, y ) -  0(00, y)/l/n] + 12 supx ~o (x, y)/(rc T]/n O. 

Combining this with Proposition B and taking T ~ l / n  one has 

sup (1 +y~,~ tF.(x,y~..)-O(x,y~,,,)/1/~[ 
~a, ~ (2.2) 

I l k  

<2sup(1 +y~,.)[F.r(x,y~,.)-O r (x,y~,.)/]/n]+O [�88 
X, CL 

From now on we take T=el/U, e=min(~, 6') where ~ comes from Proposition A, 
6' from lemma 1, and in this lemma 6 = ~. Now 
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8~(~ ,y ) -~ (~ ,y ) /~ - - -V"  1 ~n  ~ n  1 
(2tO 2 ] /n -~r - ~  ~ e - "  . . . .  t~)COr(tl ) 

(2.3) 
�9 ()[n(t 1, t2) -- .~0 (t 1, t2)) dr2 dtl 

and therefore if z < x. 

y~ (e.~ (x, y) - V,~ ( ~, y ) / ~  -(~.~(~, y) - ~ ~ (~, y)/1/,,) ) 

1 ~r ~ 1 - -  - - i t l x  - - i t l  

(2rt)2]/n ,~ ~ - - ( e  --e ~)e -~'-'y -~gv -~gr(iti 
8 2 

" O T ( t l ) ~ - 2  ('~n(tl, t 2 ) - - 2 0 ( t  I , t2)) dt 2 dt 1 

(2~)2 ] / ~  _<~L_e!/...-~z()L,(tl,t2)-2o(tl,t2))dtaj { j (2.4) 

82 
+ ~ " 2 a  t2"~"(t*'tOdte 

It2l e !fn[g, n] 

} - S . . .~t-~,~o(tl ,t i)dt~ atl 
It21 s V~-Eg, n] 

= 11 + 12 + 13 say. 

We write 

h( t l ,  t 2 ) = 0 ~ 2  2 (~n(ta, t 2 ) -  ~ o ( f l , / 2 ) )  

h ( t  l ,  t2) = (1 -- e-~t~) h (t l, t2) + e-e'~ (h (t l ,  t2) -- h (0, t2)  ) 

+ e-~'~h(O, t2), 
(2.5) 

where/3 is from Proposition A. From this proposition one has for [tl[ <e, [t21 ~ 8 :  

]h(tl't2)[<=~ [t[e-~tfl2' [h(tl't2)-h(O't2)l<~ltlle-~t~']/n 

C Bt" Ih(O, t 2 ) l < ~ e -  ~. 

Further [1 -"}  - e  I </3t~. Implementing these estimates in (2.4) and (2.5) one has 

<c't717 ]]1[ = ] ~  [.-tUff- k-ggh- It1[ O)T(tl) e-~8[t[2 dt; 

} + ~ ]CoT(tl)le-~I'f2dt2 dt 1 
- g U f f  

~r 1 dtl effa [ (e-it~ e-itl~) . -ot~ 
1 

=O(n -1) 

uniformly in x, z, c~, 
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12 can be handled similarly by using Lemma 1 instead of Proposition B and 
splitting as follows: 

62 62 62 
,~.(tl, t2)= ~i~ (;~,(tl, t2 ) -  ~,(o, t g) + ~t~ ,~.(o, t2). &2 

In this way one obtains 1121=0(6-") and in the same way, using exponential 
decrease of 20, one has exponential decrease of [131. So ]Ill +1121 + 113[ =O(n-1) ,  
and letting z ~ - ~ one has 

y2 (F,T (x, y) -- Or(X, y)/]/n) = O (n- 1). 

In the same way 

(F](x, y ) -  r (x, y)/Vn) = o(n- ') 

and from these estimates and (2.2) the theorem follows. 

w 3. Proof of Theorem 1 

In this section c, c', e, e' are always constants > 0, c, c' "sufficiently large" and e, ~' 
"sufficiently small" which do not depend on n, m, t,s etc. They may vary from 
formula to formula but not in the same. 

We resume the notation of w 1. We have from (1.6) 

{ 5  j~_1 (f(~j)-H(f))<t} 

: + + + 
r=O jE=l (f(r -- n(f)) + j=l ~- Xj 

+ ~ (f(~j)- H(f)))<t, To=r, ~ z~=n-s-r,%+l>s }. 
j ~ n - - s +  l j = l  

By the Markov property 

P~ ~ l / n  j= l ( f (~?-  u(f)) < 

= X;<t -u -v ,  z ;=n-s-r)  (3.1) 
m = O s =  r=  j = l  j = l  

. P~(R, ~ dv, To= r) Po(Rs~ du, T > s) 

where 

R k- ~-~ ~ (f(~j)-H(f)). 
a]/n ~=l 
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The sum on the right side of (3.1) may be splitted as 

zxL+ L LL+ L LL 
s = O r = O m = O  s = # f i + l  r = O  m=O r = U ' f f + i s = O m = O  

where it is understood that summation begins or ends at the integer part  of a 
number. The second summand is bounded by 

Po('c>s)=O(n -1) 
s= g'ff+ 1 

and the third by 

P,,(To=r)=O(n -1/2) 
r=  V'ff + 1 

so in order to prove the theorem it suffices to consider summation over s, r up to 

] /n  in (3.1). Clearly m = 0  may then be excluded. 
Let (k=Xk/a, 7k='Ck--~. For the moment  we assume that ((k,'Ck) has co- 

variance matrix of rank 2, so we can apply theorem 4 of w 2. We assumed there d 
= 1 which means that the chain is aperiodic. However, this is only for notational 
convenience and is easily seen to be of no importance. We have 

P,,, ,~l/ni=lXJ <t -u-~ ,  
j= 1 (3.3) 10( ~ 1 

for m >  1 where 2 . . . . .  =(n-s-r-c~m)/ l /m.  
The O-term on the right side of (3.3) does not depend on u, v, so from (3.1)- 

(3.3) follows 

P" ~al/-s j= l (f(dj)- Fl(f)) < t] 

= X 0 ( t - u - O , , ~  . . . . .  ) 
s = O r = O  = 1  (3.4) 

�9 P~(Rr~dv, To=r) Po(R~du, z 1 >s) 

+o ( l ( l  + 2~2,s,m)- l ) Pu(To=r) Po(zl > s)}. 

The theorem then follows from the following three relations 

~o Z O (l+2~,s,m) - I  =O(n -I/2) (3.5) 
s= r = 0 m = l  
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s ~ O  r ~  m : l  

"Po(R~sdu,~>s)Pu(R~dv, To=r) (3.6) 

1 
1/~ t#(t, ,~ ..... ) Po(z > s)Pu(To = r)l = O(n - 1/2) 

/~ ~o " 1 1 co Po(~ 2 ~ ~mm O(t, 2 ..... )-~/~o @(t,x)dx )s)P~(To=r)=O(n-i/2) (3.7) 
s = O r  n 1 

everything uniformly in t. 
Indeed (3.3)-(3.7) imply 

P(~a~nn~l(f(~J)-H(f)) <t) 

t ll~ n l ) 
= { Z Z ~Po(z>s)Pu(To=r) o~ O(t,x)dx+O(n 1/2) 

\ s = O  r = O  co 

=~(t)+O(n-1/2). 

So the theorem is proved in the case where the covariance matrix of (~,7) is 
nondegenerated. It remains to prove (3.5)-(3.7) for this case. 

Proof of(3.5). For r,s<]fn I 1/m <= c/n 
1 (1 -t-,~2 s.m)- 1 ~ (n-- c~m) -2 

(n -- 21/n-- c~m) -2 

for In-c~ml ~ 2 ] ~  

for e m > n + 2 ] ~  

for ~rn<n- 21/n 

So 

4, ( ] ~ - - ~ ( t - u -  v), .~ . . . . .  ) -O( t , ;~  . . . . .  ) 

_-< ( ~ ( l u l  +lvl) SUPx~ ~o(x,;~ ..... ) 

+ltl - sup (p(x, 2 .. . . .  )" 
X~Z[m 

" Po(Rs ~ du, v > s) P~(Rr ~ d v, T0=r) 

~m 0(t, 2 ..... ) Po(r > s) P.(To = r) 

From this (3.5) follows by some elementary calculations 

Proof of (3.6). Let Im(t,u,v ) be the interval between t and ] ~ n ( t - u - v ) .  We 
have v ~ t n  
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So 

< ~ ~ - ~  - - [u l supp(x ,2  ...... )Po(R~edu, r>s)Pu(To=r ) 
s=o,.=Om=l(_ V m l  / c~m , ~  

1 ~ /  n 
+ ~ ~ ]/ - -Jv l  sup cp(x, 3>, .,) Po(v > s) Pu(R~ c dv , T=r)  

] /  m V o~gn x~p. s, 

�9 P.(R~dv,  70 =r )  

=A~ + A 2 + A  ~ say. 

O bviously sup q0 (x, ,~) < c exp ( - e,t2) and on { v > s } 
xfflR 

sup J~o(x,; . . . . .  ) lPo (&cdu , . r>s  ) 
xe lm( t ,u  , v) 

F -  

j" ]ul Po(Rse du, T >s)  = Eo(IR,I l{~. ~)G E (Z  1{~> ~}) 

1 2 <=ss~(z~ )<c/(l/ns ~) 
by H~51der's inequality. So 

= ,=o ~=1 e x p ( - e  

Let  now 

(3.8) 

(3.9) 

Ak= {in: n+klfn<~m<n+(k+l)-~-fi~}; k>=l 

A~= {m: n - ( k + l ) l / n < a m < n - k l / ; ~ } ;  k>3. 

k 
Remarking now that for s, r G]/n, re<n, m ~ A  k one has n 2 . . . . .  >~-~,  and for 

g "  

m~A' k {2,,~.ml>(k-2) one obtains by splitting the sum ~ into the sums over 
the A's after some elementary calculations '~= ~ 

" l 
~_~l m exp ( - z 2 ~ , m ) = O ( n  - 1 / 2 ) _  for s ,r<lfn,  

SO / t  I = O(tz-1/2) follows. A 2 can be handled similarly. We consider now A 3. 
Let  Z be as above and 

Z ' = S ~ j ~  t f(~;)- fI( f) j .  

For  lu[ + Ivl <-23}t-} 

sup (p(x,2r.s,.,)<=cexp ( - - e ~  t2)exp 2 (-~,~ ..... ). 
xff lrn(G U, v) 
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Further 

sup IO(t,x)--tp(t, 2~)l<=C(2m--2m+Oexp(--e2 2) 
x@[,'q,m + i, "~-.,] 

Itl \ sup ~S It] 
t E N  x E I ra ( t ,  u, v) ~ ] 

"~ Y ~ ' ~  =T' To= (3.10) 

_ - < c ] ~  e x p ( -  2 e2 .... .  ) Po(z > s) e.(To=r) 

sup ltl P~ (Z' > ~ '  T~ = r ) < c e"(z '  l (3.11) 

sup]tlPo Z >  , r > s  _-<c ~ A 1  . (3.12) tEN 
Combining (3.10)-(3.12) gives 

A3<c ~, _~om_~ - 1  e x p ( -  2 ~2 . . . . .  ) 
s=Or= 1 

Splitting the sum over m into subsummations over the A's one obtains after 
some elementary calculations for s, r <1/-s 

1 ] ~ - 1  - 1 2  . . . . .  )=O ( t l  ). m= 1 ~mm exp ( 2 - 1/2 

So A3=O(n -1/2) follows. 

Proof of(3.7). For fixed s, r 2 ...... decreases as m increases and 

z~ . . . . .  - - ~  . . . .  m+e=0~m-}-/~ . . . . .  +1 ( l ~ m  1~-1) 

(') 
=o m "  

From this one easily derives 

~ 1 1 d~ , ( t , ,~  . . . . .  ) 

s = O  = 

(3.13) 
. Po(z > s) P~(To=r)=O(n-1/2). 
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and therefore 

l f f f  1/fi- m = l  LYo :s ~( ) "  . . . . .  - -  ~ . . . . .  +1) 0(t, ~ . . . . .  ) 

2 . . . .  1 Pu(To =r) �9 Po(  > s) e . (To = r ) -  O(t,x)dxeo(z>s) 

< c  ~ ~ (2 . . . . .  - 2  . . . . .  +a)Zexp(-e2~,~,,,) 
s = O r ~ O m ~ l  

.Po(r>s) P,(ro=r)=O(n-1/2). 

Obviously 
)-I 

~ n  - -  oo 

so (3.13)-(3.14) entail (3.7). 
The case where S is degenerated is much more simple. First, if ~ is norandom 

it can easily be reduced to the standard Berry-Esseen theorem. If-c is nonde- 
generated but S has rank 1, then there exists a constant ae lR  such that (~=ayf 
a.s. A typical example for this is if f =  1{0 }. In this special case the statement of 
theorem 1 (with fixed starting point) has been proved by Landers and Rogge in 
[6] (theorem 1). Their proof can easily be adapted to the general case where (~ 
=aTe. We omit the details. 

w 4. Proof  of Theorem 2 

Rosenblatt ([i0],  VII.3, Lemma 1) obtained the result that a Markov chain is 
strongly mixing, i.e. lira c~(n)=0, if and only if 

n ~ o o  

sup { ~ ~( i )JE,( f (r  H(f) l  :f: I ~ 1R, ]]f[I ~ --< 1} 
i e I  

goes to 0 as n ---, oo. His proof easily gives the following stronger statement: 

Lemma2 .  c~(n)<�89 sup H(IE.(f(~,))-H(f)]) 

<2 sup ]Pn({oeA, g, eB)-~z(A)~(B)[ 
A, B c l  

<2~(n). 

Proof of Theorem 2. (I) It is assumed that ~, nP~(n)< oo for some p>0 .  Let A n 
n = l  

= {r + 0 for j = n + 1, n + 2, ..., 2n}. For any starting probability/~ 

Pu(A,) = ~,, Pu(~m=O)Po(S>2n-m)+Pv(S>2n). 
m = l  
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Taking/~ = 6 o and /~=/7  one obtains 

N o w  

ONq~p, 

IPo(S > 2n) - P=(S > 2n)l 

<[Po(A,)-P,t(A,)I+Po(S>n) ~ IPo(~.,=o)-rc(O)l. 
m = l  

IPo(A.)-P/AA.)I-<~(n)/~(O) and IPo(r ~(0)1 <a(m)/rc(O). So 

~z(O) ~ nqlPo(S> 2n)-Pn(S> 2n)l 
n = l  

__< nq~(n) + c~(n) nOPo(S>n . 
n = l  n 1 n 1 

for q, 

So it follows that if Eo(Sq+t)< o'D then EII(S q+ 1)< oO. On the other hand it is 
well known that for any r > 0  Eo(Sr+l)<oo if and only if En(Sr)<oo. So it 
clearly follows that Eo(S p" 2)< oo. 

(II) Let us prove the converse, so we assume E0(Sp--2)< oo for some p > 0  or, 
what is the same, En(SP'I)< oo. 

We use the Pitman coupling technique (see [8]), so let Cn,~', be two 
independent chains with transition probabilities Plj. We write P. for the law of 
the pair (r ~'~). Let R = i n f { n > 0 :  ~,=0,  ~',=0} and let f :  I ~ IR, I[flL~o < 1. As in 
Pitman [8] 

Igi(f(~,,)) - En(f(~,,))I < 2ff~, • n (R > n) 
so  

H(tE. (f(~.,)) - H(f)l) < 2-Pn • n (R => n). 

If ErI(SP+I)<oo Pitman proved in [83 that Enxn(Rp+l)<o9 

nPPu• oo and ~ nPe(n)< oo follows from Lemma 2. 
n= 1 n= 1 

SO 
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