Z. Wahrscheinlichkeitstheorie 2, 1—11 (1963)
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Stochastie Processes

By

J. R. Buum,* D. L. Hanson,** and L. H. Koopmans**

1. Introduetion and Summary

Let (2, 5, P) be a probability space and let {X,,n = 1,2, ...} be a sequence
of real-valued random variables defined on (2, 5, P). For each positive integer n
let Z be the smallest o-algebra with respect to which X, is measurable and for

n m
n < m let z be the smallest g-algebra with respect to which X, ..., X, are
n

jointly measurable.

Definition. The sequence {X,} will be called *-mixing if there exists a positive
integer N and a real-valued function f defined for the integers » = N such that

i) f is non-increasing with lim f(n) = 0, and

n—> 00
ii) if n = N, Ae%, Be then
I m+n
| P(4By — P(A) P(B)| < f(n)P(A) P(B).

In section 2 we prove several versions of the strong law of large numbers for
*.mixing sequences of random variables. Section 3 is devoted to a discussion of
the *-mixing condition and examples of such sequences.

2. Strong laws of large numbers

For convenience we shall assume that Q = HE; where each E; is a copy
i=1 m
of the real line and that X, is the nth coordinate projection. In that case Z is

n
the g-algebra of Borel sets on the coordinates n through m. For each

n=12,... let SnziXi.
i=1
Theorem 1. Let {X,,n = 1} be a *-mixing stochastic process such that
i) the marginal distribution of Xy, is independent of n.
ii) EX, = 0.
iii) the common marginal moment generating function of X, exists in a neigh-
borhood of the origin.
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Let 6 > 0. There exists numbers A and o with A >0, 0 << o << 1, such that
P{sup|Spu/m| >} < Adanr for n=12,....
M=n

Proof. We shall prove the existence of numbers 4, a with 4 > 0 and 0 <o <1
such that P{|Su/n| > 6} < Aa” for all n. From this the conclusion of the
theorem follows in straightforward fashion.

Let P* be the product measure induced on the process by the marginal
distributions. Then it is known (see e.g. CHERNOFF [I], CRaMER [2]) that there
exist numbers B, § with B > 0and 0 < § < 1 such that P*{|S,/n| > 6} < Bpn
for all n. Choose an integer & such that k¥ = N, where N is the number occurring
in the definition of *-mixing processes, and such that [1 4 f(k)]f < 1. Let j be
an integer with 0 << j < k. Suppose 8 is a set measurable with respect to the
random variables Xigis, ¢ =0, ...,n — 1. Then we claim that

P(8) = [1 4 f(k)]" P*(S).

This follows at once from the definition of *-mixing processes when § is a pro-
duct of one-dimensional Borel sets, and consequently also for denumerable unions
of disjoint sets of this kind. The inequality then follows from a familiar approxi-
mation argument.

Now write n = km -+ r where 1 <r < k. Then

7 m—1
Sp=> Z Xigrg + z > Xiks
j=1 ¥=0 J=r+1i=0
and we have
m—1

P{|8n| >nd} <ZP{|ZXM+:I > (m + 1)5}+ZP{|ZXW+9I > m o}

j=1 i=0 j=r+1 i=0
<Z[1+fk)]m+1P*{isz,|> m 1)}
7—1
+Z[1+fk)]mP*{|Zsz+j]>m6}
j=r+1

= [l + f(R)]m+ Bfm+t + (k — r) [1 + f(k)J™ Bf™ = k Bakm,

where o = [1 + f(k)] 8. Setting A = k B/a* completes the proof.
Just as in the case of independent random variables the requirement of
identical marginal distribution may be somewhat relaxed. We omit the details.
The remainder of the section is concerned with two standard forms of the
strong law of large numbers. Before stating these we shall need some preliminary
results. For n = 1,2, ... let &, be the family of sets each of which is a finite
union of sets of the form {X; >a;,i=1,...,n} where ay, ..., a, are numbers
with — o0 < a; < oo.
Lemma 1. Let A € ©y41 There exists finitely many sets
Ao (= empty set) cA1C--+CAp with each A;€S, and sets By,..., By where
={Xp1 >0}, a1 < - Zay, such that

=6 (45 — 430 () B;-
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Proof. Let

m

A=\UJ{X;>a,535=1,...,n+1} where a1, =" <am -
i=1 ,
Choose
‘
By = {Xpi1> a1} and Ay =\J{X;>ar;j=1,...,n};
r=1
t=1,...,m.
Lemma 2. Let P and @ be probability measures on (2, §) satisfying
i) P{X@>a} Z=QXi>a), —o<a, t=12 ...,

ii) @ ¢s a product measure,

i) 4f Bejiland C={X;>a}then P{B(\O} =< P(B)Q(C) forj=1,2,....
1

Then for every n, if 4 €&, we have P(4) < Q(4).

Proof. For n = 1 the lemma follows from i). Assume then that the conclusion
of the lemma holds for n < N and suppose 4 € ©y. Choose Ay, ..., dy; By,
..., By, in accordance with lemma 1. Then

P(4) =.ZIP {(4; — 4;-1) (") Bs} -
i=
N-1
Now Aj— A EZ and B; = {XN > aj}
1

for all j and hence from iii) we have

m m—1
PA)< P(4;— 4;1) Q(By) = P(Am) Q(Bm) + 2. P(4;)Q(B; — Bj).

j=1 =1

From the induction hypothesis we conclude
m—1
P(4) = Q(4n) Q(Bn) —l—le(Aa‘)Q(Bj — Bin) = Q(4),
i=

gince @) is a product measure.
(L
Let &, be the collection of sets 4 in z satisfying: if (Xq,..., X,) e 4,
1

and ¢; =0,3=1,...,n then (X1 +a1,..., X, +ay)e4d.

Lemma 3. Let P and @ be probability measures on (2, F) satisfying the hypo-
theses of lemma 2. Then P(A) < Q(A) for every A € S, which is an open subset of
Euclidean n-space.

Proof. If A €@, and is open then

A :U{X¢>am;i= 1,‘..,7&}.
=1
Let N
AN=U{Xi>am;i= 1,.‘.,7’14}.
i=1
Then Ay € Gy and hence P(4dy) < @(Ayn) for every positive integer N. Thus,
by continuity, P(4) < @(4).
1*
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Let {Xn, n = 1} be a *-mixing process and for each n let F, be the distribu-
tion function of X,. For 0 << § < 1 let ay be a “f-percentile” of (1 + £) Fy,
le. oy is a number such that (1 + ) Fp(az) = f and (1 + ) Fploan — 0) < 6.
We define the distribution function Gy, by

Gnﬁ(w)Z{O 1f v

’ I+ Fplx)—p if z=os.

Let Pg be the infinite product measure generated by the sequence {Gy, g}.
Lemma. 4.

1) P(Xy > a) £ Pg(Xn > a) for every number a and every integer n.
K

il) P{A(") (Xns+x > a)} < P(A) Pp(Xn+x > ) for every A€y, every number
1

a, and every integer k such that f(k) < B, where [ is the function occurring in the
definition of *-mixing processes.

The lemma follows easily from the definition of Pg.

Theorem 2. Let {X,,n =1} be a *-mixing process such that EX, =0, E X2 o0
for every n. Suppose

i} the random variables of the process are uniformly integrable and

i) > BX2n? < oo.

n=1

Then P {lim Syjn =0} = 1.

n—>co

Proof. Let § be a positive number and choose k£ so that f(k) < 8. Let Pg be
defined as above and let Eg{-} be expectation with respect to the measure Pg.
Now EgX2 < (1 + B) EX], so that > EzX;/n? < co. It follows from the known

n

result for independent random variables that
Pg{h_m z [sz+] — Eﬂsz_H]/n = O} =1

n—o0 i=1

for every j with 0 <j < k. Since for every ¢ > 0 the set
[

{sap > [Xipsj — B Xixrs]ln = 0}

hEnSii=1
is the complement of an open set it follows from lemma 3 and lemma 4 that

P {lim sup z [Xigsy — Bg Xipsgl/n <0} =1

n—oo {=1

and consequently that
P{lim supZ[X —EgXyjjn <0} =1.

n—oo §=1

If we can show that lim ZEﬁX;/n = 0 uniformly in #», then we will have
B~>0 i=1

P {lim sup —= < 0} = 1. Choose positive numbers « and d such that

=—>r 00
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dez =12 and [l|a|dF;<6/2
{lz}>a
uniformly in ¢, where F; is the distribution of X;. Choose § such that 0 <<f<1/2
and aff < §/2. Let 1; be a “f-percentile” of (1 + ) F; and for the sake of brevity
assume that each F; is continuous at 7;. Then

gince E X; = 0. Hence '
|BsX;| < (1 —]—,3[f]x]sz+f]x]sz]<3/2[6 124+ af] <36/2.

<
|x{><x le| £a

By considering the sequence {— X,} we get in exactly the same way

.. o8y
P{hmmeQO}zl so P{lim 7—0}_1

n—c0 n—>o00

completing the proof of the theorem.

Lemma 5. Let {pn,n = 0} and {gn, n = 0} be sequences of nonnegative num-
bers. Then Z fapn = Z fnan for every nonnegative, nondecreasing sequence of num-

n 7n
bers {fn} if and only if > p; < z(h for every integer k = 0.

izk izk
Proof. Let fu, 5 =0 for n=0,...,k—1; fs,5 =1 for » = k. By choosing
nonnegative linear combinations of such sequences we see that z fapn = Z fatn
n n

under the hypothesis of the lemma for every nonnegative nondecreasing sequence
{fa} with finitely many jumps. The sufficiency of the condition follows from a
limiting argument. The necessity is obvious.

If A4 is a set we shall denote its set characteristic function by 14.

Lemma 6. Let {A,,n = 1} be a sequence of elements of § such that the sequence
{14,} ts *-mizing, and let A = lim sup A,. Then P(A) = 0 unless Z P(d,) = oo,

n—>oo

and in that case P(A) = 1.
Proof. If z P(An) < oo then P(4)=0in any case, hence assume > P(4,)=co.

7
Choose § Wlth 0 < d <1, a positive integer k, and an integer § with 1 <j <k such
that the *-mixing function f(k) < ¢ and such that Z P(Apki;) = oo. Let B
»

= lim sup 4ugs. It is clearly sufficient to show that P(B) = 1. If this is not

>0

the case choose m so that P( UAZ;H; < 1. Then

i=m

UAUC'H) = P(Ami+s) + PAm+1, ks [ Amrss) + -
= (1 — ) {P(Amk+i) + P(Amr1yx+s) P(Afnpg) + -

= (1 —6) P} [UAucH} }ZP (Aur+)

T=1m

=M z P (A;z+;) where M > 0. But this is impossible.

i=m
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Let {X,,n = 1} be a stochastic process. We define the sequences
{Pi,n; =0} and {8,4;9=0} by pia=P{=|Xa|<it 1}
and s;,, = P{|Xn| =i} = Zpk.,n.
K=i

Theorem 3. Let {Xn,n = 1} be a *-mixing process such that > sup s;,n << oo.
5

"
Then P {lim Z Xy, — EXp)[n=0}=1, for every increasing sequence of positive
n—>ooi=1
integers {kn}.
Proof. Since a subsequence of a *-mixing sequence is again *-mixing we shall
assume that &, = »n for all n. Define p; = sup Si,m — sup 8¢+1,n- Lhen p; = 0 for

all s, sz =1, Zz_fpz<oo and Zpl 7 <sz for every n and k. Now define

izk
the *-mixing sequence {Yp,n > 1} by

v, — X, if | Xu|l<n
" e i [ Xz
Then

n—1
Z()( 2P, n+nzzpin~—z @+1)2pi+n22pi

= i=zn

ll/\

by lemma 5. From the properties of the sequence {p;} it is easily verified that
> EYZ[n? < oo and it follows from the hypothesis that the random variables Yy
n

are uniformly integrable. Applying theorem 2 we obtain

P {lim Z[Yi—E'Yi]/n;—O}:l. Now E|X,—Y,|

n—>o0 i=1
SE56E+Dpin+n2pnn=> 0+ Dpi+np
izn izn izn izn
which approaches zero, and
ZP{Xﬂ’ #Yan} :ZSQ,?}<OO.
n n

Thus P{X, + Y, infinitely often} = 0 and the theorem is proved.
Corollary. Let {X,, n = 1} be a *-mixing process such that the distribution of X,

ts independent of n. Then Z Xy;/n converges with probability one for every increas-

ing sequence of positive mtegers {kn} if and only if BE|Xy| < os. If this is the case
then
P{lim Zsz/n = EX ny=1.
n->00 ¢=1
We omit the proof. Note that for independerit randBm vahables the eorollary

reduces to the well known Kolmoigdrov strong law of lafge nitmbefs. We néte
that theorem 3 appears to be neWw even in the nideperideﬁt gase.
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3. Examples

We have yet to exhibit an example of a *-mixing proces. Clearly independent
and m-dependent processes are *-mixing, and it is obvious that the condition im-
poses a strong form of asymptotic independence. Just how strong this form may
be is demonstrated by Gaussian processes. As we shall show below, a Gaussian
*.mixing process is always m-dependent for some nonnegative integer m.

Lemma 7. Let {X;, ¢ = 1, 2} be normal random variables with means w;, vari-
ances o2, and covariance B. Then there exists a positive number ¢ such that for every
pair of Borel sets A, B

| P{X1€4, Xse B} — P{X1c 4} P{Xse B}| < ¢cP{X,c A} P{Xs¢c B}

if and only if f=0.

Proof. If § = 0 the inequality clearly holds for every ¢ = 0. Suppose then
that the inequality holds for some ¢ > 0 and assume for brevity that u; = 0,
o7 =1 for i = 1, 2. From the inequality we easily deduce that

| [1(X1)g(X2)dP — [{(X0)dP [¢(Xa)dP| <o f|f(X1)| AP [|g(Xa)|dP
whenever the integrals exist. Now let {1, f3 be real numbers. Then we have
exp {} [t + £ -+ 2 ft1te]} = B (ehFrriXe) < (1 - ¢) B (h¥) B (e¥2)
= (1 +c)exp {3 [ + &1}
Choosing t; = ta sign f =& we have || = (1/2)log (1 + ¢). Since ¢ is arbitrary

we have § = 0.

As an immediate consequence of the lemma we have

Theorem 4. Let {X,,n = 1} be a Gaussian process. Then the process is *-mix-
ing if and only if it is m-dependent for some nonnegative integer m.

This result for stationary Gaussian processes but under a somewhat weaker
form of asymptotic independence was stated by IBracmvMov [4].

The remainder of the paper is devoted to exhibiting classes of processes which
may be *-mixing without being m-dependent. To this end let £ be a Borel subset
of the real line and let @ be the o-algebra of Borel sets relative to 2. Let {X,,
n =1} be a stationary ergodic Markov process with state space (2, &). Then
the transition probabilities P (x, A) may be taken to be regular, i.e. Pz, 4) is
Borel measurable for fixed 4 € © and is a probability measure on & for fixed
x € £2. The higher order transition probabilities are given by

POz, A) = P(x, A) xef, Ac€
Pmin) (x, A) :fP(m) (y, AYPMW (z,dy) | m,n=1,2,...,

and the stationary probability satisfies
[T =[Py A]]dy), Ac@

where we have changed to the notation that is commonly used in the theory of

Markov processes (see e.g. Doos [3], p. 90). The probability measure on the pro-
cess is then generated in the usual way by the relations

PXmined|Xm=12, X, =yr, 7 <m} = P{Xpmencd| Xp =2}
= P (x, 4) and P{XnGA}IH(A)-
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The *-mixing condition for Markov processes reduces to a condition on one-
dimensional sets as is shown in
Lemma 8. Let m < nand ¢ > 0. If |P(ANB) — P(A) (B )| < e¢PA)P(B)

for Ae Z Be Z then the same inequality holds for A EZ Be z for an arbitrary

positive mteger J-
Proof. Let Ae>, Be>. Then
m n

PANB) = [p=my, B[y =1+ e [ P(B] ]y .
A A

Sinee this inequality holds for all 4 Z we have p(n—m)(y, B) < (1 + &) P(B)

=1+ e)H (B) for Be z and y in amset whose complement has H measure

zero (a.e. 1—[). Now ehoost: sets Am—p+1, .. » Am; Bus ..., Byijor with 4; e Z,

Biez and let 4 ={"A4;; B={")Bi. Then P(A()B) '
7

:jn(dxl)fP(xl,dxg) fP Zr_1, dxk)fPW ™) (g, dy1) - [ Pyi-1, dys)

Am—p+1 Am—r+2 Bptj—1
< (T]da)- fP (- Ldﬂck f +8)H d?/l o ( Pys-1, dys)
Am—k+1 By Br+j-1

—(+4eP (A)P(B).

By the usual measure extension arguments we find
n-+k

P(ANB) < (1 + s) P(4) P(B) forall Aez Bez

and a similar argument gives the inequality P(4(B) = (1 —¢) P(4) P(B).

Lemma 8 enables us to state the *-mixing condition in terms of the stationary
probability and the transition probabilities of the process as follows: There exists
a positive integer N and *-mixing function f (k) defined for & = IV such that

|j P BT~ [T 1) = /@ T 16
for all 4, Be®© and k= N. Thus we have
Q—f®)[[(B) < PW (@ B) <1+ fk)][(B

a.e. H and in particular we see that for k = N almost all transition probabilities
are absolutely continuous with respect ton i.e. there exist nonnegative functions
g (2, y) such that

P® (x, B) = fg(k) (@) [ [(dy) ae. ].

Let a® (z,y) = g® (x,y) — 1, and let [ [x [ be the product measure on
(2 x £, @ x &) induced by n With this notation we can state our basic result
concerning *-mixing Markov processes.

Theorem 5. Let {X,,n =0, +1,...} be a stationary ergodic Markov process.
Then the process is *-miwing if and only if there exists a positive infeger M and
a number § with 0 < § << 1 such that



On the Strong Law of Large Numbers for a Class of Stochastic Processes 9

i) PUD(x, A) s absolutely continuous with respect to | | a.e. | | and
i) %I T{le @ 9)| > B} =o.

If these conditions are satisfied then the process is exponentially *-mizing, i.e.
there exist positive numbers C and y with y < 1 such that Cy¥ is a *-mixing func-
tion for the process for k = M.

Proof. Suppose the process is *-mixing. Choose an integer M = N and § > 0
such that f(M) < B < 1. The necessity of condition i) for M = N has already
been discussed. As for ii) let 4, B e ©. From the inequality | P (2, B) — [ [ (B)]
= f(M) H(B) it follows that

|[[a® @, y) [T@x) [Ty =fAD][X]](4 % B)
AB

and by the previously mentioned extension argument we obtain

| [a® (@, ) [[dx) [[@y)| <f@O[[x]](U) forall Ue©x8,
U

and ii) follows from the fact that f(M) << f. To prove sufficiency let M and §
be such that i) and ii) hold. If % is a positive integer we have

POLER (a, B) = [ P®) (&, dy) PO (y, B)
0
= [[[ P® (&, dy) g™ (y,2)] | [ (d2)
B 2

and thus P® (x, B) is absolutely continuous with respect to 1_[ a.e. 1_[ for all
n = M. From the relations between the transition probabilities and the station-
ary probability we have for m, n = M

{am (@,y) [ [dx) = [am (x,y) [ [(dy) =0,
each a.e. n and consequently
a(mEn) (g, 4) = fa(m) (z, 2)a™ (z,y) H (dz) .
Thus if |a® (z,y)| < B a.e. [ [ x ][] then
0830z, )] = [[a0(@,9] | a0z, )] [](@2) S 6 ae. TTX]]
and more generally
[a%™) (z, )| < p* ae. [[x]] for k=1,2,....

Now suppose p (™ (z, B) is absolutely continuous with respect to 1—[ with density
g™ (x, 4) and k is a positive integer. Then

p) (z, B) = [ P®) (y, B) PO (x,dy) = [ [ g (y,2) P® (z, dy) [ ] (de)
B

so that the density of P(*'%)(x, B) has the same bounds as ¢ (x,y). Con-
sequently we have [a® (z, y)| < @™ ~1 ae. [ [ x]] for all » = M. Now

| [ PO (z, B) [ T(da) — [[(A) [ [(B)]
A
= [[la®™ @,y|][@d) [Ty S~ V[T ]]B)

AxXB
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for n = M, so that Cy» with ¢ = 1/8 and y = BV js a *-mixing function for
the process. The theorem is proved.

We now turn to countable state space Markov processes. Let £ be a subset
of the positive integers,

[T=T11W}H and p™(i,j) = Pm(,{j}).
7

The *-mixing condition in this case becomes
Vi)
|

7
for some positive integer M and some number f with 0 < § < 1. Just as in the

proof of theorem 5 it follows that this inequality must hold for all p{"¥ with n = M
and consequently a necessary condition for a countable state space process to be
*.mixing is that p{® > 0 for » sufficiently large. Thus every such process is ir-
reducible and aperiodic. It is also easily verified that in this case the condition
of Doeblin (see e.g. Doos [3], p. 192) holds.
If £ is finite, i.e. if the process is finite-state, then the process is *-mixing
whenever it is irreducible and aperiodic. For in that case it is known that there
are positive numbers C, y with y << 1 such that for all (7, j) with H > 0, H >0

sup
1,jER

=

we have p(") < Cyn for n sufficiently large and the * mlxmg ine uallty
%] ) Y y larg q

j
follows. One might conjecture that every countable state space process which is
irreducible and aperiodic and which satisfies Doeblin’s condition is also *-mixing.
The following example shows that this is not the case. Let £ = {1, 2, ...} and set

12if j=1lorj=1di-1
P10 otherwise.
Then 1_[ = 1/27 > 0 for all 5. Yet for every positive integer n there exist positive
mtegers ¢ and j such that p(”) = 0. Consequently the process is not *-mixing yet
obviously satisfies Doeblin’s condition.
We conclude this section by exhibiting a fairly wide class of countable state

space Markov processes which are *.mixing. To this end we note that the identity
n z Hp” implies inf p;; < n = su_p pi;. From this we easily verify that the

followmg condl‘mon is sufﬁment for the process to be *-mixing. There exists
with 0 << § < 1 such that for every j=1,2,... we have supp;,; < (1 + )
i

inf p;, ;. Using this condition we may construct *-mixing processes by setting
i

Z)“i',j = p; + (8s,7 — 0441,5) &, 1, J positive integers where {p;,j = 1} is a sequence
of positive numbers with > p; = 1, &;,; is the Kronecker delta, and for each

7
positive integer i we have 0 =< & < min (1l — p;, pi+1). Then p;,; = 0 for all ¢
and j and Z pi,; = 1 for all 4 so that the p; ;s form a set of transition proba-
i
bilities. If in addition there exists § with 0 << # < 1 such that

[8i+1+8i(1+ﬂ)]/,3 épi‘i’l for Z:O: 17---:
where we set g9 = 0, then the *-mixing condition holds.
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As an example, let § = 1/2 and set p; ; = (1/2)7 + (84,5 — 0441, 1) (1/2)»+ where
n = 3 but otherwise arbitrary.

We conclude by briefly mentioning two other types of stochastic processes
which may be *-mixing:

1) If {X,} is a *.mixing process and F is a function of % variables then the
process {¥,} defined by Yy = F(Xy11,..., Xyez) is also *-mixing. Note that
while {X,} may be a Markov process, {¥,} will in general not be Markovian.

ii) LampERTI and SurpEs [5] have discussed a class of processes which they
call ““chains of infinite order”. Under certain conditions such processes are also
*.mixing.
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