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1. Introduction 

M a n y  problems of  geometric probabil i ty theory and integral geometry concern 
integrals of the form 

S q~(gA c~B)d#(g), 
a 

where A and B are subsets of a space that  has a t ransformat ion group G with 
invariant  measure #, and where q5 is a real valued function defined for all (or 
almost  all) sets gAc~B (g~G). For  example, if A and B are compact  convex 
subsets of euclidean n-dimensional space R", and if G is the group of  rigid 
motions  of  R" equipped with Haa r  measure # then the mean project ion 
measures w k satisfy the relations 

Wk(gA~B ) d p ( g ) =  ~ c~ik Wk+ ~ ,(A) w,_~(B), (1) 
G n - k  

where k = 0, 1 . . . .  n and the coefficients ~ik are known constants (depending on 
the normal izat ion of  #). If  v denotes the volume and s the surface area for 
convex sets in R" then the case k = 0 of (1) can be restated as 

v(gA c~B) d #(g) = v(A) v(B), (2) 
G 

and the case k = 1 as 

s(gA c~B) d#(g) = v(a) s(b) + s(a) v(B). (3) 
G 

Detailed presentations of  these matters can be found in the books  of Hadwiger  
[5] and Santal6 [9]. It has been pointed out repeatedly that  (2) holds also if G is 
taken to be the group T of  translations of R n. In this case the sets A and B can 
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be identified with sets in T and (2) can be viewed as a special case of the 
"average theorem for measurable groups" (see Halmos [6, p. 261]). This formula 
can be stated as 

~(hM c~N) dT(h)=7(M- ~) ~,N (4) 
H 

where 7 is an invariant measure and M, N are suitable subsets of a group H. 
Hence (2) is essentially a measure theoretic relation that does not depend on 
special geometric properties of the sets A, B (see also Balanzat [1]). It can be 
shown that (3) holds also if the group of rigid motions is replaced by the group 
of translations of R n, but all previously given proofs of this and similar results 
depend on the convexity or other geometric regularity assumptions on the sets 
A, B (see Schneider [10], Streit [12], Groemer [4]). 

It is the aim of the present paper to prove in a completely measure theoretic 
setting an integral relation that contains as special cases (2), (3), (4) and various 
other formulas of this kind. These special formulas are immediate consequences 
of an integral relation that can be formulated in terms of the Hausdorff measure 
of the pertinent sets. Some of these results generalize integral geometric relations 
that have been proved by Federer [2], [3, p. 248] under additional regularity 
assumptions (rectifiability). However, it should be pointed out that Federer's 
formulas are more general as far as the dimensions of the admissible sets are 
concerned. There appears to be yet another possibility to obtain our main 
results, namely by the use of a suitably generalized version of a theorem of Stein 
[1 l]  concerning "reciprocal functions". 

The following section contains our main result and some immediate con- 
sequences. Applications to integral geometric relations for Hausdorff measures 
in R n and spherical spaces are presented in Section 3. 

2. Main Theorems 

It will always be assumed that we are given a group G with a left invariant 
measure #, and that G acts transitively on some set S (the underlying "space"). 
The image of any seS  under the application of an g~G will be denoted by gs. If 
X c S  we say that X has induced measure f tX if for some q~S the set 
{g: g - l q ~ X ,  g~G} is #-measurable and /~X=#{g:  g - l q ~ X ,  geG}. Due to the 
transitivity of G and the invariance of # this definition does not depend on the 
special choice of the element q. Instead of "left invariant" we shall say simply 
"invariant". When we are given two measure spaces and we refer to the product 
measure we mean the not necessarily qomplete product measure that is defined 
on the smallest (r-algebra generated by the measurable rectangles (cf. Halmos [5, 
Sect. 35]). 

We can now formulate our principal result. 

Theorem 1. Let S be a set, A and B subsets of S, and G a group that acts 
transitively on S. Let # be a (r-finite invariant measure on G, and v a a-finite 
measure on B. Moreover, let us assume that the set {(g, b): g-  i bEA, g~G, b6B} is 
measurable with respect to the product measure # x v. Then, 
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(i) A has induced measure pA, 
(ii) gAc~B is v-measurable for every g~G, 

(iii) v(gA ~B) is a p-measurable function of g, 
(iv) ~ v(gA c~B) dp(g) = ~A vB. 

G 

Proof. For any T c S let XT denote the characteristic function (indicator function) 
of T. Because of {(g, b): g- lbaA ,  gaG, baB} = {(g, b): XgAnB(b)= 1} the function 
that maps (g, b) onto ZgAoB(b) is measurable with respect to ~ x v. Since both/~ 
and v are assumed to be a-finite it follows from one version of the Theorem of 
Fubini (cf. Halmos [6, p. 147]) that 

~ )~gAnB(b) d#(g) dr(b)= ~ ~ )~gAc, u(b) dr(b) d#(g) (5) 
B G  G B  

where the inner integrals exist for every b and every g, respectively, and are 
measurable functions of these variables. For the inner integral on the right hand 
side of (5) we obtain for every g 

ZgA~B(b) dr(b) = v(gA c~B). 
B 

As a consequence of this equality and the previous statements about existence 
and measurability we obtain (ii) and (iii). Moreover, it follows that (5) can be 
written in the form 

If b~B we find 

and therefore 

~ ZgA~B(b) d#(g) dr(b)= ~ v(gAc~B) d#(g). 
B G  G 

(6) 

]A{g" XgAc~B(b)= 1, geG} =#{g: begA, beB, gaG} 

=p{g:  g-  1 beA, geG} =fiA 

ZgAnu(b) dy(g) = flA. (7) 
G 

This shows in particular that (i) is correct. If (6) is combined with (7) we obtain 
immediately (iv). Thus all parts of the theorem have been proved. 

Before we turn to another version of Theorem 1 we consider first a rather 
special case. Let us take S = G, # = v. Then, if the assumptions of Theorem 1 are 
satisfied, A has induced measure ~A=#{g:  g l xEA}=#{g:gaA-1}=l~(A-1  ). 
The following corollary is now an immediate consequence of Theorem 1. It is 
one version of the average theorem for measurable groups (cf. Halmos [6, 
p. 261]). 

Corollary. Let (G, ~q, #) be a measure space where G is a group and # an invariant 
a-finite measure. Assume that A c G ,  B a g  and that {(g, b): g- l  baA, b~B} is # 
x #-measurable. Then the sets A -1 and gAc~B are measurable, #(gAc~B) is a 

measurable function of g, and 

/~(gA c~S) dp(g)=#(A-  1) #U. 
G 
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For most  applications of Theorem 1 it is rather inconvenient to check 
whether the set {(g, b): g-1  boA, g~G, beB} is # x v-measurable. This condition 
can be removed if suitable topological assumptions are made. We formulate one 
such possibility as a theorem. The class of all Bore1 sets of a topological space X 
(i.e., the smallest a-algebra containing the open subsets of X) will be denoted by 
N(X). More generally, if Y c X  we denote by N(Y) the Borel sets of Y 
corresponding to the relative topology of Y induced by X. 

Theorem 2. Let S be a topological space and G a topological group that acts 
transitively and continuously on S, and suppose that both S and G satisfy the 
second countability axiom. Moreover, let A be a Borel subset and B a subset of S, 
and let # be an invariant a-finite measure on ~(G) and v a a-finite measure on 
'~(B). Then 

(i) A has induced #-measure •A, 
(ii) g A n B e ~ ( B )  for every g~G, 

(iii) v(Agc~B) is a #-measurable function of g, 
(iv) ~ v(gAc~B) d#(g)=/3A vB. 

G 

Proof Theorem 2 follows obviously from Theorem 1 if we can show that the set 
C =  {(g, b): g-1  beA, geG, beB} is # x  v-measurable. To prove this we consider 
first the function ~b(g,b)=g lb  that maps the space G x B  into S. (Here B is 
assumed to carry the relative topology induced by S; the space G x B is 
supposed to have the product topology induced by G and B.) From the 
assumption that G act continuously on S and that G itself be a topological 
group it follows that ~b is a continuous function. This implies that q~-~ maps 
Borel sets onto Borel sets. Because of AeN(S)  it follows therefore that 
O - l ( A ) e ~ (  G x B). However, qS-I(A)= C and consequently 

C e ~ ( G  x B). 

Hence, to complete the proof  we have only to show that the Borel subsets of G 
x B are # x v-measurable. For  this purpose we note that it is a simple con- 
sequence of the second countability axiom for G and S that every open subset of 
G x B can be written as a countable union of sets of the form X x Y where X is 
an open subset of G, and Y a (relatively) open subset of B. Since the sets X x Y 
are # x v-measurable we find that the open subsets of G x B are # x v-measur- 
able. This implies obviously that the Borel sets are also measurable. 

3. Euclidean and Spherical Spaces 

For  0 < p  < n we denote by 2p the p-dimensional Hausdorff  measure on R n or on 
the n-dimensional unit sphere S n. It is a well-known fact that 2 v serves as a 
useful generalization of volume or area of a p-dimensional manifold. In order to 
avoid the introduction of undesirable constants into our formulas we use 
suitable normalizations of the pertinent Haar  measures. If G is the group of 
translations or the group of rigid motions of R" we normalize the Haar  measure 
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of G so that for a unit cube Q and a point q~R" the measure of the set {g:gq~Q, 
geG} is 1. If G is the group of all rotations of S" (i.e., proper isometries of S") we 
normalize the Haar measure on G so that for a spherical cap C on S" with 2, C 
=1 and a point q~S" the set {g: gq~C, g~G} has measure 1. In all three cases 
we refer to this measure on G as the normalized Haar measure. 

The following theorem enables one to evaluate the average value of 
)~p(gAc~B) for O<p<n. This theorem is, on the one hand, more general than 
previously known relations of this kind since A and B are only assumed to be 
Borel sets. On the other hand, it is more special since we impose the restriction 
that B have a-finite 2v-measure (cf. Santal6 [8], [9, p. 258] and Federer [2], 
[3, p. 248]). For the case of sets in R" and p = 0  or p=n see also Balanzat [1]. 

Theorem 3. Let A and B be two Borel subsets of R" or of S", and assume that B 
has a-finite p-dimensional Hausdorff measure (0 <p < n). I f  A and B are in R" let G 
be the group of translations or the group of rigid motions of R", and if A and B are 
in S" let G be the group of rotations of S". Let ~t denote the normalized Haar 
measure on G. Then, 2;(gA c~B) is a measurable function of g~G and 

2p(gA c~B) d p(g) = 2, A 2pB. (8) 
G 

Proof. If B c R "  the class { X ~ B :  XeN(R")} is a a-algebra of subsets of B that 
contains the relatively open subsets of B. This shows that every set from N(B) is 
of the form Xc~B with XeN(R"). Hence, ~ ( B ) c  N(R") and similarly ~ ( B ) c  B(S") 
if BcS" .  Consequently 2p can be viewed as a measure on .~(B) and it is now 
clear that all the assumptions of Theorem 2 are satisfied. It remains only to find 
/~A. This can be done by considering the cases of R" and S" separately and 
explicit evaluation of BA. However, one can also treat all cases at the same time 
by noting that/~ is an invariant measure on the homogeneous spaces R" or S" 
with respect to G. Since 2, is also such a measure the desired result ~A=2,,A 
follows immediately from known uniqueness theorems for such spaces and the 
normalization assumption (see Nachbin [6, p. 138]). 

We note that it is often more convenient to work with integrals of the form 
2 ~ 2p(AngB)d#(g) rather than ~ 2p(gAc~B)dlJ(g). These two integrals are equal 

G G 
since 2p(gAc~B)=2p(Ac~g-lB) and for every measurable subset H of any of 
the three groups G under consideration we have /~H=#(H-1) .  

As a final application of Theorem 2 we formulate and prove a rather general 
version of the surface area formula (3). The closure of a set X in a topological 
space will be denoted by Jr, its boundary by 8X. 

Theorem 4. Let A and B be two subsets of R" ot" of S", and assume that for some p 
with O<=p<n the boundaries OA and OB have a-finite p-dimensional Hausdotff 
measure. I f  A and B are in R" let G be the group of translations or the group of 
rigid motions of R"; if A and B are in S" let G be the group of rotations of S". Let 
t~ denote the normalized Haar measure on G. Then, 2p S(gAc~B) is a measurable 
function of g~G and 

2p(O(gAc~B)) d lJ(g)= 2,.4 2pc3B +2,/~ 2pOA. 
G 
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Proof Since  0A a n d / ~  are c losed sets it fol lows f rom T h e o r e m  3 tha t  

G 

Simi la r ly  we o b t a i n  

H. Groemer 

(9) 

2p(g0A c~/~) d/~(g)= 2, /~ ~p0A (10) 
G 

and ,  u s ing  the fact tha t  2, 0A = 0 (since p < n), we have  also 

f 2p(g0A c~0B) dFL(g)= 2, 0A 2 p ~ B = 0 .  (11) 
G 

Now,  f rom the  de f in i t ions  of  c losure  a n d  b o u n d a r y  it fol lows easily tha t  

0(gA c~B) = (gAn(~B) w(((~gA ~ / ~ ) \ ( 0  gA ~ (~B)). 

S ince  the  r ight  h a n d  side of  this i den t i t y  consis ts  of  the u n i o n  of  two d i s jo in t  sets 

it  fol lows tha t  

2p O(gA ~B) = ).v(gA ~ OB) + )Lv((OgA c-~B)\~gA c~ OB)) 

a n d  therefore  

2p O(gA c~B) + 2p(~gA c~ B)= )~v(gA c~OB) + 2v(OgA c~B). 

F r o m  this  re la t ion ,  toge the r  wi th  (9), (10), (11), we o b t a i n  i m m e d i a t e l y  the  

des i red  resul t  

2pO(gAc~B) d#(g)  = 2m/l  2pc~B+)o,B).~,c~A. 
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