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1. Introduction and Summary 

Let (~, ~, P) be a probabili ty space and let {Xn, n ~ 1, 2 . . . .  } be a sequence 
of real-valued random variables defined on (f2, ~, P). For each positive integer n 
let ~ be the smallest g-algebra with respect to which Xn is measurable and for 

n ~ m let be the smallest o'-algebra with respect to which Xn . . . . .  Xm are 
n 

jointly measurable. 

Definition. The sequence {Xn} will be called *-mixing if there exists a positive 
integer N and a real-valued function ] defined for the integers n ~ N such tha t  

i) ] is non-increasing with lim ] ( n ) =  0, and 

ii) i f n ~ N ,  A ~ Z ,  B ~  then 
1 m §  

I P (AB)  -- P ( A ) P ( B ) ]  ~ ](n) P(A)  P (B) .  

In section 2 we prove several versions of the strong law of large numbers for 
*-mixing sequences of random variables. Section 3 is devoted to a discussion of 
the *-mixing condition and examples of such sequences. 

2. Strong laws of large numbers 

For convenience we shall assume that  D = E~ where each E~ is a copy 

of the real line and tha t  Xn is the nth coordinate projection. In  that  ease is 
n 

the ~-algebra of Borel sets on the coordinates n through m. For each 

n = 1 , 2 , . . ,  let S n = ~ X / .  
i = 1  

Theorem 1. Let {Xn, n ~ 1} be a *-mixing stochastic process such that 

i) the marginal distribution o / X n  is independent o/n.  

ii) E X n  = O. 

fii) the common marginal moment generating ]unction o] Xn exists in a neigh- 
borhood o] the origin. 
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Let 8 ~ O. There exists numbers A and o~ with A ~ 0, 0 ~ u ~ 1, such that 

P { s u p l S m / m [ > 8 } G A a  n /or n = l , 2  . . . . .  
m>=n 

Proo]. W e  shall  p rove  the  exis tence of numbers  A,  ~ with A > 0 and  0 < ~ < 1 
such t h a t  P{[Sn/n] > 8} <= Agn  for all  n. F r o m  this  the  conclusion of the  
theorem follows in s t r a igh t fo rward  fashion.  

Le t  P *  be the  p roduc t  measure  induced  on the  process b y  the  marg ina l  
d i s t r ibu t ions .  Then  i t  is known  (see e.g. C~n~NOFF [1], CRAM~R [2]) t h a t  there  
exis t  number s  B, fi wi th  B > 0 and  0 < fl < 1 such t h a t  P*{]  Sn/n ] > 8} <= Bfl  n 
for al l  n. Choose an  in teger /c  such t h a t / c  =~ N,  where N is the  n u m b e r  occurr ing 
in the  defini t ion of  *-mixing processes, and  such t h a t  [1 4- /(#)] fi ~ 1. Le t  j be 
an  in teger  wi th  0 ~ j ~ ]c. Suppose  S is a set measurab le  wi th  respec t  to  the  
r a n d o m  var iables  X~k+j, i = 0 . . . .  , n - -  1. Then  we claim t h a t  

P (S) g [1 4- / (]c)]n p *  (S).  

This follows a t  once f rom the  def ini t ion of  *-mixing processes when S is a pro- 
duc t  of one-dimensional  Borel  sets, and  consequent ly  also for denumerab le  unions 
of d i s jo in t  sets of  th is  k ind.  The  inequa l i t y  then  follows f rom a fami l ia r  approx i -  
m a t i o n  a rgumen t .  

Now wri te  n = ]cm 4- r where 1 _~ r _~ k. Then  

k m - -  I 

j = l  / = 0  j = r + l i = 0  

and  we have  
k m-- I 

P{]&I > nS} < ~. P{]~. x,~+,l > (m + 1)8} 4- ~ P{ l~  X*~+, I > ma} 
j = l  i = 0  / ' =  r + l  i = 0  

m X ~<~[14-/(#)]m+Ip*{I ~ t~+Jl > (m 4-1) 8} 
j = l  i = 0  

k m - -  I 

+ ~ [1 4- l (k) ]  m P*  x . . , I  > m 8} 
j = r + l  i = 0  

r[1 4- l(Ic)]m+l Bflm+l + (Ic -- r) [1 4 - / ( l c ) ]mBf l  m ~ lcB:t km, 

where ~ = [1 4 - / (# ) ] f t .  Se t t ing  A = IcB/ak comple tes  the  proof.  
J u s t  as in t he  case of i ndependen t  r a n d o m  var iables  the  r equ i remen t  of  

ident ica l  marg ina l  d i s t r ibu t ion  m a y  he somewhat  relaxed.  W e  omi t  the  deta i ls .  
The r ema inde r  of the  sect ion is concerned wi th  two s t a n d a r d  forms of  the  

s t rong law of  large numbers .  Before s t a t ing  these  we shall  need some p re l imina ry  
results .  F o r  n = 1, 2 . . . .  le t  | be the  f ami ly  of  sets  each of which is a finite 
union  of  sets of  the  form {Xi ~ a/ ,  i = 1 . . . . .  n} where a l  . . . . .  an are  numbers  
wi th  -- oo G a/=< zo. 

L e m m a  1. Let A e | There exists finitely many sets 
A o ( :  empty s e t ) c A i  c ' " c A m  with each A j e |  and sets B i  . . . . .  Bm where 
B t = {Xn+l > a j} ,  a i  ~ ""  ~ am, such that 

m 

A = U  (A, - ( q  B,.  
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Pro@ Let  

A = U {x j  > ai,j;  j = 1 . . . . .  n + 1} where al, n+l ~ " "  ~< am, n+l. 

Choose 
i 

Bi = {Xn+l > ai, n+l} and As = ~ J { / l  > a]c,i;j = 1 . . . . .  n}; 
k = l  

i = -  1 , . . . , m .  

Lemma 2. Let P and Q be probability measures on (D, ~) satis/ying 

i) P { X i > a )  g Q ( X i > a ) ,  - c o < a ,  i = 1 , 2  . . . .  , 

ii) Q is a product measure, 
i - 1  

iii) i] B e ~  and C = {Xj > a) then P { B ( ' ] C )  <= P(B)Q(C)  for j---- 1,2 . . . . .  
1 

Then/or every n, i / A  ~ | we have P(A)  <= Q(A). 

Proo]. For  n = 1 the 1emma follows from i). Assume then tha t  the conclusion 
of  the ]emma holds for n < N and suppose A E | Choose Ao . . . . .  Am; B1, 
. . . .  Bm in accordance with lemma 1. Then 

on 

P(A)  = ~ P { ( A j -  AI_a)( ']B~}. 
i=1 

Now A j - - A j _ I ~ Z  and B j = { X N > a l }  
1 

for all j and hence from iii) we have 

m m - - 1  

P (A) ~< ~ P (A i - -  A3._l ) Q (Bj) = P (Am) Q (Bin) + ~. P (Aj) Q (Bj -- B~+I). 
i=i i=i 

From the induct ion hypothesis  we conclude 

P(A)  <~ Q(Am)Q(Bm) + ~ Q(A~)Q(Bj -- Bj+I) = Q(A),  
j = l  

since Q is a product  measure. 

Let  |  be the collection of sets A in ~ satisfying: if (X1 . . . . .  Xn) c A ,  
1 

and as ~ O, i = 1, . . . , n then (X1 + al . . . . .  Xn + an) ~ A. 

Lemma 3. Let P and Q be probability measures on ([2, ~) satis/ying the hypo- 
theses o/lemma 2. Then P (A) <= Q (A) for every A ~ | which is an open subset o/ 
Euclidean n-space. 

Pro@ I f  A e | and is open then 

A = 0 { X l  > as,j'; i = 1 . . . .  , n} .  
~'=1 

Let  
AN = [ J  {X~ > as, I; i = 1 . . . . .  n} .  

i=1 

Then AN e ~iv and hence P (Air) _--< Q (Ax) for every positive integer N.  Thus, 
by  continuity,  P (A) ~ Q (A). 

1" 
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Let  {Xn, n ~= 1} be a *-mixing process and for each n let Fn be the distribu- 
tion function of Xn. For 0 < fi < 1 let 0~n be a "fl-pereentile" of (1 + fi) Fn, 
i.e. ~n is a number  such tha t  (1 + fl) Fn(~n) ~= fl and (1 + fl) Fn(~n -- O) ~ ft. 
We define the distribution function Gn, ~ by 

0 ff X < ~ n  
G~,~(x)= ( l + f l )  F ~ ( x ) - - #  if x > _ ~ .  

Let P~ be the infinite product measure generated by  the sequenc e (Gn, ~}. 

Lemma 4. 

i) P (Xn > a) ~= P~ (Xn > a)/or every number a and every integer n. 

ii) P{A f"l (x~+~ > a)} __< P(A)  Pz(Xn§ > a) /or every A E ~ ,  every number 
1 

a, a~wl every integer Ic such that /(k) ~ fl, where / is the /unction occurring in the 
definition o/ *-mixing processes. 

The lemma follows easily from the definition of P~. 

Theorem 2. Let {Xn , n ~= 1} be a *-mixing process such that E Xn = O, E X2n ~ oo 
/or every n. Suppose 

i) the random variables o/the process are uni/ormly integrable and 
o o  

ii) ~ EX2n/n 2 < ~ .  
n = l  

Then P {lira Shin = 0} ~- 1. 
n --> o o  

Proof. Let fi be a positive number  and choose/c so tha t  /(k) < ft. Let  P~ be 
defined as above and let E~ (. } be expectation with respect to the measure P~. 
Now E~X~ G (1 + fl) EX~ so that ZE~X~/n2 < ~ .  It follows from the known 

n 

result for independent random variables tha t  
n 

Pe{l im ~. [X~+j - -  EeXik+j]/n = O} = 1 
n - - >  o o  i = 1  

for every j with O = < j < k .  Since for every ~ > 0 the set 

{ sup ~ [x~+j  - E~X~+j]/n <= O} 

is the complement of an open set it follows from lemma 3 and lemma 4 tha t  

P{l im sup ~ [Xi~+j - -  E~X~e+j]/n ~= O} = 1 
3 - - > 0 0  i = 1  

and consequently tha t  

P{l im sup ~ [Xi - -  E~X~]/n <~ O} = 1. 
n - - - ~  i ~ 1 

I f  we can show tha t  lim ~ E~Xi/n = 0 uniformly in n, then we will have 
f l ~ - O  i = 1 

P {lira sup ~ ~ O} = 1. Choose positive numbers c~ and ~ such that  
n -.-> ~ 
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~ F  

uniformly in i, where Fi is the distribution of Xi. Choose ~ such that 0 < ~ < 1/2 
and ~ < ~/2. Let Ti be a "/~-percentile" of (i ~- ~)F~ and for the sake of brevity 
assume tha t  each F~ is continuous a t  ~i- Then 

r  T i  

E~Xi = (1 -~ fi) f xdFi  = -- (1 ~- fi) f xdF~ 

since E Xi  ~ O. Hence 

]E~X~] <= (1 + 8)[Slxl dF~ + f i x  I dF~] <= 3/Z[~/2 + ~]  _< 3~/2. 
~ < v l ]  x < v i  

By considering the sequence {- -Xn} we get in exactly the same way 

P { l i m i n f ~ 0 } - - ~ l  so P{l im S~ = 0 } = 1  -C 
n - - + ~  n - - >  c ~  

completing the proof of the theorem. 

Lemma 5. Let {Pn, n ~ 0} and {qn, n ~ 0} be sequences o/nonnegative num- 
bers. Then ~ /nPn g ~ /nqn /or every nonnegative, nondecreasing sequence o/num- 

n n 

bets {/~} i/ana only i/ Zp~ <=~q, /or every i~teger k > O. 
i > = k  i ~ _ k  

Proo]. Let /n,~ : 0 for n = 0, ... , k - -  1; /n,~ -~ 1 for n ~ k. By choosing 
nonnegative linear combinations of such sequences we see that  ~ / n P n  g ~ ]nqn 

n 

under the hypothesis of the lemma for every nonnegative nondecreasing sequence 
{in} with finitely many  jumps. The sufficiency of the condition follows from a 
limiting argument.  The necessity is obvious. 

I f  A is a set we shall denote its set characteristic function by IA. 

Lemma 6. Let {An, n ~ 1} be a sequence of elements o/ ~ such that the sequence 
{IAn} is *-mixing, and let A : lim sup An. Then P(A)  = 0 unless ~ P(An) = r 

n - ->  o ~  n 

and in that case P (A) = 1. 

Proo]. I f  ~ P(An) < oo then P(A) = 0 in any case, hence assume ~ P(An) =c~. 
n n 

Choose ~ with 0 < ~ < 1, a positive integer k, and an integer j with 1 ~ j  ~ k such 
tha t  the *-mixing function /(k) < ~ and such that  ~ P(An~+j) = c~. Let  B 

n 

lira sup An~+i. I t  is clearly sufficient to show that  P(B)  = 1. I f  this is not 

the case choose m so tha t  (~.JA~k+~') < 1. Then 
i = m  

o o  

P ( ~ J  Ai~+~) = P (Am~+r ~" P(Am+~, ~+~ ( ~  A~+~) ~ - ' "  
i ~ ~ 

(1 - -  ~){P(Am~+i) ~- P (A(m+~)~+r ~-""  

=> (1 - -  ~) P }  [(,.JA~+I] c} ~ P(A~+~) 
i = m i = m 

c o  

M ~, P (Ai~+i) where M ~ 0. But  this is impossible. 
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Let  {Xn, n > 1} be a stochastic process. We define the sequences 

{p~,n;i>=O} and {Si, n;i>--_O} by pi, n = P { i < ~ [ X n ] < i + l }  

and s~,. = P{I X .  [ > i} = E P k ~ - .  
k > i  

Theorem 3. Let { Xn , n >- 1} be a *-mixing process such that ~ sup st, n < c~. 
i n 

~b 

Then P{lim ~ (X~ i - - E X ~ ) / n  = 0} = 1, /or every increasing sequence o] positive 
n--+ oo i = 1 

integers {kn}. 

Pro@ Since a subsequence of a *-mixing sequence is again *-mixing we shall 
assume that  kn = n for all n. Define pt = sup st, n --  sup sl+l, n- Then pi ~ 0 for 

n n 

all i, EPi -= 1, E ipi < 0% and EPi, n <= EP~ for every n and k. Now define 
i i i > k  i > k  

the *-mixing sequence {Yn, n >--_ 1} by 

Then 
if ]Xn] ~ n .  

n - - 1  n - - 1  

EY2n <= E (i + 1)2pi, n -~ n 2 E P ' , ,  ~ ~=0 (i + 1)2pi + n2 E P '  
i = 0  i>=n i~_n  

by lemma 5. From the properties of the sequence {p~} it is easily verified that  
E Y~/n 2 < ~ and it follows from the hypothesis tha t  the random variables Yn 

~z 

are uniformly integrable. Applying theorem 2 we obtain 

n Y P{lim E [  1 , - - E Y ~ ] / n = O } = I .  Now E I X n - - Y n  I 
n - - > ~  = 

<= Z (i + 1)p,,n + n Zp~,n <= ~ (i + 1 ) p g - / n E p i  
i ~ _ n  i ~ _ n  i > n  i > n  

which approaches zero, and 

E P { X . . r . }  = E s . , . <  
n n 

Thus P {Xn 4= Yn infinitely often} =- 0 and the theorem is proved. 

Corollary. Let {Xn, n ~ 1} be a *-mixing process such that the distribution of Xn 

is independent o/n. Then ~ X~Jn converges with probability one/or every increas- 
i = l  

ing sequence o/positive integers {kn} if and only i t E l Xn I < ~" I1 this is the edse 
then 

n 

P(limn_+r162 i=E/~i/n= E'i~n} = 1. 

We omit the proof. Note that  for independe~it land(ira vat~iab]e~ ~tie ~i~rd]laf:~ 
reduces to the well known KotmbgClrov stri~fig 1~9r ttf lat~ge niim}oet~s~ We nitre 
that  theorem 3 appears to be Iie~r even in th~ ifidepefiddi~ ~ase: 
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3. Examples 

We have yet to exhibit an example of a *-mixing proces. Clearly independent 
and m-dependent processes are *-mixing, and it is obvious tha t  the condition im- 
poses a strong form of asymptotic  independence. Jus t  how strong this form may  
be is demonstrated by Gaussian processes. As we shall show below, a Gaussian 
*-mixing process is always m-dependent for some nonnegative integer m. 

Lemma 7. Let (Xf ,  i ~ 1, 2} be normal random variables with means t*~, vari- 
ances (~, and eovariance ft. Then there exists a positive number c such that/or every 
pair o] Borel sets A, B 

] P { i l  ~ A, X2 ~ B} -- P { / 1  ~ A } P { i 2  ~ B} [ _<_ e P {X1 ~ A } P {X~ e B} 

i] and only i / f l  ~-- O. 
Proo/. I f  fl ~ 0 the inequality clearly holds for every e >~ 0. Suppose then 

tha t  the inequality holds for some c ~ 0 and assume for brevity tha t  /,~ ~ 0, 
2 1 for i 1, 2. From the inequality we easily deduce tha t  (7 i z 

] S/(X1) g(X2) dP -- ~ / (X1) dP yg( i~)  dP[ <= c ~ ] / ( i l ) [  dP ~ [ g(X2)[ dP 

whenever the integrals exist. Now let tl, t2 be real numbers. Then we have 

exp {�89 [t~ d- t 2 d- 2fltlt~]} =- E(e tlXl+to~X~) ~ (1 • c)E(etlXl)E(e t~x.-) 

= (~ + e) exp {~ [t~ + t~]}. 

Choosing tl = t2 sign fi = t we have I fll ~ (1/t~) log (1 d- c). Since t is arbitrary 
we have fi = O. 

As an immediate consequence of the lemma we have 

Theorem 4. Let {Xn, n >= 1} be a Gaussian process. Then the process is *-mix- 
ing i] and only i] it is m-dependent/or some nonnegative integer m. 

This result for stat ionary Gaussian processes but  under a somewhat weaker 
form of asymptot ic  independence was stated by Im~AGIMOV [4]. 

The remainder of the paper is devoted to exhibiting classes of processes which 
may  be *-mixing without being m-dependent. To this end let tQ be a Borel subset 
of the real line and let ~ be the a-algebra of Borel sets relative to ~Q. Let {Xn, 
n => 1} be a stationary ergodic Markov process with state space (~Q, | Then 
the transition probabilities P(x, A) may be taken to be regular, i.e. P(x, A) is 
Borel measurable for fixed A ~ | and is a probabili ty measure on | for fixed 
x ~ ~Q. The higher order transition probabilities are given by 

P(1)(x,A) = P (x ,A )  I xe~Q, A e |  

p(m+n) (x, A) = y p(m) (y, A) p(n) (x, dy) i m, n = 1, 2 . . . . .  

and the stationary probabili ty satisfies 

I - I ( A ) =  S P ( y , A )  I~(dy) ,  A e ~  

where we have changed to the notation that  is commonly used in the theory of 
Markov processes (see e.g. DooB [3], p. 90). The probabili ty measure on the pro- 
cess is then generated in the usual way by the relations 

P{Xm+n e A [ X m  = x ,  X r  = Yr, r < m} = P {Xm+n @ d I Xm ~- x} 

: P(n)(x,A) and P{Xn~A}----  I - I (A) .  
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The *-mixing condition for Markov processes reduces to a condition on one- 
dimensional sets as is shown in 

Lemma 8. Let m < n and e > O. I[ [ P ( A n B )  -- P ( A ) P ( B ) I  g e P ( A ) P ( B )  
m n + j  

/or A ~ ~ ,  B ~ ~. then the same inequality holds/or A E ~ ,  B ~ ~ /or an arbitrary 
m n i n 

positive inteffer j. 
Proo/. Let  A ~ ~ ,  B e ~ .  Then 

m n 

P(A ('~B) = Sp(n-m) (y, B)y~  (dy) <= (1 + e) ] p(n)I~ (dy). 
A A 

Since this inequality holds for all A e ~  we have p(n-m)(y, B) < (1 + e)P(B) 
! 

= (l + ~)l-I (B) for B ~ Z and U in a set whose complement has l -I  measnre 
n 

zero (a.e. ~ [ ) .  Now choose sets Am-~+l . . . . .  Am; Bn . . . . .  en+j-1 with A~ e ~ ,  
i 

B , ~  and let A = ( ' ~ A , ;  B=f"~Br  Then P ( A O B  ) 
i 

= ] 1-I (c~xl) S P (xl, dx2)... ] P (xk-1, dx~) f p(n-m)(xk, dyl)"" .~ P (59-1, dyj) 
Am-l~+ l A m-7~+ 2 A m  B n Bn+j-X 

<= S l-I (d~) ... S p (~-~, dx~) ~ (1 + ~) I-I (dye)... S p (YJ-~, dye) 
A m - k + l  .Am 1 ~  .Bn+i-1 

= (1 + e ) P ( A ) P ( B ) .  

By the usual measure extension arguments we find 

P ( A ( ' ~ B )  g (1 + e ) P ( A ) P ( B )  forM1 
m ~ + k  

A Z, Be5 
] n 

and a similar argument gives the inequality P ( A [ ~ B )  >= (1 - -  e ) P ( A ) P ( B ) .  
Lemma 8 enables us to state the *-mixing condition in terms of the stationary 

probability and the transition probabilities of the process as follows : There exists 
a positive integer N and *-mixing function /(k) defined for k => 2V such that  

] ffP(~)(x, B) l -I  (dx) - I-~ (A) I ~ ( B )  I =</(~) I~ (A)  ~ I ( B )  
A 

for all A, B ~ | and k >_-- N. Thus we have 

(1 --/(/c)) ~ I ( B )  =< p(k)(x, B) <= (1 + ](/c))l--[(B) 

a.e. ~-~, and in particular we see that  for/c >_ N almost all transition probabilities 
are absolutely continuous with respect t o I ~  , i.e. there exist nonnegative functions 
g(k) (x, y) such that  

P(~) (x, B) = f g(k) (x, y) ~ I  (dy) a.e. F [ "  
B 

Let a(k) (x, y) = g(~)(x, y) -- 1, and let ]~I • ~ be the product measure on 
(~ • ~2, | • | induced by ~-~. With this notation we can state Our basic result 
concerning *-mixing Markov processes. 

Theorem 5. Let {Xn, n ~- O, ~ 1, ...} be a stationary ergodic Marlcov process. 
Then the process is *-mixing i] and only i[ there exists a positive integer M and 
a number fi with 0 ~ fi < 1 such that 
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i) P(M)(x, A) is absolutely continuous with respect to ~ a.e. ~-[ and 

~) ~ x 1-[{I a(~)(x, Y) l > ~} = o. 
I /  these conditions are satisfied then the process is exponentially *-mixing, i.e. 

there exist positive numbers C and y with y < 1 such that Cy ~ is a *-mixing/unc- 
tion/or the process/or k ~ M. 

Proo/. Suppose the process is *-mixing. Choose an integer M ~ N and fl > 0 
such that  /(M) < fl < 1. The necessity of condition i) for M ~ N has already 
been discussed. As for ii) let A, B ~ | From the inequality ] p(M)(X, B) -- ~ [  (B) I 

/ (M) I-[  (B) it follows that  

i ~f~(-)(x, y) 1-I (dx) H(dyl  __</(M)YI x yI(A x B) 
A B  

and by the previously mentioned extension argument we obtain 

I ~ a(') (x, y) ]-[ (dx) I~  (dy) l =< 1 (M) 1-[ • l ~  (U) for all U ~ ~ • ~,  
U 

and ii) follows from the fact that  /(M) < 8. To prove sufficiency let M and fi 
be such that  i) and ii) hold. I f  k is a positive integer we have 

p(i+k) (x, B) : f p(k) (x, dy) p(M)(y, B) 
Y2 

= ~[y p(~)(x, dy)g(~)(y, ~)] ]-[ (d~) 
B Q  

and thus p(n)(x, B) is absolutely continuous with respect to ]-~ a.e. ~ [  for all 
n ~ M. From the relations between the transition probabilities and the station- 
dry probability we have for m, n ~ M 

Sa(~) (x, y) F/(dx) = Sa(~)(x, y) ]-[ (dy) = 0, 

each a.e. 1-I and consequently 

a(m+n) (x, y) = f a(m) (x, z)a(n) (z, y) ~-~ (dz) . 

Thus i f ] a  (/)(x, y ) ] g  fl a.e. I ~  • ~-[ then 

la(~')(x,y)l =< f[a(')(x,~)l la(')(~,y)[ I~(d~)=< ~ a.e. H • 1-I 
and more generally 

[~(~')(x, y) l =< ~ a.e. F / •  Y/ for ~ = 1, 2 . . . . .  

Now suppose p (n) (x, B) is absolutely continuous with respect to ~ with density 
g(n) (x, y) and k is a positive integer. Then 

p(n+~) (x, B) = f p(n) (y, B) p(k) (x, dy) = f f g(n) (y, z) P(~) (x, dy) ]-~ (dz) 
.B 

so that  the density of P(n+~)(x, B) has the same bounds as g(n)(x, y). Con- 
sequently we have l a(n) (x, Y) I ----< fi(n/i)-i a.e. V~ • ~-~ for all n > M. Now 

[ f p(n)(x, B) ~I (dx) -- I~ (A) ~ (B) I 
A 

--< f.t[ a(~) (x, y) l 1-I (dx) y/(dy) < ~(~/'- ~) I~  (~) I-I (B) 
A •  



10 J .R.  BL~rM, D. L. HAxsox and L. H. KOOPMAxs: 

for n => M, so tha t  Cy *~ with C --~ 1//~ and y =/~I/M is a *-mixing function for 
the process. The theorem is proved. 

We now turn to countable state space Markov processes. Let Y2 be a subset 
of the positive integers, 

1-~ = 1-~({J}) and p(n)(i , j)  = p(n)(i, {j}). 
i 

The *-mixing condition in this case becomes 
p(.M.) __/7 

sup ' < f i  
i , ] s D  --/~ 

for some positive integer M and some number/~ with 0 < / ~  < 1. Jus t  as in the 
proof of theorem 5 it follows tha t  this inequality must  hold for all p!,~) with n => M 
and consequently a necessary condition for a countable state space process to be 
*-mixing is tha t  ~(.n) > 0 for n sufficiently large. Thus every such process is ir- 
reducible and aperiodic. I t  is also easily verified tha t  in this case the condition 
of Doeblin (see e.g. DooB [3], p. 192) holds. 

I f  D is finite, i.e. ff the process is finite-state, then the process is *-mixing 
whenever it is irreducible and aperiodic. For in tha t  case it is known tha t  there 
are positive numbers C, y with y < 1 such tha t  for all (i, j) with I - [  > 0, I - I  > 0 

i ] 
we have ~'w~('n) _ ~I]  <---- Cyn for n sufficiently large and the *-mixing inequality 

J 
follows. One might conjecture tha t  every countable state space process which is 
irreducible and aperiodic and which satisfies Doeblin's condition is also *-mixing. 
The following example shows tha t  this is not the case. Le t / 2  = {1, 2 . . . .  } and set 

1/2 i f j = l  o r j = i + l  

Pi, j = 0 otherwise. 

Then I ~  = 1/2J > 0 for all j .  Yet  for every positive integer n there exist positive 
J 

integers i and j such tha t  ~(-n.) = 0. Consequently the process is not *-mixing yet  
obviously satisfies Doeblin's condition. 

We conclude this section by  exhibiting a fairly wide class of countable state 
space Markov processes which are *-mixing. To this end we note tha t  the identi ty 
I ~  - -  ~ ~Pi j "  implies infPij  =< I - I  =< sup pif. From this we easily verify tha t  the 

?" i i , i ] i 
following condition is sufficient for the process to be *-mixing. There exists fi 
with 0 < f l <  1 such tha t  for every j =  1,2 . . . .  we have s u p p i , j ~ ( 1 - k f l )  

i 
infpt , j .  Using this condition we may  construct *-mixing processes by setting 

i 
P~;I = PJ q-(di,1 - -  61+1,i) si, i , j  positive integers where {Pi ,J  >= 1} is a sequence 
'of pt~sitive numbers with ~.pj  = l, di, j is the Kronecker delta, and for each 

pibsitive integer i we have 0 _--< st =< min(1 - -P i ,P i+ l ) .  Then pi , j  __> 0 for all i 
and j and ~ P i , i  = 1 for all i so tha t  the t0t, j 's form a set of transition proba- 

bilities. I f  in addition there exists fl with 0 < fi < 1 such tha t  

[el+l ~- ei (1 ~- fl)]/fi ~ Pi+I  for i = 0, 1 . . . . .  

where we set e0 = 0, then the *-mixing condition holds. 
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As an  example ,  let  fl = 1/2 and  set Pi,j = (1/2)J -~ (~i,j - -  (~i+1, j) (1/2) n+~ where 
n > 3 b u t  o therwise  a rb i t r a ry .  

W e  conclude b y  b r i e f ly  men t ion ing  two o ther  t ypes  of s tochas t ic  processes 
which m a y  be *-mixing:  

i) I f  {Xn) is a *-mixing process and  F is a funct ion  of  k var iab les  then  the  
process { Yn) defined b y  Yn = F ( X n + I  . . . . .  Xn+~) is also *-mixing.  Note  t h a t  
while {Xn) m a y  be a Markov  process,  { Yn} will in general  no t  be Markovian .  

fi) LAMPE~TI and  SvPr~.s [5] have  discussed a class of  processes which t hey  
call  "cha ins  of  infini te order" .  Unde r  cer ta in  condi t ions such processes are  also 
*-mixing.  
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