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Summary. Robbins-Monro stochastic approximation procedure x , + l = x  . 
1 

n+ 1 (A,+ 1 x , - y , +  1) is used to solve the linear equation A x  = y  in Hilbert 

space, where y, and A, are estimators such that their arithmetic means 
converge to y and A, respectively. Under some additional conditions it is 
shown that X,  goes to the unique solution of this equation. 

Introduction: Linear Regression 

Some problems of prediction, filtering, pattern classification, control and system 
identification can be formulated by the following linear regression: let ~ and ~/ 
be N dimensional vector valued random variables and the question of interest is 
the solution of the linear equation 

A x = y  (1) 

where A = IE(~ (r)  and y = lEq. (The vectors are column vectors, T stands for the 
transposition.) We are given a dependent sample (41, ql), (42, r/2) .-. where only the 
strong law of large numbers can be assumed, namely 

and 

1 
lim - ~ ~i ~r = A  a.s., (2) 
n~oon i=1 

lim ~h = Y a.s. (3) 
n ~ o e n  i= 1 
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t Assume that A-1 exists, then for large n ~ i i f  exists and 
i =  

) lim ~i ~ ~i = A - 1 y a.s. (4) 
n o c o  i i 

However, from the point of view of application (4) is very complicated, therefore 
we are interested in Robbins-Monro stochastic approximation: x 0 is arbitrary, 

1 
X~ = x ~  1 ~.~+1 x . - ~ . +  J.  (5) 

Proposition. If, in addition, 

lim _1 ~ II (i II ~ exists  a.s. (6) 
n ~ o o n i =  1 

then for  x .  defined by (5) 

lim x .  = A -  1 y a.s. (7) 
n ~ o o  

Observe that (5) does not use real matrix operation, since (5) might be 
written in form 

1 
x.+ 1 = x .  - ~ ( ( ~ . +  1, x.) 4.+ 1 - , ~  ~), (a) 

where ( . , . )  denotes the inner product in R N. 

Main Result 

In the sequel we formulate a natural extension of this problem to Hilbert space 
as Venter (1966) and R6v&z (1973) made for more general stochastic approxi- 
mation procedures. 

Let H be a real Hilbert space with the inner product ( . , . )  and norm H. I[- 
Denote by A an unknown linear, bounded, symmetric and positive operator on 
H, and we have to solve the equation A x  = y  for an unknown y e l l .  Assume that 
A - t  exists. We are given a sequence of linear, bounded operators A 1, A2, ... and 
a sequence y . ~ H ,  n = 1, 2 . . . .  

Theorem 1. Suppose that 

and 

lim []1 ~ Yi-Yl[ =0, (9) 
n ~ o o  / q i = l  

lira []_l ~ A ~ - A  ]] =0.  (10) 
n ~ o o  n i =  1 
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Assume that 

lim 1 ~ iiA~ll 2 (11) 
n~oo n i= 1 

exists. Consider the sequence x n: x o is arbitrary, 

1 
x,+ l= x . - ~ ( A , +  1 x , -  y,+ 1) (12) 

then 

lim x n = A - l y .  (13) 
n ~ o o  

Fritz (1974) investigated the same problem for linear bounded operators in 
Banach space, under a contraction-type condition. Specializing to symmetric 
positive operators in Hilbert spaces, he obtained our Theorem 1, under the 
assumption IlAil I < 1 i=1 ,  2... instead of our assumption (11). Csibi (1973) and 
(1975) showed a.s. convergence of general stochastic approximation for m o- 
dependent and uniformly strong mixing sample. Ljung (1978) dealt with the 
recursion 

x,+ l= x , -  7 , ( f  (x,)+ Y,,+ l) 

1 
where in case of y, = n+ 1 only (9) is required on the additive noise yi's. I f f  is 

linear, then his result implies the a.s. convergence provided Ai = A, i = 1, 2 . . . .  
There are some accelerated versions of the iteration (8) (Tsypkin (1970) and 

Saridis, Nikolic, Fu (1969)). For dependent sample the convergence of their 
algorithms may be deduced from the following formal extension of Theorem 1: 

Theorem 2. Consider the iteration: 
x o is arbitrary. 

C 1 
x,+ 1 = x , - - - -  U,+ l (A,+l  G - Y n +  1), (14) 

c2+n 

where U, n = 1, 2... are linear bounded operators such that lira ]l U , -  U [I = 0. A -  1 
n~oo 

and U -a exists. UA is symmetric and positive. Assume (9). (10) and (11). Then 
l i m x , = A - l y .  �9 

Theorem 2 can be easily verified from Theorem 1 since for the notation A',+ 1 
q ( n + l )  

_ cl (n + 1) U, + 1 A, + ~ and y'. + 1 - - -  U, + 1 Y, + 1 the conditions of Theorem 
c2  ~ - n  c 2 - } - n  

2 imply the conditions of Theorem 1 for the iteration 

1 
Xn+l =Xn -- ~ ( A ' n +  1 Xn --Y'n+ 1), (15) 

, v / T l  

therefore x, tends to the unique solution of U A x  = Uy which is the same as that 
of A x = y .  
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Proofs. An abstract version of the well-known Toeplitz Theorem is applied 
several times during the proof of Theorem 1 : 
Toeplitz Theorem (see Fritz (1974)). Consider a triangular array cg~,,k= 1 . . . .  n, n 
--1, 2. . .  of linear, bounded operators on a Banach space N, for which 

lim ~ ~gk,.X=cgX 
n~cO k= l 

for each x~ N and for each fixed integer k 

l ira i1%,.11 =o. 
n ~ c t 3  

If 

sup ~, Lcgk.][<+oo, 
n k = l  

then lim x.=x implies that lim ~ (~k,n.)Ck=(~X. If 

n-- 1 

s u p [ ( t I - [ ' - I )  ~, nnH-]- 2 ( lg-[- l )  H(~k ,n - - (~Sk+l ,nH]< "Ir-O0 
n k = l  

1 
then lim 2 ~ Xk= X implies that lim ~ cgk, . xk= Cgx. 

n~cv t~l k= l n~cV k= l 

Proof of Theorem 1. It is sufficient to deal with the case of y =0 ,  since from (12) 

Xn+ 1 - A - i y = x . - A - i Y - n ~ ( A . + l ( x . - A - ~ y ) - ( y . +  1 -A.+IA-iy)) 

and using the notations x'. = x , , - A - l y  and y,',+ 1 =Y.+ 1 -  A.+ 1 A - l y  we get the 
same iteration as that of (12) and (9), (10) imply 

lim Yi = 0, 
n~c~ n i= i 

therefore in the sequel we suppose that y = 0. Put 

1 

~1(I 1A,~ ( I -n l~A ,_  1 Bk'"=[k\ -n  ] ) " ' ( I - k - ~ A k + l )  

J(l-~An) (/--AI) 

if k=n 

if O < k < n  (16) 

if k=O 

and yo=Xo, then we get from (12) by induction that 

x,= ~ Bk,,y k n = 1 , 2 . . . ,  (17) 
k=O 
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n 
and for the notation s , = g  ~ Yk n = l , 2  ..., So=Yo=Xo 

I~k=l  

where 

From (18) 

x. = ~ B;,. s k 
k=0 

(18) 

i O ,  n ' 

' n= Bk+l n(I--Ak+ Bk, 

if k = n  

1) if O < k < n  

if k=O 

(19) 

rlx.II ~ ~ IIB;~,.I[ Ilskll (20) 
k=O 

By (9) lim s . = y = 0 ;  therefore for (20) we could apply an other version of 
n~co 

Toeplitz Theorem (see Ash (1972) 7.1.1. Lemma) if we knew that for each fixed 
integer k 

and 

lim IIBZ..II = 0  (21) 
n~oo 

sup ~ IIB~,.[I < + oo. (22) 
n k=O 

(20), (21) and (22) imply lira x ,=0 .  To prove (21) and (22) it will be useful the 
n~oo 

following 

Lemma. Put m= inf (Au, u). (A is positive and A -1 exists, therefore m>0.) 
l l u J l  = 1 

Under the conditions (10) and ( l l ) for each ~ < m there exists a real C> 1 such that 
for each k >= n 

[c 1 ?t 
<~ k \ n ]  if k__>l 

'[Bk'""=[c (�88 if k=O 
(23) 

The proof of Lemma will be given later. 
Continuing the proof of Theorem 1 (19) and (23) imply (21). By (19) 

n--1 ~ ,  

llB~,,,ll _-< [IB,~.,,ll (I + ]I/kll) (24) 
k=O k = l  

1 ~ 
Let rn=nk~71 (1 + II&ll), then ( l l )  implies that 

lira sup r, = L* < + oo (25) 
n~oo 
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and by (23), (24) 

I[B~,.[I < C  (1+  IIAkll) 
k = O  - -  k = l  ~ 

=C ~ ~ (krk-(k-1)rk 1) 
k = 1  

L. GySrfi 

(26) 

If ~ > 1 then from (25) and (26) 

otherwise 

l imsup ~ IiBZ,.II~ C L * + I  
n ~  k = O  

, L* 
lim sup IIBk,.ll < C ~ - +  1. 

n ~ o o  k = O  

Thus the proof  of  Theorem 1 is complete.  

Proof of Lemma. First we prove that  there exists an integer N o and a real C '>  1 
such that  for each N o < k_< n 

[IBk,.I I _<_ C ~ (27) 

We use the following version of induct ion:  for n = k  

1 1 C' = - < - -  (28) IlBk'kll= k = k"  

Assume that  for each i, k_<iN n 

IlBk, il I ~ C' ~ (29) 

then we show that for sufficiently large C' there exists an integer N O such that  for 
each n > k___ N o (29) imply that  

HBk'"+tll----<C'lk n ~  " (30) 

Let  us denote  by L the lim - [[Ail[ 2. Choose  E>mc5 such that  
n ~ e e  gl i =  1 

m m62 
2rn-~L>26 I2 (31) 
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Introduce the notat ions 

and 

g '  
m 

g '  g '  

f i~=(i+ 1) m - i m  
i a 

and 
L '  

, g (i + 1) m 
gi = --  L' L' m 

(i + 1) ((i + 1)" - i m  ) 

and 

Then  lim g .  = 1 and by ( 1 6 )  
. ~ c o  

i = 1  

Bk,,+ 1 = ~ (O:i+ lBk, i+ l--o:iNk, i)+O~kNk, k 
i = k  

--i=k I--~giAi+ l Bk int-O:k I 

Denote  B* the adjoint  of the opera tor  B, then by (36) 

link,.+ 1 [I : l iNk*.§ 1 I[ 
n 

, m , ~ k  

=,,u,,=lSUp I-- g,A +l 

<II,II=II=kSUp ~,(ei+,--O~i)B*il I. (I-~giA*+l)u +a k" 
Put 

1 " fii / m * \ u  2 

then applying (29), (37) and the Cauchy-Schwarz inequality we get 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

iiBk..§ l ll < C ,1 ka = L' S.( sup Z~,) -~ + k 
k (n + 1)m Ilull=l 
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Observe that 

=<C'I (nk+l)a[ S" ( s u p k -  _ uull=*LA_a Z'])} t-1] (39) 
(n + 1)m 

S,, 1 
c, - a'. (40) 
- - - 6  m ( ~  

(n+ 1)" 1 - ~ -  

where lim 6"= 1. If we show that 
n~(x3 

m 2 IT/2 
l imsup sup Z ~ < I - - 2 ~ + ~ L  (41) 

n~oo Ilull=l 
then from (39), (40) and (41) we get 

! m2 m2 tr\~ C7] ,1 k '~ 1 -2E-+EEL+6 '~ i  ] 
= . +  , (42) l iG'"+ll l  < c k 1 E 

where lim ~ ' = 0 ,  therefore because of (31) there exists an integer N o such that 
n--+ oo 

m2 m 2 )�89 
1-2T+E2-L+6~' 

fi = sup ~5' n m 6 < 1 (43) No__<n 1 - - - -  
I2 

and for 

from (42) 

1 
C' > - -  

(k)~ 
l iG, .+ , I I~C'~ ~ . 

In order to prove (41) we get from (38) that 

Z:=,lu,,2_2 m (1  ~ fligiA,+lu, u ) 
E \o n i= i 

n 

1 " u) 
2 " 2 m ( ( A * - - -  2 P,g, At+,)., = l l u l ] - 2 ~ ( A * u , u ) +  E \\ S,,=l 

m2( 1 " ) 
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m 2 m 1 
=< Ilull 2 1 - 2 ~ - + 2 ~  A-S.  i = 1  ~ fligiAi+ 1 

- } - r , 2  - -  ~ ,  filgZ Ai+ l A~+ l �9 ( 4 4 )  
i = 1  

Because of Toeplitz Theorem (10) implies that 

lim A - ~  ~ fl~g,A~+ 1 =0. (45) 
n ~  i = 1  

Applying (11) and the Toeplitz Theorem we get 

sup 1 ~ fli g/2 Ai+I A*+I lim 
n ~ ~ S n  i =1  

< l i m - -  fllg/2 HAi+ 1 ]l 2 

n 

--lira 1 ~ ][A~II2= L (46) 
n ~ m  F/ i =  1 

(44), (45) and (46) imply (41), therefore the proof of (27) is complete. If k < N O < n, 
then by (16) 

Bk,, =(No + 1)BNo+I,,Bk, No (47) 

(16), (27) and (47) imply the statement of the Lemma. 
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