Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1980

The Berry-Esseen Theorem for Functionals of Discrete Markov Chains

E. Bolthausen

Technische Universität Berlin, Fachbereich Mathematik, Straße des 17. Juni 135, 1000 Berlin 12

Summary. The error bound $O(1/\sqrt{n})$ is derived in the central limit theorem for partial sums $\sum_{j=1}^{n} f(\xi_j)$ where ξ_j is a recurrent discrete Markov chain and f is a real valued function on the state space. In particular it is shown that for bounded f and starting distribution dominated by some multiple of the stationary one, it is sufficient for the chain to have recurrence times with third moments on order to get this bound.

§1. Introduction

Let *I* be an at most countable set of states, $(p_{ij})_{i, j \in I}$ a stochastic matrix (i.e. $p_{ij} \ge 0$, $\sum_{j \in I} p_{ij} = 1$ for all $i \in I$) and $X = (\Omega, \mathfrak{A}, \xi_n, P_i)$ a Markov chain with transition probabilities p_{ij} ; i.e. for $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} \xi_n$: $\Omega \to I$ is \mathfrak{A} -measurable and for $i \in I$ P_i is a probability measure on (Ω, \mathfrak{A}) with $P_i(\xi_0 = i) = 1$ and $P_i(\xi_n = i_n | \xi_0 = i_0, \dots, \xi_{n-1} = i_{n-1}) = p_{i_{n-1}i_n}$ if the left side is defined. We assume that *I* is one recurrent class, i.e. for each $i \in I \ \xi_n$ visits each state infinitely often with P_i -probability 1. For a probability μ on $I \ P_{\mu}$ is the probability $\sum_{i \in I} \mu(i) \ P_i$ on (Ω, \mathfrak{A}) .

We fix once for all a distinguished point $O \in I$. Let $T_k: \Omega \to \mathbb{N}_0 \cup \{\infty\}$ be defined as follows:

$$T_0 = \inf \{ n \ge 0; \, \xi_n = 0 \}$$

$$T_k = \inf \{ n > T_{k-1}; \, \xi_n = 0 \}, \quad k \ge 1$$

It is well known that for any starting probability μ and all $k \in \mathbb{N}_0$ $T_k < \infty$ P_{μ} -a.s., so the

$$\tau_k = T_k - T_{k-1}, \qquad k \ge 1$$

are well defined if we restrict everything on a subspace of Ω which has full

measure for all P_{μ} . For the sake of notational convenience we write τ for τ_1 . The τ_k are well known to be independent and identically distributed.

If $f: I \to \mathbb{R}$, we call the sequence $f(\xi_0), f(\xi_1), \dots$ a functional of X.

If the chain is positive, i.e. $E_0(\tau) < \infty$, then there exists a unique stationary probability distribution $\Pi = (\pi(i))_{i \in I}$, i.e. we have $\Sigma_i \pi(i) p_{ij} = \pi(j)$ for all $j \in I$. ξ_0, ξ_1, \ldots with the law P_{π} is then a stationary process. We call it the stationary chain.

In the sequel the chain X is assumed to be positive recurrent. The following central limit theorem is due to Doeblin (see [3], I. 16, Theorem 1).

Theorem A. If the chain is positive and if $E_0\left(\sum_{i=1}^{\tau} |f|(\xi_i)\right)^2 < \infty$ then $\Pi(f) = \sum_{i \in I} \pi(i) f(i)$ is well defined, and if

$$\sigma^{2}(f) = E_{0} \left(\sum_{n=1}^{\tau} (f(\xi_{n}) - \Pi(f)) \right)^{2} > 0$$

then

$$\lim_{n \to \infty} P_0 \left(\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^n (f(\xi_j) - \Pi(f)) \le t \right) = \Phi(t)$$

where Φ is the standard normal distribution function and $\alpha = E_0(\tau)$.

Our main result is the following Berry-Esseen type bound:

Theorem 1. Let μ be a starting probability on I. If

$$E_0(\tau^3) < \infty \tag{1.1}$$

$$E_0 \left(\sum_{j=1}^{\tau} |f|(\xi_j)\right)^3 < \infty \tag{1.2}$$

$$E_{\mu}(T_0) < \infty \tag{1.3}$$

$$E_{\mu}\left(\sum_{j=1}^{T_{0}}|f|(\zeta_{j})\right) < \infty$$
(1.4)

then

$$\sup_{t} \left| P_{\mu} \left(\frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{n} \left(f(\xi_{j}) - \Pi(f) \right) \leq t \right) - \Phi(t) \right| = O(n^{-1/2})$$
(1.5)

The proof will be given in §3.

Taking in particular $\mu = \Pi$, (1.3) and (1.4) are entailed by (1.1) and (1.2). To see this, the following result of Pitman [9] is useful:

Pitman's Occupation Measure Identity

Let g: $I^{\mathbb{N}_0} \to [0, \infty)$ be measurable, let S be a stopping time for ξ_0, ξ_1, \dots and let ν be the occupation measure on I defined by $\nu(i) = E_0 \left(\sum_{n=0}^{S-1} 1_i(\xi_n) \right)$. Then

$$E_0\left(\sum_{n=0}^{S-1} g(\xi_n, \xi_{n+1}, \ldots)\right) = \sum_{i \in I} v(i) E_i(g(\xi_0, \xi_1, \ldots)).$$

With this result one easily proves the following

Lemma 1. If $\mu = \Pi$ then (1.3) and (1.4) follow from (1.1) and (1.2).

Proof. (1.3) is well known to follow from (1.1) (see e.g. [9]).

Let $S = \inf \{n > 0: \xi_n = 0\}, h(i) = \max (|f(i)|, 1)$. Then

$$\begin{split} E_{II} \left(\sum_{j=1}^{T_0} |f|(\xi_j) \right) &\leq E_{II} \left(\sum_{j=1}^{S} h(\xi_j) \right) \\ &\leq E_{II} \left(\sum_{j=0}^{S-1} h(\xi_j) \right) + h(0) \\ &\leq E_{II} \left(h(\xi_0) \sum_{j=0}^{S-1} h(\xi_j) \right) + h(0) \\ &= \pi(0) E_0 \left(\sum_{i=0}^{S-1} h(\xi_i) \sum_{j=1}^{S-1} h(\xi_i) \right) + h(0) \\ &\leq \pi(0) E_0 \left(\sum_{i=0}^{S-1} h(\xi_i) \right)^2 + h(0), \\ &\leq 2\pi(0) E_0 \left(\sum_{i=0}^{S-1} |f|(\xi_i) \right)^2 + 2\pi(0) E_0(\tau^2) + h(0), \end{split}$$

where the equality is by Pitman's identity, using the fact that the occupation measure for S is $\pi(0)\Pi$. So it is seen that (1.4) follows from (1.1) and (1.2).

From Lemma 1 and Theorem 1 one derives the following

Corollary 1. If the starting probability μ is dominated by some multiple of Π and if (1.1) and (1.2) hold then (1.5) is true.

It is desirable to have conditions based on more familiar entities. The following so-called strong mixing coefficients have been introduced by Rosenblatt (see [10]):

Let $\mathfrak{F}_k = \sigma(\xi_0, ..., \xi_k)$ $\mathfrak{F}^k = \sigma(\xi_j, j \ge k) \cdot \alpha(k), k \ge 0$ is defined to be

$$\sup_{n\in\mathbb{N}_0}\sup_{A\in\mathfrak{F}_n}\sup_{B\in\mathfrak{F}^{n+k}}|P_{\pi}(A\cap B)-P_{\pi}(A)P_{\pi}(B)|$$

The following theorem will be proved in §4.

Theorem 2. Let $\lambda \ge 0, \in \mathbb{R}$ then $\sum_{n=0}^{\infty} n^{\lambda} \alpha(n) < \infty$ if and only if the chain is aperiodic and $E_0(\tau^{\lambda+2}) < \infty$.

With this result and Corollary 1 one has

Corollary 2. If some multiple of Π dominates μ , if f is bounded and $\sum_{n} n\alpha(n) < \infty$ then (1.5) holds true.

For unbounded functions one obtains for p > 3

$$\begin{split} E_0 \left(\sum_{j=1}^{\tau} |f|(\xi_j)\right)^3 &\leq E_0 (\tau^{p-1} \sum_{j=1}^{\tau} |f|^p (\xi_j) \right)^{3/p} \\ &\leq (E_0 (\tau^{3(p-1)/(p-3)}))^{(p-3)/p} \left(E_0 \left(\sum_{j=1}^{\tau} |f|^p \right) \right)^{3/p}. \end{split}$$

So one has

Corollary 3. If some multiple of Π dominates μ and for a real number p > 3 $\Pi(|f|^p) < \infty$ and $\sum n^{(p+3)/(p-3)} \alpha(n) < \infty$ then (1.5) holds true.

Bounds of order $O(n^{-1/2})$ for bounded functions f have been obtained by Lifshits [7] under conditions based on the maximum correlation coefficients, i.e. the cosinus of the angle between the spaces $L_2(\mathfrak{F}_n)$ and $L_2(\mathfrak{F}^{n+k})$. Such conditions seem to be quite strong for Markov chains. If any of these angles is larger than zero $\alpha(n)$ converges to zero exponentially fast ([7], Theorem 5). It follows from our theorem 2 that for any chain with recurrence times with moments only of a finite order all maximal correlation coefficients equal 1.

The method of proof used here is the renewal approach which goes back to Doeblin:

Let $\rho_n = \max\{k: T_k \leq n\}$ and $l_n = T_{\rho_n}$; let further $X_n = \sum_{j=T_{n-1}+1}^{T_n} (f(\xi_j) - \Pi(f))$. The X_j are independent and identically distributed.

Obviously

$$\sum_{j=1}^{n} (f(\xi_j) - \Pi(f)) = \sum_{j=1}^{T_0} (f(\xi_j) - \Pi(f)) + \sum_{j=1}^{\rho_n} X_j + \sum_{j=l_n+1}^{n} (f(\xi_j) - \Pi(f)).$$
(1.6)

Theorem A then follows from the independence of the X_i , a central limit theorem with random summation and the asymptotic negligibility of first and third summand in (1.6) (after appropriate norming). However, error bounds of order $n^{-1/2}$ for central limit theorems with random summation are known only if X_i and ρ_n are independent, which certainly is not true in our case. Landers and Rogge in [5] derived bounds under rather general conditions, but applied to the situation in theorem 1 they only yield $O(n^{-1/4}(\log n)^{1/4})$ (see [6]). Bounds of order $O(n^{-1/3+\delta})$ under stronger conditions had previously been obtained by me with a modification of Landers' and Rogge's method [2]. Theorem 1 follows upon a close look at the dependence between ρ_n and the X_i .

A straightforward simplification of our proof also gives the following theorem which refutes the seemingly general belief that bounds of order $n^{-1/2}$ in central limit theorems with random summation are obtainable only in the independent case.

Theorem 3. Let $(\eta_i, r_i)_{i \in \mathbb{N}}$ be independent identically distributed two-dimensional random variables with

$$E(\eta_{i}) = 0, \ E(\eta_{i}^{2}) = 1, \ E(|\eta_{i}|^{3}) < \infty, \qquad r_{i} \in \mathbb{N}, \ E(r_{i}^{3}) < \infty.$$

$$\alpha = E(r_{i}) \ and \ \rho_{n} = \max\left\{k: \ \sum_{j=1}^{k} r_{j} \leq n\right\}. \ Then$$

$$\sup_{t} \left|P(\sqrt{\alpha/n} \sum_{j=1}^{\rho_{n}} \eta_{j} \leq t) - \Phi(t)\right| = O(n^{-1/2}).$$

§2. A Semi-Local Berry-Esseen Bound

Let

We prepare for the proof of Theorem 1 with a special Berry-Esseen theorem for two-dimensional i.i.d. random variables $((\zeta_n, \gamma_n), n \in \mathbb{N})$, which are lattice in one component. So we assume there is a $\rho \in \mathbb{R}$ such that $\gamma_n \in \rho + \mathbb{Z}$ a.s. It is further assumed that $E\zeta_n = E\gamma_n = 0$, $E|\zeta_n|^3 < \infty$, $E|\gamma_n|^3 < \infty$ and that the covariance matrix $\Sigma = (\sigma_{ij})_{i,j=1,2}$ has full rank 2. Let $\Lambda = \{n \in \mathbb{N}: \exists k \in \mathbb{Z} \text{ with } P(\gamma - \rho = k) > 0, P(\gamma - \rho = k + n) > 0\}$. Clearly

Let $\Lambda = \{n \in \mathbb{N}: \exists k \in \mathbb{Z} \text{ with } P(\gamma - \rho = k) > 0, P(\gamma - \rho = k + n) > 0\}$. Clearly $\Lambda \neq \emptyset$, and for the sake of convenience we assume the largest common divisor d of Λ to be 1. This is not essential. The modifications needed in the case when this is not true are straightforward and therefore omitted.

Let φ be the two-dimensional density function of the centred normal distribution with covariance Σ , and let $\psi(x, y) = \int_{-\infty}^{x} \varphi(s, y) ds$. Let $S_n = \sum_{i=1}^{n} \zeta_i$, $T_n = \sum_{i=1}^{n} \gamma_i$, $\lambda_n(t_1, t_2)$ be the characteristic function of $(S_n/\sqrt{n}, T_n//\sqrt{n})$ and $g(t_1, t_2)$ be the characteristic function of $(\zeta_i, \gamma_i - \rho)$. Obviously

$$\lambda_n(t_1, t_2) = [g(t_1/\sqrt{n}, t_2/\sqrt{n}) \exp{(it_2 \rho/\sqrt{n})}]^n.$$
(2.1)

Lemma 1. Given $\delta > 0$, there exist $\delta' > 0$, 0 < r < 1 and C > 0 such that $\lambda_n(t_1, t_2)$ and all partial derivatives up to the third (or any fixed) order are dominated in absolute value by Cr^{-n} for $|t_1| \leq \delta' \sqrt{n}$, $\delta \sqrt{n} \leq |t_2| \leq \pi \sqrt{n}$.

Proof. From the assumption d=1 it follows that |g(0,v)| is bounded away from 1 uniformly in $\delta \leq |v| \leq \pi$. From continuity of g it follows that there is a $\delta' > 0$, r < 1 with $|g(u,v)| \leq r$ for $|u| \leq \delta'$, $\delta \leq |v| \leq \pi$. The lemma now follows from (2.1) and the chain rule.

Proofs of the following two propositions may be found in [1] (Theorem 9.10 and Theorem 22.1).

Proposition A. Let $\lambda_0(t_1, t_2) = \exp\left(-\frac{1}{2}\sum_{j,k=1}^2 t_j t_k \sigma_{jk}\right)$. There exist constants $\tilde{c}, \beta, c > 0$ (depending only on Σ and $E|\zeta_i|^3, E|\gamma_i|^3$) such that for $u, v \in \mathbb{N}_0, u+v \leq 3$

$$\left|\frac{\partial^{u+v}}{\partial t_1^u \partial t_2^v} (\lambda_n(t_1, t_2) - \lambda_0(t_1, t_2)\right| \leq \frac{c}{\sqrt{n}} |t|^{3-u-v} e^{-\beta|t|^2}$$

for $|t_1|, |t_2| \leq \tilde{\epsilon} \sqrt{n}$, where $t = (t_1, t_2)$ and $|t| = (t_1^2 + t_2^2)^{1/2}$. For $\alpha \in \mathbb{Z}$ let $y_{\alpha,n} = (n \rho + \alpha) / \sqrt{n}$.

Proposition B.

$$\sup_{\alpha \in \mathbb{Z}} (1+|y_{\alpha,n}|^3) |P(T_n/\sqrt{n}=y_{\alpha,n}) - \psi(\infty,y_{\alpha,n})/\sqrt{n}| = O(n^{-1}).$$

The main result of this section is

Theorem 4. Under the above stated conditions

$$\sup_{x \in \mathbb{R}} \sup_{\alpha \in \mathbb{Z}} (1 + y_{\alpha, n}^2) \left| P\left(\frac{S_n}{\sqrt{n}} \leq x, \frac{T_n}{\sqrt{n}} = y_{\alpha, n} \right) - \frac{1}{\sqrt{n}} \psi(x, y_{\alpha, n}) \right| = O\left(\frac{1}{n} \right).$$

Remark. The proof given below easily gives the stronger statement where $y_{\alpha,n}^2$ is replaced by $|y_{\alpha,n}|^{3-\delta}$ ($\delta > 0$). The statement with $|y_{\alpha,n}|^3$ may also be true but would probably require more refined techniques. The above theorem is sufficient for our purpose.

Proof. Let $F_n(x, y_{\alpha,n}) = P(S_n/\sqrt{n} \le x, T_n/\sqrt{n} = y_{\alpha,n})$ and $\hat{F}_n(x, y_{\alpha,n}) = F_n(x, y_{\alpha,n})/F_n(\infty, y_{\alpha,n})$ if $F_n(\infty, y_{\alpha,n}) > 0$, $\hat{F}_n(x, y_{\alpha,n}) = 1_{[0,\infty)}(x)$ if $F_n(\infty, y_{\alpha,n}) = 0$. For fixed $\alpha \in \mathbb{Z}$ $\hat{F}_n(\cdot, y_{\alpha,n})$ is a distribution function. Let $\hat{\psi}(x, y_{\alpha,n}) = \psi(x, y_{\alpha,n})/\psi(\infty, y_{\alpha,n})$. For T > 0 let $v_T(x) = (1 - \cos(Tx))/(\pi Tx^2)$. v_T is the density of a probability distribution with characteristic function $\omega_T(\lambda) = \max(0, 1 - |\lambda|/T)$.

Let $F_n^T(x, y) = \int_{-\infty}^{\infty} F_n(x-u, y) v_T(u) du$ and $\hat{F}_n^T, \psi^T, \hat{\psi}^T$ be defined by similar convolutions. (We drop indices α, n in $y_{\alpha,n}$ for the sake of notational simplicity.)

From Lemma 3.1, Ch. XVI of [4]

$$\sup_{x} |\widehat{F}_{n}(x, y) - \widehat{\psi}(x, y)| \leq 2 \sup_{x} |\widehat{F}_{n}^{T}(x, y) - \widehat{\psi}^{T}(x, y)| + \frac{12}{\pi T} \sup_{x} \left| \frac{\partial}{\partial x} \widehat{\psi}(x, y) \right|.$$

After some elementary calculations it follows that

$$\sup_{x} |F_{n}(x, y) - \psi(x, y)/\sqrt{n}| \leq 2 \sup_{x} |F_{n}^{T}(x, y) - \psi^{T}(x, y)/\sqrt{n}|$$

+ 3 |F_{n}(\infty, y) - \psi(\infty, y)/\sqrt{n}| + 12 \sup_{x} \varphi(x, y)/(\pi T\sqrt{n}).

Combining this with Proposition B and taking $T \sim \sqrt{n}$ one has

$$\sup_{x \in \mathbb{R}, \ \alpha \in \mathbb{Z}} (1 + y_{\alpha, n})^2 |F_n(x, y_{\alpha, n}) - \psi(x, y_{\alpha, n})/\sqrt{n}|$$

$$\leq 2 \sup_{x, \alpha} (1 + y_{\alpha, n}^2) |F_n^T(x, y_{\alpha, n}) - \psi^T(x, y_{\alpha, n})/\sqrt{n}| + O\left(\frac{1}{n}\right).$$
(2.2)

From now on we take $T = \varepsilon \sqrt{n}$, $\varepsilon = \min(\tilde{\varepsilon}, \delta')$ where $\tilde{\varepsilon}$ comes from Proposition A, δ' from lemma 1, and in this lemma $\delta = \tilde{\varepsilon}$. Now

$$F_{n}^{T}(x,y) - \psi^{T}(x,y)/\sqrt{n} = \frac{1}{(2\pi)^{2}\sqrt{n}} \int_{-\epsilon\sqrt{n}}^{\epsilon\sqrt{n}} \int_{-\pi\sqrt{n}}^{\pi\sqrt{n}} \frac{1}{-it_{1}} e^{-it_{1}x - it_{2}y} \omega_{T}(t_{1}) \\ \cdot (\lambda_{n}(t_{1},t_{2}) - \lambda_{0}(t_{1},t_{2})) dt_{2} dt_{1}$$
(2.3)

and therefore if z < x.

$$y^{2}(F_{n}^{T}(x,y) - \psi^{T}(x,y)/\sqrt{n} - (F_{n}^{T}(z,y) - \psi^{T}(z,y)/\sqrt{n}))$$

$$= \frac{1}{(2\pi)^{2}} \int_{\sqrt{n}}^{\varepsilon\sqrt{n}} \int_{-\varepsilon\sqrt{n}}^{\pi\sqrt{n}} \frac{1}{it_{1}} (e^{-it_{1}x} - e^{-it_{1}z}) e^{-it_{2}y}$$

$$\cdot \omega_{T}(t_{1}) \frac{\partial^{2}}{\partial t_{2}^{2}} (\lambda_{n}(t_{1},t_{2}) - \lambda_{0}(t_{1},t_{2})) dt_{2} dt_{1}$$

$$= \frac{1}{(2\pi)^{2}} \int_{\sqrt{n}}^{\varepsilon\sqrt{n}} \int_{-\varepsilon\sqrt{n}}^{\varepsilon\sqrt{n}} \left\{ \int_{-\varepsilon\sqrt{n}}^{\varepsilon\sqrt{n}} \dots \frac{\partial^{2}}{\partial t_{2}^{2}} (\lambda_{n}(t_{1},t_{2}) - \lambda_{0}(t_{1},t_{2})) dt_{2} + \int_{|t_{2}| \in \sqrt{n}[\varepsilon,\pi]} \dots \frac{\partial^{2}}{\partial t_{2}^{2}} \lambda_{n}(t_{1},t_{2}) dt_{2} - \int_{|t_{2}| \in \sqrt{n}[\varepsilon,\pi]} \dots \frac{\partial^{2}}{\partial t_{2}^{2}} \lambda_{0}(t_{1},t_{2}) dt_{2} \right\} dt_{1}$$

$$= I_{1} + I_{2} + I_{3} \quad \text{say.} \qquad (2.4)$$

We write

$$h(t_1, t_2) = \frac{\partial^2}{\partial t_2^2} (\lambda_n(t_1, t_2) - \lambda_0(t_1, t_2))$$

$$h(t_1, t_2) = (1 - e^{-\beta t_1^2}) h(t_1, t_2) + e^{-\beta t_1^2} (h(t_1, t_2) - h(0, t_2))$$

$$+ e^{-\beta t_1^2} h(0, t_2), \qquad (2.5)$$

where β is from Proposition A. From this proposition one has for $|t_1| \leq \varepsilon$, $|t_2| \leq \tilde{\varepsilon}$:

$$\begin{split} |h(t_1, t_2)| &\leq \frac{c}{\sqrt{n}} |t| \, e^{-\beta |t|^2}, \quad |h(t_1, t_2) - h(0, t_2)| \leq \frac{c}{\sqrt{n}} |t_1| \, e^{-\beta t_1^2}, \\ |h(0, t_2)| &\leq \frac{c}{\sqrt{n}} e^{-\beta t_2^2}. \end{split}$$

Further $|1 - e^{-\beta t_1^2}| \leq \beta t_1^2$. Implementing these estimates in (2.4) and (2.5) one has

$$\begin{split} |I_1| &\leq \frac{c'}{\sqrt{n}} \left\{ \int\limits_{-\varepsilon\sqrt{n}}^{\varepsilon\sqrt{n}} \left\{ \int\limits_{-\varepsilon\sqrt{n}}^{\varepsilon\sqrt{n}} |t_1| \,\omega_T(t_1) \, e^{-\beta|t|^2} \, dt_2 \right. \\ &+ \int\limits_{-\varepsilon\sqrt{n}}^{\varepsilon\sqrt{n}} |\omega_T(t_1)| \, e^{-\beta|t|^2} \, dt_2 \right\} dt_1 \\ &+ \left| \int\limits_{-\varepsilon\sqrt{n}}^{\varepsilon\sqrt{n}} \frac{1}{it_1} (e^{-it_1x} - e^{-it_1z}) \,\omega_T(t_1) \, e^{-\beta t_1^2} \, dt_1 \right| \int\limits_{-\varepsilon\sqrt{n}}^{\varepsilon\sqrt{n}} e^{-\beta t_2^2} \, dt_2 \bigg\} \\ &= O(n^{-1}) \end{split}$$

uniformly in x, z, α ,

 I_2 can be handled similarly by using Lemma 1 instead of Proposition B and splitting as follows:

$$\frac{\partial^2}{\partial t_2^2}\lambda_n(t_1,t_2) = \frac{\partial^2}{\partial t_2^2}(\lambda_n(t_1,t_2) - \lambda_n(0,t_2)) + \frac{\partial^2}{\partial t_2^2}\lambda_n(0,t_2)$$

In this way one obtains $|I_2| = O(\delta^{-n})$ and in the same way, using exponential decrease of λ_0 , one has exponential decrease of $|I_3|$. So $|I_1| + |I_2| + |I_3| = O(n^{-1})$, and letting $z \to -\infty$ one has

$$y^{2}(F_{n}^{T}(x, y) - \psi^{T}(x, y)/\sqrt{n}) = O(n^{-1}).$$

In the same way

$$(F_n^T(x, y) - \psi^T(x, y)/\sqrt{n}) = O(n^{-1})$$

and from these estimates and (2.2) the theorem follows.

§3. Proof of Theorem 1

In this section $c, c', \varepsilon, \varepsilon'$ are always constants >0, c, c' "sufficiently large" and $\varepsilon, \varepsilon'$ "sufficiently small" which do not depend on n, m, t, s etc. They may vary from formula to formula but not in the same.

We resume the notation of $\S1$. We have from (1.6)

$$\begin{split} &\left\{ \frac{\sqrt{\alpha}}{\sigma\sqrt{n}} \sum_{j=1}^{n} \left(f(\xi_j) - \Pi(f) \right) \leq t \right\} \\ &= \bigcup_{m=0}^{n} \bigcup_{s=0}^{n} \bigcup_{r=0}^{n} \left\{ \frac{\sqrt{\alpha}}{\sigma\sqrt{n}} \left(\sum_{j=1}^{r} \left(f(\xi_j) - \Pi(f) \right) + \sum_{j=1}^{m} X_j \right) \right. \\ &+ \left. \sum_{j=n-s+1}^{m} \left(f(\xi_j) - \Pi(f) \right) \right) \leq t, \, T_0 = r, \, \sum_{j=1}^{m} \tau_j = n - s - r, \tau_{m+1} > s \right\}. \end{split}$$

By the Markov property

$$P_{\mu}\left(\frac{\sqrt{\alpha}}{\sigma\sqrt{n}}\sum_{j=1}^{n}(f(\xi_{j})-\Pi(f)) \leq t\right) = \sum_{m=0}^{n}\sum_{s=0}^{n}\sum_{r=0}^{n}\int P_{0}\left(\frac{\sqrt{\alpha}}{\sigma\sqrt{n}}\sum_{j=1}^{m}X_{j} \leq t-u-v, \sum_{j=1}^{m}\tau_{j}=n-s-r\right)$$

$$\cdot P_{\mu}(R_{r} \in dv, T_{0}=r) P_{0}(R_{s} \in du, \tau > s)$$
(3.1)

where

$$R_{k} = \frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{k} (f(\xi_{j}) - \Pi(f)).$$

The sum on the right side of (3.1) may be splitted as

$$\sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=0}^{n} + \sum_{s=\sqrt{n+1}}^{n} \sum_{r=0}^{n} \sum_{m=0}^{n} + \sum_{r=\sqrt{n+1}}^{n} \sum_{s=0}^{n} \sum_{m=0}^{n}$$

where it is understood that summation begins or ends at the integer part of a number. The second summand is bounded by

$$\sum_{s=\sqrt{n}+1}^{\infty} P_0(\tau > s) = O(n^{-1})$$

and the third by

$$\sum_{r=\sqrt{n+1}}^{\infty} P_{\mu}(T_0=r) = O(n^{-1/2})$$

so in order to prove the theorem it suffices to consider summation over s, r up to \sqrt{n} in (3.1). Clearly m=0 may then be excluded.

Let $\zeta_k = X_k/\sigma$, $\gamma_k = \tau_k - \alpha$. For the moment we assume that (ζ_k, τ_k) has covariance matrix of rank 2, so we can apply theorem 4 of §2. We assumed there d = 1 which means that the chain is aperiodic. However, this is only for notational convenience and is easily seen to be of no importance. We have

$$P_{\mu}\left(\frac{\sqrt{\alpha}}{\sigma\sqrt{n}}\sum_{j=1}^{m}X_{j}\leq t-u-v,\sum_{j=1}^{m}\tau_{j}=n-s-r\right)$$

$$=\frac{1}{\sqrt{m}}\psi\left(\sqrt{\frac{n}{\alpha m}}(t-u-v),\lambda_{r,s,m}\right)+O\left(\frac{1}{m(1+\lambda_{r,s,m}^{2})}\right)$$
(3.3)

for $m \ge 1$ where $\lambda_{r,s,m} = (n - s - r - \alpha m)/\sqrt{m}$.

The O-term on the right side of (3.3) does not depend on u, v, so from (3.1)-(3.3) follows

$$P_{\mu}\left(\frac{\sqrt{\alpha}}{\sigma\sqrt{n}}\sum_{j=1}^{n}\left(f(\xi_{j})-\Pi(f)\right) \leq t\right)$$

$$=\sum_{s=0}^{\sqrt{n}}\sum_{r=0}^{n}\sum_{m=1}^{n}\left\{\iint\psi\left(\left|\sqrt{\frac{n}{\alpha m}}(t-u-v),\lambda_{r.\,s.\,m}\right)\right.\right.$$

$$\left.\cdot P_{\mu}(R_{r} \in dv, T_{0} = r) P_{0}(R_{s} \in du, \tau_{1} > s)\right.$$

$$\left.+ O\left(\frac{1}{m}(1+\lambda_{r,\,s.\,m}^{2})^{-1}\right) P_{\mu}(T_{0} = r) P_{0}(\tau_{1} > s)\right\}.$$
(3.4)

The theorem then follows from the following three relations

$$\sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n} O\left(\frac{1}{m} (1+\lambda_{r,s,m}^2)^{-1}\right) = O(n^{-1/2})$$
(3.5)

E. Bolthausen

everything uniformly in t.

Indeed (3.3)-(3.7) imply

$$P\left(\frac{\sqrt{\alpha}}{\sigma\sqrt{n}}\sum_{j=1}^{n} (f(\xi_{j}) - \Pi(f)) \leq t\right)$$

= $\left(\sum_{s=0}^{\sqrt{n}}\sum_{r=0}^{n} \frac{1}{\alpha}P_{0}(\tau > s)P_{\mu}(T_{0} = r)\right)\int_{-\infty}^{\infty} \psi(t, x) dx + O(n^{-1/2})$
= $\phi(t) + O(n^{-1/2}).$

So the theorem is proved in the case where the covariance matrix of (ζ, γ) is nondegenerated. It remains to prove (3.5)-(3.7) for this case.

Proof of (3.5). For $r, s \leq \sqrt{n}$

$$\frac{1}{m}(1+\lambda_{r,s,m}^2)^{-1} \leq \begin{cases} 1/m \leq c/n & \text{for } |n-\alpha m| \leq 2\sqrt{n} \\ (n-\alpha m)^{-2} & \text{for } \alpha m > n+2\sqrt{n} \\ (n-2\sqrt{n}-\alpha m)^{-2} & \text{for } \alpha m < n-2\sqrt{n} \end{cases}$$

From this (3.5) follows by some elementary calculations

Proof of (3.6). Let $I_m(t, u, v)$ be the interval between t and $\sqrt{\frac{n}{\alpha m}}(t-u-v)$. We have

$$\begin{aligned} \left| \psi \left(\left| \sqrt{\frac{n}{\alpha m}} (t - u - v), \lambda_{r, s, m} \right) - \psi(t, \lambda_{r, s, m}) \right| \\ &\leq \left(\left| \sqrt{\frac{n}{\alpha m}} (|u| + |v|) \sup_{x \in \mathbb{R}} \varphi(x, \lambda_{r, s, m}) + |t| \left| \left| \sqrt{\frac{n}{\alpha m}} - 1 \right| \sup_{x \in I_m} \varphi(x, \lambda_{r, s, m}). \end{aligned} \right. \end{aligned}$$

So

$$\begin{split} &\sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n} \left| \iint \frac{1}{\sqrt{m}} \psi \left(\left| \sqrt{\frac{n}{\alpha m}} (t-u-v), \lambda_{r,s,m} \right| \right. \right. \\ &\left. \cdot P_0(R_s \in du, \tau > s) P_\mu(R_r \in dv, T_0 = r) \right. \\ &\left. - \frac{1}{\sqrt{m}} \psi(t, \lambda_{r,s,m}) P_0(\tau > s) P_\mu(T_0 = r) \right| \end{split}$$

$$\leq \sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n} \left\{ \int \frac{1}{\sqrt{m}} \sqrt{\frac{n}{\alpha m}} |u| \sup_{x \in \mathbb{R}} \varphi(x, \lambda_{r,s,m}) P_0(R_s \in du, \tau > s) P_\mu(T_0 = r) \right.$$

$$+ \int \frac{1}{\sqrt{m}} \sqrt{\frac{n}{\alpha m}} |v| \sup_{x \in \mathbb{R}} \varphi(x, \lambda_{r,s,m}) P_0(\tau > s) P_\mu(R_r \in dv, T = r)$$

$$+ \int \int \frac{1}{\sqrt{m}} |t| \left| \sqrt{\frac{n}{\alpha m}} - 1 \right| \sup_{x \in I_m(t,u,v)} |\varphi(x, \lambda_{r,s,m})| P_0(R_s \in du, \tau > s)$$

$$\cdot P_\mu(R_r \in dv, T_0 = r)$$

$$= A_1 + A_2 + A_3 \quad \text{say.}$$

$$(3.8)$$

Obviously $\sup_{x \in \mathbb{R}} \varphi(x, \lambda) \leq c \exp(-\varepsilon \lambda^2)$ and on $\{\tau > s\}$

$$|R_s| \leq \frac{\sqrt{\alpha}}{\sigma \sqrt{n}} \sum_{j=1}^{\tau} |f(\xi_j) - \Pi(f)| = Z$$
 say.

 \mathbf{So}

$$\int |u| P_0(R_s \in du, \tau > s) = E_0(|R_s| 1_{\{\tau > s\}}) \leq E(Z 1_{\{\tau > s\}})$$
$$\leq \frac{1}{s^2} E(Z \tau^2) \leq c/(\sqrt{n} s^2)$$

by Hölder's inequality. So

$$A_{1} \leq c \sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \left(\frac{1}{s^{2}} \wedge 1 \right) P_{\mu}(T_{0} = r) \sum_{m=1}^{n} \frac{1}{m} \exp\left(-\varepsilon \lambda_{r,s,m}^{2} \right).$$
(3.9)

Let now

$$\begin{split} \Lambda_0 &= \{m: n - 3\sqrt{n} \leq \alpha m \leq n + \sqrt{n} \} \\ \Lambda_k &= \{m: n + k\sqrt{n} < \alpha m \leq n + (k+1)\sqrt{n} \}; \quad k \geq 1 \\ \Lambda'_k &= \{m: n - (k+1)\sqrt{n} \leq \alpha m < n - k\sqrt{n} \}; \quad k \geq 3. \end{split}$$

Remarking now that for $s, r \leq \sqrt{n}$, $m \leq n$, $m \in \Lambda_k$ one has $|\lambda_{r,s,m}| \geq \frac{k}{\sqrt{2}}$, and for $m \in \Lambda'_k |\lambda_{r,s,m}| \geq (k-2)$ one obtains by splitting the sum $\sum_{m=1}^{n}$ into the sums over the Λ 's after some elementary calculations

$$\sum_{m=1}^{n} \frac{1}{m} \exp\left(-\varepsilon \lambda_{r,s,m}^{2}\right) = O(n^{-1/2}) \quad \text{for } s, r \leq \sqrt{n},$$

so $A_1 = O(n^{-1/2})$ follows. A_2 can be handled similarly. We consider now A_3 . Let Z be as above and

$$Z' = \frac{\sqrt{\alpha}}{\sigma\sqrt{n}} \sum_{j=1}^{T_0} |f(\xi_j) - \Pi(f)|.$$

For $|u| + |v| \leq \frac{2|t|}{3}$
$$\sup_{x \in I_m(t, u, v)} \varphi(x, \lambda_{r, s, m}) \leq c \exp\left(-\varepsilon \frac{n}{\alpha m} t^2\right) \exp\left(-\varepsilon \lambda_{r, s, m}^2\right).$$

Therefrom

$$\sup_{t \in \mathbb{R}} \iint |t| \sup_{x \in I_m(t, u, v)} \varphi(x, \lambda_{r, s, m}) P_0(R_s \in du, Z \leq \frac{|t|}{3}, \tau > s)$$

$$\cdot P_\mu \left(R_r \in dv, Z' \leq \frac{|t|}{3}, T_0 = r \right)$$
(3.10)

$$\leq c \sqrt{\frac{\alpha m}{n}} \exp\left(-\varepsilon \lambda_{r,s,m}^{2}\right) P_{0}(\tau > s) P_{\mu}(T_{0} = r)$$

$$\sup_{t \in \mathbb{R}} |t| P_{\mu}\left(Z' > \frac{|t|}{3}, T_{0} = r\right) \leq c E_{\mu}(Z' \mathbf{1}_{T_{0} = r})$$
(3.11)

$$\sup_{\tau \in \mathbb{R}} |t| P_0\left(Z > \frac{|t|}{3}, \tau > s\right) \leq c \left(\frac{1}{s^2} \wedge 1\right).$$
(3.12)

Combining (3.10)–(3.12) gives

$$A_{3} \leq c \sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n} \frac{1}{\sqrt{m}} \left| \sqrt{\frac{n}{\alpha m}} - 1 \right| \exp\left(-\varepsilon \lambda_{r,s,m}^{2}\right)$$
$$\cdot \left(\left(\frac{1}{s^{2}} \wedge 1 \right) \left(E_{\mu}(Z' 1_{T_{0}=r}) + P_{\mu}(T_{0}=r) \right) \right).$$

Splitting the sum over *m* into subsummations over the Λ 's one obtains after some elementary calculations for $s, r \leq \sqrt{n}$

$$\sum_{m=1}^{n} \frac{1}{\sqrt{m}} \left| \sqrt{\frac{n}{\alpha m}} - 1 \right| \exp\left(-\varepsilon \lambda_{r,s,m}^2\right) = O(n^{-1/2}).$$

So $A_3 = O(n^{-1/2})$ follows.

Proof of (3.7). For fixed s, $r \lambda_{r,s,m}$ decreases as m increases and

$$\lambda_{r,s,m} - \lambda_{r,s,m+1} = \alpha \frac{1}{\sqrt{m}} + \lambda_{r,s,m+1} \left(\underbrace{\left| \sqrt{1 + \frac{1}{m} - 1} \right|}_{= O\left(\frac{1}{m}\right)} \right)$$

From this one easily derives

$$\sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \left| \frac{1}{\sqrt{m}} \psi(t, \lambda_{r, s, m}) - \frac{1}{\alpha} (\lambda_{r, s, m} - \lambda_{r, s, m+1}) \psi(t, \lambda_{r, s, m}) \right|$$

$$\cdot P_0(\tau > s) P_{\mu}(T_0 = r) = O(n^{-1/2}).$$
(3.13)

Further

$$\sup_{x \in [\lambda_{m+1}, \lambda_m]} |\psi(t, x) - \psi(t, \lambda_m)| \le c(\lambda_m - \lambda_{m+1}) \exp(-\varepsilon \lambda_m^2)$$

and therefore

$$\begin{split} &\sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \left| \sum_{m=1}^{n} \frac{1}{\alpha} (\lambda_{r,s,m} - \lambda_{r,s,m+1}) \psi(t, \lambda_{r,s,m}) \right. \\ & \left. \cdot P_0(\tau > s) P_{\mu}(T_0 = r) - \frac{\lambda_{r,s,1}}{\lambda_{r,s,n}} \psi(t, x) \, dx \, P_0(\tau > s) P_{\mu}(T_0 = r) \right| \\ & \leq c \sum_{s=0}^{\sqrt{n}} \sum_{r=0}^{\sqrt{n}} \sum_{m=1}^{n} (\lambda_{r,s,m} - \lambda_{r,s,m+1})^2 \exp(-\varepsilon \lambda_{r,s,m}^2) \\ & \left. \cdot P_0(\tau > s) P_{\mu}(T_0 = r) = O(n^{-1/2}). \end{split}$$

Obviously

$$\int_{\lambda_n}^{\lambda_1} \psi(t,x) \, dx = \int_{-\infty}^{\infty} \psi(t,x) + O(n^{-1/2}),$$

so (3.13)-(3.14) entail (3.7).

The case where Σ is degenerated is much more simple. First, if τ is norandom it can easily be reduced to the standard Berry-Esseen theorem. If τ is nondegenerated but Σ has rank 1, then there exists a constant $a \in \mathbb{R}$ such that $\zeta_i = a\gamma_i$ a.s. A typical example for this is if $f = 1_{\{0\}}$. In this special case the statement of theorem 1 (with fixed starting point) has been proved by Landers and Rogge in [6] (theorem 1). Their proof can easily be adapted to the general case where $\zeta_i = a\gamma_i$. We omit the details.

§4. Proof of Theorem 2

Rosenblatt ([10], VII.3, Lemma 1) obtained the result that a Markov chain is strongly mixing, i.e. $\lim_{n \to \infty} \alpha(n) = 0$, if and only if

$$\sup \left\{ \sum_{i \in I} \pi(i) \left| E_i(f(\xi_n)) - \Pi(f) \right| : f \colon I \to \mathbb{R}, \left\| f \right\|_{\infty} \leq 1 \right\}$$

goes to 0 as $n \to \infty$. His proof easily gives the following stronger statement:

Lemma 2.
$$\alpha(n) \leq \frac{1}{2} \sup_{\|f\|_{\infty} \leq 1} \Pi(|E \cdot (f(\xi_n)) - \Pi(f)|)$$

 $\leq 2 \sup_{A, B \in I} |P_{II}(\xi_0 \in A, \xi_n \in B) - \pi(A)\pi(B)|$
 $\leq 2\alpha(n).$

Proof of Theorem 2. (I) It is assumed that $\sum_{n=1}^{\infty} n^p \alpha(n) < \infty$ for some $p \ge 0$. Let $A_n = \{\xi_j \ne 0 \text{ for } j=n+1, n+2, ..., 2n\}$. For any starting probability μ

$$P_{\mu}(A_n) = \sum_{m=1}^{n} P_{\mu}(\xi_m = 0) P_0(S > 2n - m) + P_{\mu}(S > 2n).$$

Taking $\mu = \delta_0$ and $\mu = \Pi$ one obtains

$$P_0(S > 2n) - P_{\pi}(S > 2n)|$$

$$\leq |P_0(A_n) - P_{\Pi}(A_n)| + P_0(S > n) \sum_{m=1}^{\infty} |P_0(\xi_m = 0) - \pi(0)|.$$

Now $|P_0(A_n) - P_{II}(A_n)| \le \alpha(n)/\pi(0)$ and $|P_0(\xi_m = 0) - \pi(0)| \le \alpha(m)/\pi(0)$. So for q, $0 \le q \le p$,

$$\pi(0) \sum_{n=1}^{\infty} n^{q} |P_{0}(S > 2n) - P_{\Pi}(S > 2n)|$$

$$\leq \sum_{n=1}^{\infty} n^{q} \alpha(n) + \left(\sum_{n=1}^{\infty} \alpha(n)\right) \left(\sum_{n=1}^{\infty} n^{q} P_{0}(S > n)\right).$$

So it follows that if $E_0(S^{q+1}) < \infty$ then $E_{II}(S^{q+1}) < \infty$. On the other hand it is well known that for any $r \ge 0$ $E_0(S^{r+1}) < \infty$ if and only if $E_{II}(S^r) < \infty$. So it clearly follows that $E_0(S^{p+2}) < \infty$.

(II) Let us prove the converse, so we assume $E_0(S^{p+2}) < \infty$ for some $p \ge 0$ or, what is the same, $E_n(S^{p+1}) < \infty$.

We use the Pitman coupling technique (see [8]), so let ξ_n, ξ'_n be two independent chains with transition probabilities p_{ij} . We write \hat{P} . for the law of the pair (ξ_n, ξ'_n) . Let $R = \inf \{n \ge 0; \xi_n = 0, \xi'_n = 0\}$ and let $f: I \to \mathbb{R}, ||f||_{\infty} \le 1$. As in Pitman [8]

so

$$|E_i(f(\xi_n)) - E_{\Pi}(f(\xi_n))| \leq 2\hat{P}_{\delta_i \times \Pi}(R \geq n)$$
$$\Pi(|E_i(f(\xi_n)) - \Pi(f)|) \leq 2\hat{P}_{\Pi \times \Pi}(R \geq n).$$

If $E_{II}(S^{p+1}) < \infty$ Pitman proved in [8] that $E_{II \times II}(R^{p+1}) < \infty$ so $\sum_{n=1}^{\infty} n^p \hat{P}_{II \times II}(R \ge n) < \infty$ and $\sum_{n=1}^{\infty} n^p \alpha(n) < \infty$ follows from Lemma 2.

References

.

- 1. Battacharga, R.N., Rao, R.R.: Normal approximation and asymptotic expansions. New York: Wiley 1976
- Bolthausen, E.: On rates of convergence in a random central limit theorem and in the central limit theorem for Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 38, 279-286 (1977)
- 3. Chung, K.L.: Markov chains with stationary transition probabilities. Berlin, Heidelberg, New York: Springer 1967
- Feller, W.: An introduction to probability theory and its applications, Vol. II. New York: Wiley 1966
- Landers, D., Rogge, L.: The exact approximation order in the central limit theorem for random summation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 169–183 (1976)

- 6. Landers, D., Rogge, L.: On the rate of convergence in the central limit theorem for Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete **35**, 169-183 (1976)
- Lifshits, B.A.: On the central limit theorem for Markov chains. Theory Probab. Appl. 23, 279-295 (1978)
- 8. Pitman, J.W.: Uniform rates of convergence for Markov chain transition probabilities. Z. Wahrscheinlichkeitstheorie verw. Gebiete **29**, 193-227 (1974)
- 9. Pitman, J.W.: Occupation measures for Markov chains. Adv. in Appl. Probab. 9, 69-86 (1977)
- 10. Rosenblatt, M.: Markov processes. Structure and asymptotic behaviour. Berlin, Heidelberg, New York: Springer 1971

Received January 15, 1980