# Stochastic Differential Equations and Nilpotent Lie Algebras 

Yuiti Yamato<br>Department of Mathematics, Hiroshima University, Hiroshima, Japan

## 1. Introduction

Given $C^{\infty}$-vector fields $A_{i}=\sum_{j=1}^{d} A_{i}^{j}(x) \frac{\partial}{\partial x^{i}}, 0 \leqq i \leqq n$, on $\mathbb{R}^{d}$ and an $n$-dimensional Brownian motion $\left(B_{t}^{1}, \ldots, B_{t}^{n}\right)$, we consider the stochastic differential equation

$$
\begin{align*}
d X_{t}^{i} & =\sum_{j=1}^{n} A_{j}^{i}\left(X_{t}\right) \circ d B_{t}^{j}+A_{0}^{i}\left(X_{t}\right) d t, \quad 1 \leqq i \leqq d  \tag{1.1-1}\\
X_{0} & =x \in \mathbb{R}^{d} \tag{1.1-2}
\end{align*}
$$

where the symbol $\circ$ denotes the symmetric stochastic differential of Stratonovich (Itô, K. [4]). We denote by $\mathscr{L}\left(A_{1}, \ldots, A_{n}\right)$ the Lie subalgebra of $\mathfrak{X}\left(\mathbb{R}^{d}\right)$ generated by $A_{1}, \ldots, A_{n}$, where $\mathfrak{X}\left(\mathbb{R}^{d}\right)$ is the Lie algebra of all $C^{\infty}$-vector fields on $\mathbb{R}^{d}$ with the bracket product:

$$
[X, Y]=X Y-Y X, \quad X, Y \in \mathfrak{X}\left(\mathbb{R}^{d}\right) .
$$

We also denote by $C\left([0, \infty) \rightarrow \mathbb{R}^{n}\right)$ the set of all continuous functions $U_{t}$, $t \in[0, \infty)$, with values in $\mathbb{R}^{n}$.

Recently, Doss, H. [1, 2] showed that, if the total differential equation

$$
\begin{align*}
\frac{\partial}{\partial \beta^{i}} h^{j}(\alpha, \beta) & =A_{i}^{j}(h(\alpha, \beta)), \quad 1 \leqq i \leqq n, \quad 1 \leqq j \leqq d,  \tag{1.2-1}\\
h(\alpha, 0) & =\alpha \tag{1.2-2}
\end{align*}
$$

$\left(\alpha \in \mathbb{R}^{d}, \beta \in \mathbb{R}^{n}, h=\left(h^{1}, \ldots, h^{d}\right)\right)$ is completely integrable, then the solution of (1.1) can be expressed in the form

$$
\begin{equation*}
X_{t}=h\left(\Phi(x, B .)_{t}, B_{t}\right), \tag{1.3}
\end{equation*}
$$

where the functional

$$
\Phi: \mathbb{R}^{d} \times C\left([0, \infty) \rightarrow \mathbb{R}^{n}\right) \rightarrow C\left([0, \infty) \rightarrow \mathbb{R}^{d}\right)
$$

is obtained by solving certain ordinary differential equation. One can easily see that the integrability condition of (1.2) is equivalent to the condition that the Lie algebra $\mathscr{L}\left(A_{1}, \ldots, A_{n}\right)$ is Abelian. On the other hand, Gaveau, B. [3] treated a special class of stochastic differential equations in the case when $\mathscr{L}\left(A_{1}, \ldots, A_{n}\right)$ is not Abelian. For example, consider the case when

$$
A_{1}=\frac{\partial}{\partial x^{1}}+2 x^{2} \frac{\partial}{\partial x^{3}}, \quad A_{2}=\frac{\partial}{\partial x^{2}}-2 x^{1} \frac{\partial}{\partial x^{3}}, \quad A_{0}=0
$$

$(d=3, n=2)$. Then, $\mathscr{L}\left(A_{1}, A_{2}\right)$ is nilpotent ${ }^{1}$ of step 2 and $X_{t}$ is expressed as a function of multiple Wiener integrals of order $\leqq 2$ (see Example 2.1 of the next section). These works of Doss and Gaveau suggest that there will be a general relation between
(a) the representability of the solutions of stochastic differential equations in a form similar to (1.3) by means of multiple Wiener integrals, and
(b) the nilpotent property of the associated Lie algebras.

The purpose of this paper is to investigate such a relation in full under a general setting.

Before stating our main results, we must introduce some notations. $E$ denotes either the set $\{0, \ldots, n\}$ or the set $\{1, \ldots, n\}$; it will be decided in each occasion. We put

$$
\begin{aligned}
& E(p)=\left\{I=\left(i_{1}, \ldots, i_{a}\right) ; i_{1}, \ldots, i_{a} \in E, 1 \leqq a \leqq p\right\}, \quad p=1,2, \ldots, \\
& E(\infty)=\bigcup_{p=1}^{\infty} E(p)
\end{aligned}
$$

and define vector fields $A_{I}$ for $I \in E(\infty)$ inductively by the formula

$$
\begin{equation*}
A_{\left(i_{1}, \ldots, i_{a}\right)}=\left[A_{\left(i_{1}, \ldots, i_{a-1}\right)}, A_{i_{a}}\right] . \tag{1.4}
\end{equation*}
$$

For simplicity, we assume that the components of $A_{I}, I \in E(\infty)$, are Lipschitz continuous on $\mathbb{R}^{d}$. We also define processes $B_{t}^{I}, t \geqq 0, I \in E(\infty)$, inductively by the formula

$$
\begin{equation*}
B_{t}^{\left(i_{1}, \ldots, i_{a}\right)}=\int_{0}^{t} B_{s}^{\left(i_{1}, \ldots, i_{a-1}\right)} \circ d B_{s}^{i_{a}}, \tag{1.5}
\end{equation*}
$$

where $B_{t}^{0}=t, t \geqq 0$, by definition, and from now on we write $A_{i_{1}, \ldots, i_{a}}$ and $B_{t}^{i_{1}, \ldots, i_{a}}$ instead of $A_{\left(i_{1}, \ldots, i_{\alpha}\right)}$ and $B_{t}^{\left(i_{1}, \ldots, i_{a}\right)}$, respectively.

[^0]vanishes, where
$$
[\mathscr{A}, \mathscr{B}]=\left\{\sum_{i=1}^{k}\left[a_{i}, b_{\mathrm{i}}\right] ; a_{i} \in A, b_{i} \in B, i=1, \ldots, k, k=1,2, \ldots\right\}
$$
for each $\mathscr{A}, \mathscr{B} \subset \mathscr{L}$

The main result (Theorem 2.1) of Section 2 is now stated as follows: If $\mathscr{L}\left(A_{0}, \ldots, A_{n}\right)$ is nilpotent of step $p$, then there exist a subset $F$ of $E(p)(E$ $=\{0, \ldots, n\})$ and a function $h \in C^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{\# F} \rightarrow \mathbb{R}^{d}\right)^{2}$ with the property that

$$
X_{t}=h\left(x,\left(B_{t}^{I}\right)_{I \in F}\right)
$$

is the solution of stochastic differential equation (1.1) for each $x \in \mathbb{R}^{d}$. The proof of this theorem will be given in Section 3. The converse of this theorem is also true as will be proved in Section 4. An extension of a result of Doss, H. [1, 2] will then be presented in Section 5. Namely, we will prove the following theorem: If $\mathscr{L}\left(A_{1}, \ldots, A_{n}\right)$ is nilpotent of step $p$, then there exist a subset $F$ of $E(p)(E=\{1, \ldots, n\})$, a function $h \in C^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{\# F} \rightarrow \mathbb{R}^{d}\right)$ and a functional

$$
\Phi: \mathbb{R}^{d} \times C\left([0, \infty) \rightarrow \mathbb{R}^{\# F}\right) \rightarrow C\left([0, \infty) \rightarrow \mathbb{R}^{d}\right)
$$

having the property that

$$
X_{t}=h\left(\Phi\left(x,\left(B^{I}\right)_{I \in F}\right)_{t},\left(B_{t}^{I}\right)_{X \in F}\right), \quad t \geqq 0,
$$

is the solution of (1.1) for each $x \in \mathbb{R}^{d}$.

## 2. Construction of a Functional when $\mathscr{L}\left(A_{0}, \ldots, A_{n}\right)$ is Nilpotent

In Sections 2 and 3, we put $E=\{0, \ldots, n\}$. We fix a positive integer $p$. The set

$$
\left\{y=\left(y^{I}\right)_{I \in E(p)} ; y^{I} \in \mathbb{R}, I \in E(p)\right\}
$$

will be identified with $\mathbb{R}^{m}$, where $m=\# E(p)$. The coordinate system on $\mathbb{R}^{m}$ is also denoted by $y^{I}, I \in E(p)$. We define vector fields $Q_{i}, i \in E$, on $\mathbb{R}^{m}$ by

$$
\begin{equation*}
Q_{i}=\frac{\partial}{\partial y^{i}}+\sum_{\substack{a+1 \leq p \\ j_{1}, \ldots, j_{a} \in E}} y^{j_{1} \ldots, j_{a}} \frac{\partial}{\partial y^{j_{1} \ldots, j_{a} \cdot i}} . \tag{2.1}
\end{equation*}
$$

We will denote by $\mathscr{L}\left(Q_{i}+A_{i}, i \in E\right)$ the Lie algebra generated by the vector fields $Q_{i}+A_{i}, i \in E$, on $\mathbb{R}^{m+d}$.

Let $\mathbb{R}(E)$ be the linear space with basis $E$ and let $\mathbb{T}(E)$ be the tensor algebra based on $\mathbb{R}(E)$, i.e.,

$$
\mathbb{T}(E)=\mathbb{R} \oplus \mathbb{R}(E) \oplus(\mathbb{R}(E) \otimes(\mathbb{R} E)) \oplus \ldots
$$

Define the bracket product in $\Pi(E)$ :

$$
[a, b]=a \otimes b-b \otimes a, a, b \in \mathbb{T}(E) .
$$

Let $\mathbb{I L}(E)$ be the Lie subalgebra of $\mathbb{T}(E)$ generated by $E$. We denote by $\tau$ and $\lambda$ the injections: $E \rightarrow \mathbb{T}(E)$ and $E \rightarrow \mathbb{L}(E)$ respectively. Recall that $(\mathbb{T}(E), \tau)$ is a free algebra generated by $E$, i.e., for each algebra $\mathscr{A}$ and a mapping $\theta: E \rightarrow \mathscr{A}$, there

[^1]exists a unique homomorphism $\theta^{\prime}: \mathbb{T}(E) \rightarrow \mathscr{A}$ such that $\theta^{\prime} \circ \tau=\theta$. Recall also that $(\mathbb{L}(E), \lambda)$ is a free Lie algebra generated by $E$, i.e., for each Lie algebra $\mathscr{L}$ and a mapping $\theta: E \rightarrow \mathscr{L}$, there exists a unique homomorphism $\theta^{\prime}: \mathbb{L}(E) \rightarrow \mathscr{L}$ such that $\theta^{\prime} \circ \lambda=\theta$. We define $\left[i_{1}, \ldots, i_{a}\right] \in \mathbb{L}(E)$ for $\left(i_{1}, \ldots, i_{a}\right) \in E(\infty)$ by
$$
\left[i_{1}, \ldots, i_{a}\right]=\left[\left[i_{1}, \ldots, i_{a-1}\right], i_{a}\right]
$$
inductively. Each $\left[i_{1}, \ldots, i_{a}\right]$ is expressed as
\[

$$
\begin{equation*}
\left[i_{1}, \ldots, i_{a}\right]=\sum_{\left(j_{1}, \ldots, j_{b}\right) \in E(\infty)} c_{i_{1}, \ldots, i_{a}}^{i_{1}, \ldots, j_{b}} j_{1} \otimes \ldots \otimes j_{b} \tag{2.2}
\end{equation*}
$$

\]

and coefficients $c_{i_{1}}^{j_{1}, \ldots, i_{a}}$, $i_{b}$ are uniquely determined by (2.2). We denote by $C(E, p)$ the matrix $\left(c_{I}^{I}\right)_{I, J \in E(p)}$.

Since $c_{i}^{j}=\delta_{i}^{j}, i, j \in E$, we can always take a subset $F \subset E(p)$ that satisfies
Property 2.1. $F$ is a maximal subset of $E(p)$ such that the column vectors of $C(E, p):\left(c_{I}^{J}\right)_{I \in E(p)}$ for $J \in F$ are linearly independent.

Let $r$ be the rank of the matrix $C(E, p)$ and fix a bijection:

$$
\begin{equation*}
v: F+E(p) \backslash F+\{1, \ldots, d\} \rightarrow\{1, \ldots, m+d\} \tag{2.3}
\end{equation*}
$$

with $v(F)=\{1, \ldots, r\}, v(E(p) \backslash F)=\{r+1, \ldots, m\}, v(\{1, \ldots, d\})=\{m+1, \ldots, m+d\}$, where $F+E(p) \backslash F+\{1, \ldots, d\}$ is the direct sum of these sets.

Proposition 2.1. Suppose that $\mathscr{L}\left(A_{i}, i \in E\right)$ is nilpotent of step $p$. Then we have
i) $\mathscr{D} \equiv\left\{\mathscr{L}\left(Q_{i}+A_{i}, i \in E\right)_{q} ; q \in \mathbb{R}^{m+d}\right\}$ is an $r$-dimensional differential system that satisfies the integrability condition.
ii) For each $F \subset E(p)$ with Property 2.1, there exists a unique function $f \in C^{\infty}\left(\mathbb{R}^{m+d} \times \mathbb{R}^{r} \rightarrow \mathbb{R}^{m+d}\right)$ satisfying the followings:
a) $f^{i}(q ; u)=u^{i}$ for each $1 \leqq i \leqq r, q \in \mathbb{R}^{m+d}, u \in \mathbb{R}^{r}$.
b) $M_{q} \equiv\left\{f(q ; u) ; u \in \mathbb{R}^{r}\right\}$ is a leaf ${ }^{3}$ of $\mathscr{D}$, for each $q \in \mathbb{R}^{m+d}$.
c) $f\left(q ; q^{1}, \ldots, q^{r}\right)=q$ for each $q=\left(q^{1}, \ldots, q^{m+d}\right) \in \mathbb{R}^{m+d}$.

Now we can state
Theorem 2.1. Suppose that $\mathscr{L}\left(A_{0}, \ldots, A_{n}\right)$ is nilpotent of step $p$. Let $F$ be a subset of $E(p)(E=\{0, \ldots, n\})$ with Property 2.1. Then

$$
X_{t}^{i}=f^{\nu(i)}(\underbrace{0, \ldots, 0}_{m}, x ; B_{t}^{F}), \quad 1 \leqq i \leqq d, \quad t \geqq 0
$$

is the solution of (1.1) for each $x \in \mathbb{R}^{d}$, where $B_{t}^{F}=\left(B_{t}^{I}\right)_{I \in F}$.
We present
Example 2.1. Let $d=3, n=2, A_{1}=\frac{\partial}{\partial x^{1}}+2 x^{2} \frac{\partial}{\partial x^{3}}, A_{2}=\frac{\partial}{\partial x^{2}}-2 x^{1} \frac{\partial}{\partial x^{3}}, A_{0}=0$.

[^2]Then $A_{1.2}=-4 \frac{\partial}{\partial x^{3}}, A_{1,2,1}=A_{1,2,2}=0$. Hence $\mathscr{L}\left(A_{0}, A_{1}, A_{2}\right)$ is nilpotent of step 2 . We may take $F=\{0,1,2,(0,1),(0,2),(1,2)\}$. Noting that (1.1-1) takes the form:

$$
\left[\begin{array}{l}
d X_{t}^{1} \\
d X_{t}^{2} \\
d X_{t}^{3}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
2 X_{i}^{2} & -2 X_{t}^{2}
\end{array}\right] \circ\left[\begin{array}{l}
d B_{t}^{1} \\
d B_{t}^{2}
\end{array}\right],
$$

we have

$$
X_{t}=\left[\begin{array}{l}
x^{1}+B_{t}^{1} \\
x^{2}+B_{t}^{2} \\
x^{3}+2\left(x^{2} B_{t}^{1}-x^{1} B_{t}^{2}\right)+2\left(B_{t}^{1} B_{t}^{2}-2 B_{t}^{1,2}\right)
\end{array}\right],
$$

where $x=\left(x^{1}, x^{2}, x^{3}\right)$.

## 3. Proof of Results in Section 2

First we prepare several lemmas. Recall that $Q_{i}, i \in E$, was defined by (2.1). We define

$$
Q_{i_{1}, \ldots i_{a}}=\left[Q_{i_{1}, \ldots, i_{a-1}}, Q_{i a}\right]
$$

inductively for $\left(i_{1}, \ldots, i_{a}\right) \in E(\infty)$.
Lemma 3.1. i) For each $\left(i_{1}, \ldots, i_{a}\right) \in E(p)$, we have

$$
\begin{aligned}
Q_{i_{1}, \ldots, i_{a}}= & \sum_{j_{1}, \ldots, j_{a} \in E} c_{i_{1}, \ldots, i_{a}}^{j_{1}, \ldots \ldots j_{a}}\left(\frac{\partial}{\partial y^{j_{1} \ldots, j_{a}}}\right. \\
& \left.+\sum_{\substack{b+a \leq p \\
k_{1}, \ldots, k_{b} \in E}} y^{k_{1}, \ldots, k_{b}} \frac{\partial}{\partial y^{k_{1}, \ldots, k_{b}, j_{i}, \ldots, j_{a}}}\right) .
\end{aligned}
$$

ii) For each $\left(i_{1}, \ldots, i_{a}\right) \in E(\infty) \backslash E(p)$, we have

$$
Q_{i_{1}, \ldots, i_{a}}=0
$$

Proof. i) We can easily verify

$$
Q_{i_{1}, \ldots . i_{a}}=\sum_{j_{1}, \ldots, j_{a} \in E} c_{i_{1}, \ldots, i_{a}}^{j_{1}, \ldots, j_{a}} Q_{j_{1}} \ldots Q_{j_{a}} .
$$

Hence, it is enough to prove

$$
\begin{aligned}
Q_{j_{1}} \ldots Q_{j a} \sim & \frac{\partial}{\partial y^{j_{1}, \ldots, j_{a}}} \\
& \quad+\sum_{\substack{b+a \leq p \\
k_{1}, \ldots, k_{b} \in E}} y^{k_{1}, \ldots, k_{b}} \frac{\partial}{\partial y^{k_{1} \ldots, k_{b}, j_{1}, \ldots, j_{a}}},
\end{aligned}
$$

where $\sim$ denotes coincidence except differential operators of degree $\geqq 2$. We have, for each $b \leqq p-1$ and $j_{1}, \ldots, j_{b}, j \in E$,

$$
\begin{aligned}
& \left(\frac{\partial}{\partial y^{j_{1}, \ldots, j_{b}}}+\sum_{\substack{c+b \leq p \\
k_{1}, \ldots, k_{c} \in E}} y^{k_{1}, \ldots, k_{c}} \frac{\partial}{\partial y^{k_{1}, \ldots, k_{c}, j_{c}, \ldots, j_{b}}}\right) Q_{j} \\
& \sim\left(\frac{\partial}{\partial y^{j_{1}, \ldots, j_{b}}}+\sum_{\substack{c+b \leq p \\
k_{1}, \ldots, \bar{k}_{c} \in E}} y^{k_{1}, \ldots, k_{c}} \frac{\partial}{\partial y^{k_{1}, \ldots, k_{c}, j_{1}, \ldots, j_{b}}}\right) \\
& \quad \times\left(\sum_{\substack{a+1 \leq p \\
i_{1}, \ldots, i_{a} E E}} y^{i_{1}, \ldots, i_{a}} \frac{\partial}{\partial y^{i_{1}, \ldots, i_{a}, j}}\right) \\
& \sim \frac{\partial}{\partial y^{j_{1}, \ldots, j_{b}, j}}+\sum_{\substack{c+b+1 \leq p \\
k_{1}, \ldots, k_{c} \in E}} y^{k_{1}, \ldots, k_{c}} \frac{\partial}{\partial y^{k_{1}, \ldots, k_{c}, j_{1}, \ldots, j_{b}, j}} .
\end{aligned}
$$

Thus, we have proved i).
ii) Noting

$$
Q_{i_{1}, \ldots, i_{p}}=\sum_{j_{1}, \ldots, j_{p} E E} c_{i_{1}, \ldots, i_{p}}^{j_{1}, \ldots, j_{p}} \frac{\partial}{\partial y^{j_{1}, \ldots, j_{p}}}
$$

and (2.1), we easily obtain ii). Q.E.D.
Let $F$ be a subset of $E(p)$ with Property 2.1. We choose a subset $G$ of $E(p)$ with $r$ elements such that the matrix $C(G, F)=\left(c_{I}^{J}\right)_{r \in G, J \in F}$ is invertible.

Lemma 3.2. If $\mathscr{L}\left(A_{i}, i \in E\right)$ is nilpotent of step $p$, then, $\left(Q_{I}+A_{I}\right)_{q}, I \in G$ form a basis of $\mathscr{D}_{q} \equiv \mathscr{L}\left(Q_{i}+A_{i}, i \in E\right)_{q}$ for each $q \in \mathbb{R}^{m+d}$.
Proof. Set

$$
\begin{equation*}
E^{a}=\left\{\left(i_{1}, \ldots, i_{a}\right) ; i_{1}, \ldots, i_{a} \in E\right\}, \quad a=1,2, \ldots, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{a}^{b}=\left(c_{I}^{J}\right)_{I \in E^{a}, J \in E^{b}}, \quad a, b=1,2, \ldots \tag{3.2}
\end{equation*}
$$

By Lemma 3.1, vector fields $Q_{I}+A_{I}, I \in E(\infty)$, are represented as the row vectors of the matrix:

|  |
| :---: |
| $E^{1}$ |
| $E^{2}$ |
| $\vdots$ |
| $E^{p}$ |
| $\bigcup_{a=p-1}^{\infty}$ |
| $E^{1}$ |
| $E^{2}$ |$E^{2} \quad \ldots \quad E^{p} 1 \ldots d$.

Hence, $\left(Q_{I}+A_{I}\right)_{q}, I \in G$, are linearly independent. Since $\mathscr{L}\left(Q_{i}+A_{i}, i \in E\right)$ is spanned by $Q_{I}+A_{I}, I \in E(p)$, it is enough to prove that each $Q_{I}+A_{I}, I \in E(p)$, is a linear combination of $Q_{J}+A_{J}, J \in G$. By the definition of $G,\left\{\left[j_{1}, \ldots, j_{b}\right]\right.$; $\left.\left(j_{1}, \ldots, j_{b}\right) \in G\right\}$ form a basis of the linear subspace of $\mathscr{L}(E)$ spanned by

$$
\left\{\left[i_{1}, \ldots, i_{a}\right] ;\left(i_{1}, \ldots, i_{a}\right) \in E(p)\right\}
$$

So that the homomorphism: $\mathbb{L}(E) \rightarrow \mathscr{L}\left(Q_{i}+A_{i}, i \in E\right)$ gives us the desired result. Q.E.D.

For each $I \in E(p)$, let $Q_{I}^{J}(y), J \in E(p)$, be components of $Q_{I}$. Set $Q(G, F)$ $=\left(Q_{I}^{J}\right)_{I \in G, J \in F}$. We see by (3.3) that there exists the inverse matrix of $Q(G, F)$, which will be denoted by $R=\left(R_{I}^{J}\right)_{I \in F, J \in G}$. Recalling (3.1), we put

$$
\begin{equation*}
F^{a}=E^{a} \cap F, \quad G^{a}=E^{a} \cap G, \quad a=1, \ldots, p \tag{3.4}
\end{equation*}
$$

Lemma 3.3. Let $1 \leqq a, b \leqq p$ and let $I \in F^{a}, J \in G^{b}$. Then we have
i) $R_{I}^{J}$ is a polynomial of $y^{K}, K \in E(b-a)$, if $b>a$.
ii) $R_{I}^{J}$ is a constant, if $b=a$.
iii) $R_{I}^{J}=0$, if $b<a$.

Proof. Let $R^{(0)}$ be the inverse matrix of $C(G, F)$. Set $S=Q(G, F) \cdot R^{(0)}$ and define $M^{(a)}=\left(M_{I}^{(a) J}\right)_{I, J \in G}, a=1, \ldots, p-1$, by

$$
M_{I}^{(a) J}= \begin{cases}-S_{I}^{J}, & \text { if } I \in G^{a} \text { and } J \in G^{a+1} \cup \ldots \cup G^{p}, \\ 1, & \text { if } I=J, \\ 0, & \text { otherwise. }\end{cases}
$$

Since multiplication: $\times M^{(a)}$ means the operations:

$$
\text { addition of }\left(-S_{I}^{J}\right) \times(I \text {-th column }) \text { to }(J \text {-th column }) \text {, }
$$

for $I \in G^{a}$ and $J \in G^{a+1} \cup \ldots \cup G^{p}$,
we have

$$
S M^{(1)} \ldots M^{(p-1)}=\left[\begin{array}{cc}
1 & 0 \\
& \ddots \\
0 & 1
\end{array}\right]
$$

So that, if we put

$$
R^{(a)}=R^{(0)} M^{(1)} \ldots M^{(a)}, \quad a=1, \ldots, p-1,
$$

we obtain $Q(G, F)^{-1}=R^{(p-1)}$. Since

$$
S_{I}^{J}=\sum_{K \in F^{\mathfrak{F}}} Q_{I}^{K} R_{K}^{(0) J}, \quad J \in G^{b}
$$

Lemma 3.1 implies that $S_{I}^{J}$ is a polynomial of $y^{K}, K \in E(b-a)$ for each $I \in G^{a}$ and $J \in G^{b}$ with $a<b$. Then, it is easy to verify that $R_{I}^{(c) J}$ is a polynomial of $y^{K}, K \in E(b$ $-a)$, for $I \in F^{a}, J \in G^{b}$ with $a<b(c=1, \ldots, p-1)$. Q.E.D.

Let $\mu$ be the inverse mapping of $v$ in (2.3). We define functions $T_{\rho}^{i}(z), z \in R^{m+d}$ for $r+1 \leqq i \leqq m+d, 1 \leqq \rho \leqq r$ by

$$
T_{\rho}^{i}(z)= \begin{cases}\sum_{I \in G} R_{\mu(\rho)}^{I}\left(z^{1}, \ldots, z^{m}\right) Q_{I}^{\mu(i)}\left(z^{1}, \ldots, z^{m}\right), & \text { if } r+1 \leqq i \leqq m  \tag{3.5}\\ \sum_{I \in G} R_{\mu(\rho)}^{I}\left(z^{1}, \ldots, z^{m}\right) A_{I}^{\mu(i)}\left(z^{m+1}, \ldots, z^{m+d}\right), & \text { if } m+1 \leqq i \leqq m+d .\end{cases}
$$

Lemma 3.4. Let $i \leqq m$ and $\mu(i) \in E^{b}$. Then values of $T_{\rho}^{i}, 1 \leqq \rho \leqq r$, depend only on $z^{v(I)}, I \in E(b-1)$.
Proof. Let $\mu(i) \in E^{b}$ and $\mu(\rho) \in F^{a}$. Then we have

$$
T_{\rho}^{i}=\left\{\begin{array}{l}
\sum_{I \in G^{a} \cup \ldots \cup G^{b}} R_{\mu(\rho)}^{I} Q_{I}^{\mu(i)}, \quad \text { if } a \leqq b, \\
0, \quad \text { if } a>b,
\end{array}\right.
$$

by Lemma 3.1 and 3.3. Using these lemmas again, we see that $R_{\mu(\rho)}^{I}\left(z^{1}, \ldots, z^{m}\right)$ and $Q_{I}^{\mu(i)}\left(z^{1}, \ldots, z^{m}\right)$ are functions of $z^{v(J)}, J \in E(b-1)$, when $a \leqq b$ and $I \in G^{a} \cup \ldots \cup G^{b}$. Q.E.D.

Denoting by $z=\left(z^{1}, \ldots, z^{m+d}\right)$ the system of coordinates in $\mathbb{R}^{m+d}$, we have
Lemma 3.5. Suppose that $\mathscr{L}\left(A_{i}, i \in E\right)$ is nilpotent of step $p$. Then we have
i) $\left(\frac{\partial}{\partial z^{\rho}}+\sum_{i=r+1}^{m+d} T_{\rho}^{i} \frac{\partial}{\partial z^{i}}\right)_{q}, 1 \leqq \rho \leqq r$, form a basis of $\mathscr{D}_{q}$, for each $q \in \mathbb{R}^{m+d}$.
ii) $\left(d z^{i}-\sum_{\rho=1}^{r} T_{\rho}^{i} d z^{\rho}\right)_{q}, r+1 \leqq i \leqq m+d$, form a dual basis of $\mathscr{\mathscr { R }}_{q}$, for each $q \in \mathbb{R}^{m+d}$.
iii) The system of total differential equations:

$$
\begin{equation*}
d v^{i}=\sum_{\rho=1}^{r} T_{\rho}^{i}\left(u^{1}, \ldots, u^{r}, v^{r+1}, \ldots, v^{m+d}\right) d u^{\rho}, \quad r+1 \leqq i \leqq m+d, \tag{3.6}
\end{equation*}
$$

is completely integrable.
iv) For each solution $v$ of (3.6) defined on an open set $\mathcal{O} \subset \mathbb{R}^{r}$, the set $\{(u, v(u))$; $u \in \mathcal{O}\}$ is an $r$-dimensional integral manifold of $\mathscr{D}$.

Proof. By the definition of $T_{\rho}^{i}$, we have

$$
\sum_{J \in G} R_{I}^{J}\left(Q_{J}+A_{J}\right)=\frac{\partial}{\partial z^{v(\Omega)}}+\sum_{i=r+1}^{m+d} T_{v(I)}^{i} \frac{\partial}{\partial z^{i}}
$$

for $I \in F$. Since $R$ is invertible, Lemma 3.2 gives us i) and ii). Noting that $\left[Q_{I}\right.$ $\left.+A_{I}, Q_{J}+A_{J}\right]$ is a linear combination of $Q_{K}+A_{K}, K \in G$, for each $I, J \in E(p)$, we have iii) by the theory of complete system. It is easy to show iv) by i). Q.E.D.

Lemma 3.6. Suppose that $\mathscr{L}\left(A_{i}, i \in E\right)$ is nilpotent of step p. Then the Eq. (3.6) with initial condition

$$
\begin{equation*}
v\left(q^{1}, \ldots, q^{r}\right)=\left(q^{r+1}, \ldots, q^{m+d}\right) \tag{3.7}
\end{equation*}
$$

has a unique solution defined on $\mathbb{R}^{r}$, for each $q=\left(q^{1}, \ldots, q^{m+d}\right) \in \mathbb{R}^{m+d}$.
Proof. First we will show a procedure to solve the equation

$$
\begin{align*}
& d v^{i}=\sum_{\rho=1}^{r} T_{\rho}^{i}\left(u^{1}, \ldots, u^{r}, v^{r+1}, \ldots, v^{m+d}\right) d u^{\rho},  \tag{3.8-1}\\
& v^{i}\left(q^{1}, \ldots, q^{r}\right)=q^{i}, \tag{3.8-2}
\end{align*}
$$

for $r+1 \leqq i \leqq m$. When $i \in v\left(E^{2} \backslash F^{2}\right)$, Lemma 3.4 implies that each $T_{\rho}^{i}, 1 \leqq \rho \leqq r$, is a function of $z^{v(I)}, I \in E^{1}$. Then, noting that $F^{1}=E^{1}$, the Eq. (3.8-1) for $i \in v\left(E^{2} \backslash F^{2}\right)$ takes the form:

$$
d v^{i}=\sum_{1 \leqq \rho \leqq r} T_{\rho}^{i}\left(u^{1}, \ldots, u^{r}\right) d u^{\rho}
$$

which gives us solutions $v^{i}, i \in v\left(E^{2} \backslash F^{2}\right)$, defined on $\mathbb{R}^{r}$. Now suppose that we have obtained the unique solution $v^{i}$ for $i \in v\left(E^{2} \backslash F^{2}\right) \cup \ldots \cup v\left(E^{a} \backslash F^{a}\right)$. Then it is easy to obtain $v^{i}, i \in v\left(E^{a+1} \backslash F^{a+1}\right)$, by Lemma 3.4. To prove uniqueness and existence of global solution of (3.8) for $i \geqq m+1$, it is enough to note that

$$
\begin{aligned}
& T_{\rho}^{i}\left(u^{1}, \ldots, u^{r}, v^{r+1}, \ldots, v^{m+d}\right) \\
& \quad=\sum_{I \in G} R_{\mu(\rho)}^{I}\left(u^{1}, \ldots, u^{r}, v^{r+1}, \ldots, v^{m}\right) A_{I}^{\mu(i)}\left(v^{m+1}, \ldots, v^{m+d}\right)
\end{aligned}
$$

for $m+1 \leqq i \leqq m+d$ and that the components of $A_{I}, I \in G$, are Lipschitz continuous. Q.E.D.

Proof of Proposition 2.1. By Lemma 3.2, $\mathscr{D}$ is an $r$-dimensional differential system. Since $\mathscr{L}\left(Q_{i}+A_{i}, i \in E\right)$ is a Lie algebra, $\mathscr{D}$ satisfies the integrability condition. Now, let $G$ be a subset of $E(p)$ such that $C(G, F)$ is invertible. Then the solution of (3.6) and (3.7) gives us a function $f(q, u)=\left(f^{i}(q, u)\right)_{1 \leqq i \leqq m+d}$, $q \in \mathbb{R}^{m+d}, u \in \mathbb{R}^{r}$, defined by

$$
f^{i}(q, u)=u^{i}, \quad 1 \leqq i \leqq r,
$$

and

$$
f^{i}(q, u)=v^{i}(u), \quad r+1 \leqq i \leqq m+d .
$$

Then, Lemma 3.5 iv) implies that

$$
\begin{equation*}
M_{q}=\left\{f(q, u) ; u \in \mathbb{R}^{r}\right\} \tag{3.9}
\end{equation*}
$$

is an $r$-dimensional manifold of $\mathscr{D}$, for each $q \in \mathbb{R}^{m+d}$. Now, fix any $q \in \mathbb{R}^{m+d}$ and let $M$ be an $r$-dimensional integral manifold of $\mathscr{D}$ that contains $q$. Let $w$ be the restriction of the mapping $\left(z^{1}, \ldots, z^{r}\right): \mathbb{R}^{m+d} \rightarrow \mathbb{R}^{r}$ to $M$. Let $\left(\zeta^{1}, \ldots, \zeta^{r}\right)$ be a
system of local coordinates of $M$ around $q$. Since

$$
\frac{\partial}{\partial \zeta^{\rho}}=\sum_{1 \leqq i \leqq m+d} \frac{\partial z^{i}}{\partial \zeta^{\rho}} \frac{\partial}{\partial z^{i}}
$$

and

$$
\left(\frac{\partial}{\partial z^{\sigma}}+\sum_{r+1 \leqq i \leqq m+d} T_{\sigma}^{i} \frac{\partial}{\partial z^{i}}\right)_{q}, \quad 1 \leqq \sigma \leqq r
$$

form a basis of $T_{q} M$, we have

$$
\left(\frac{\partial}{\partial \zeta^{\rho}}\right)_{q}=\sum_{1 \leqq \sigma \leqq r}\left(\frac{\partial w^{\sigma}}{\partial \zeta^{\rho}}\right)_{q}\left(\frac{\partial}{\partial z^{\sigma}}+\sum_{r+1 \leqq i \leqq m+d} T_{\sigma}^{i} \frac{\partial}{\partial z^{i}}\right)_{q}
$$

Consequently, there exists $w^{-1}$ around $\left(z^{1}(q), \ldots, z^{r}(q)\right)$ and further it follows from Lemma 3.5 ii) that $w^{-1}$ is a solution of (3.6) and (3.7). Thus, $M$ coincides with $M_{q}$ in a neighborhood of $q$. So that, we obtain the maximality of $M_{q}$, $q \in \mathbb{R}^{m+d}$. The above argument also shows that the function $f$ is independent of the choice of $G$. Q.E.D.

We put

$$
\begin{equation*}
Y_{t}=\left(B_{t}^{I}\right)_{I \in E(p)} \tag{3.10}
\end{equation*}
$$

To prove Theorem 2.1, we prepare
Lemma 3.7. $Y_{t}$ is the solution of the stochastic differential equation:

$$
\begin{align*}
d Y_{t}^{I} & =\sum_{j \in E} Q_{j}^{I}\left(Y_{t}\right) \circ d B_{t}^{j}, \quad I \in E(p)  \tag{3.11-1}\\
Y_{0} & =0 \tag{3.11-2}
\end{align*}
$$

Proof. By the definition of $B_{t}^{i_{1}, \ldots, i_{a}}$, we have

$$
d B_{t}^{i_{1}, \ldots, i_{a}}=B_{t}^{i_{1}, \ldots, i_{a-1}} \circ d B_{t}^{i_{a}}
$$

when $a>1$. On the other hand, we have

$$
Q_{i}^{j_{1}, \ldots, j_{a}}= \begin{cases}y^{j_{1}, \ldots, j_{a-1}} \delta_{i}^{j_{a}}, & \text { if } a>1  \tag{3.12}\\ \delta_{i}^{j_{a}}, & \text { if } a=1\end{cases}
$$

by the definition of $Q_{i}$. Hence, $\left(B_{t}^{I}\right)_{I \in E(p)}$ satisfies (3.11). Q.E.D.
Lemma 3.8. Let $f$ be the function in Proposition 2.1. Then we have

$$
\begin{equation*}
f^{i}(\underbrace{0, \ldots, 0}_{m}, x ; B_{t}^{F})=B_{t}^{\mu(i)}, \quad r+1 \leqq i \leqq m, \quad t \geqq 0, \tag{3.13}
\end{equation*}
$$

for each $x \in \mathbb{R}^{d}$.

Proof. Set $V_{t}=\left(f_{i}\left(0, \ldots, 0, x ; B_{t}^{F}\right)\right)_{r+1 \leqq i \leqq m}$. Since $V_{0}=0$, it is enough to prove

$$
\begin{equation*}
d V_{t}^{i}=\sum_{j \in E} Q_{j}^{i}\left(Y_{t}\right) \circ d B_{t}^{j} \tag{3.14}
\end{equation*}
$$

for $r+1 \leqq i \leqq m$. When $\mu(i) \in E^{b}$, we have

$$
\begin{equation*}
d V_{t}^{i}=\sum_{1 \leqq \rho \leqq r} T_{\rho}^{i}\left(B_{t}^{F},\left(V_{t}^{j}\right)_{j \in \nu(E(b-1) \backslash F)}\right) \circ d B_{t}^{u(\rho)} \tag{3.15}
\end{equation*}
$$

by Eq. (3.6) and Lemma 3.4. When $b=2$, we have

$$
d V_{t}^{i}=\sum_{1 \leqq \rho \leqq r} T_{\rho}^{i}\left(B_{t}^{F}\right) \circ d B_{t}^{\mu(\rho)},
$$

since $E(1) \backslash F=\phi$. Then, Eq. (3.11-1) gives us

$$
\begin{aligned}
d V_{t}^{i} & =\sum_{1 \leqq \rho \leqq r, I \in G, j \in E}\left\{\left(R_{\mu(\rho)}^{I} Q_{I}^{\mu(i)}\right)\left(Y_{t}\right) Q_{j}^{\mu(\rho)}\left(Y_{t}\right)\right\} \circ d B_{t}^{j} \\
& =\sum_{j \in E, I \in G}\left\{\delta_{j}^{I} Q_{I}^{\mu(i)}\left(Y_{t}\right)\right\} \circ d B_{t}^{j} .
\end{aligned}
$$

Hence we have

$$
V_{t}^{i}=B_{t}^{\mu(i)}, \quad i \in v(E(2) \backslash F) .
$$

Now suppose that we have proved

$$
V_{t}^{i}=B_{t}^{\mu(i)} \quad \text { for } i \in v(E(2) \backslash F) \cup \ldots \cup v(E(a) \backslash F) .
$$

Then it is easy to prove (3.14) for $i \in v(E(a+1) \backslash F)$ by Eq. (3.15). Q.E.D.
Proof of Theorem 2.1. Put

$$
\begin{aligned}
& Z_{t}^{i}=f^{i}\left(0, \ldots, 0, x ; B_{t}^{F}\right), \quad 1 \leqq i \leqq m+d, \quad X_{t}^{i}=Z_{t}^{v(i)}, \quad 1 \leqq i \leqq d, \\
& Z_{t}=\left(Z_{t}^{1}, \ldots, Z_{t}^{m+d}\right), \quad X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right) .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
Z_{t}=\left(Y_{t}^{\mu(1)}, \ldots, Y_{t}^{\mu(m)}, X_{t}^{\mu(m+1)}, \ldots, X_{t}^{\mu(m+d)}\right) \tag{3.16}
\end{equation*}
$$

by Lemma 3.8 and condition a) for $f$. Equation (3.6) gives us

$$
\begin{aligned}
d X_{t}^{i} & =\sum_{1 \leqq \rho \leqq r} T_{\rho}^{v(i)}\left(Z_{t}\right) \circ d B_{t}^{\mu(\rho)} \\
& =\sum_{1 \leqq \rho \leqq r}\left\{T_{\rho}^{v(i)}\left(Z_{t}\right) Q_{j}^{\mu(\rho)}\left(Y_{t}\right)\right\} \circ d B_{t}^{j} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
d X_{t}^{i} & =\sum_{1 \leq \rho \leq r, I \in G, j \in E}\left\{R_{\mu(\rho)}^{I}\left(Y_{t}\right) A_{I}^{i}\left(X_{t}\right) Q_{j}^{\mu(\rho)}\left(Y_{t}\right)\right\} \circ d B_{t}^{j} \\
& =\sum_{j \in E, I \in G}\left\{\delta_{j}^{I} A_{I}^{i}\left(X_{t}\right)\right\} \circ d B_{i}^{j}
\end{aligned}
$$

as $R=Q(G, F)^{-1}$. Hence we obtain (1.1-1). It is easy to see $X_{0}=x$ by (3.7). Q.E.D.

## 4. Converse of Theorem 2.1

We put $E=\{0, \ldots, n\}$ and $m(p)=\# E(p), p=1,2, \ldots$ We prove in this section
Theorem 4.1. Suppose that there exists a function $h \in C^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{m(p)} \rightarrow \mathbb{R}^{d}\right)$ such that $X_{t . x}=h\left(x,\left(B_{t}^{I}\right)_{T \in E(p)}\right)$ is the solution of (1.1) for each $x \in \mathbb{R}^{d}$. Then, $\mathscr{L}\left(A_{0}, \ldots, A_{n}\right)$ is nilpotent of step $p$.

First we prove
Lemma 4.1. For each $h \in C^{\infty}\left(\mathbb{R}^{m(p)} \rightarrow \mathbb{R}\right)$, we have

$$
d h\left(Y_{t}\right)=\sum_{i \in E}\left(Q_{i} h\right)\left(Y_{t}\right) \circ d B_{t}^{i}
$$

where $Y_{t}=\left(B_{t}^{I}\right)_{T \in E(p)}$ and $Q_{i}, i \in E$, are vector fields defined by (2.1).
Proof. Applying Itô's formula, we have

$$
d h\left(Y_{t}\right)=\sum_{I \in E(p)} \frac{\partial h}{\partial y^{I}}\left(Y_{t}\right) \circ d B_{t}^{I} .
$$

Then, Eq. (3.11-1) gives us

$$
\begin{aligned}
d h\left(Y_{t}\right) & =\sum_{I \in E(p), i \in E}\left\{Q_{i}^{I}\left(Y_{t}\right) \frac{\partial h}{\partial y^{I}}\left(Y_{t}\right)\right\} \circ d B_{t}^{i} \\
& =\sum_{i \in E}\left(Q_{i} h\right)\left(Y_{t}\right) \circ d B_{t}^{i} . \quad \text { Q.E.D. }
\end{aligned}
$$

Lemma 4.2. Let $X_{t}$ be the solution of (1.1). Suppose that there exist $g \in C^{\infty}\left(\mathbb{R}^{d} \rightarrow \mathbb{R}\right)$ and $h \in C^{\infty}\left(\mathbb{R}^{m(p)} \rightarrow \mathbb{R}\right)$ such that

$$
\begin{equation*}
g\left(X_{t}\right)=h\left(Y_{t}\right), \quad t \geqq 0 . \tag{4.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left(A_{i} g\right)\left(X_{t}\right)=\left(Q_{i} h\right)\left(Y_{t}\right), \quad i \in E, \quad t \geqq 0 . \tag{4.2}
\end{equation*}
$$

Proof. Taking stochastic differential of (4.1), we have

$$
\begin{equation*}
\sum_{i \in E}\left(A_{i} g\right)\left(X_{t}\right) \circ d B_{t}^{i}=\sum_{i \in E}\left(Q_{i} h\right)\left(Y_{t}\right) \circ d B_{t}^{i} \tag{4.3}
\end{equation*}
$$

by Lemma 4.1. Hence, we have

$$
\sum_{1 \leqq i \leqq n}\left\{\left(A_{i} g\right)\left(X_{t}\right)-\left(Q_{i} h\right)\left(Y_{t}\right)\right\}^{2}=0
$$

so that

$$
\begin{equation*}
\left(A_{i} g\right)\left(X_{t}\right)=\left(Q_{i} h\right)\left(Y_{t}\right), \quad 1 \leqq i \leqq n \tag{4.4}
\end{equation*}
$$

Then, (4.3) and (4.4) give us

$$
\left(A_{0} g\right)\left(X_{t}\right)=\left(Q_{0} h\right)\left(Y_{t}\right) . \quad \text { Q.E.D. }
$$

Proof of Theorem 4.1. Suppose that $X_{t}=h\left(x, Y_{t}\right)$ is the solution of (1.1) for each $x \in \mathbb{R}^{d}$. Lemma 4.2 gives us

$$
A_{i}^{j}\left(X_{t}\right)=\left(Q_{i} h^{j}\right)\left(Y_{t}\right), \quad i \in E, \quad 1 \leqq j \leqq d
$$

Using Lemma 4.2 again, we obtain

$$
\begin{align*}
\left(A_{i_{1}} \ldots A_{i_{p}} A_{i_{p+1}}^{j}\right)\left(X_{t}\right)=\left(Q_{i_{1}} \ldots\right. & \left.Q_{i_{p+1}} h^{j}\right)\left(Y_{t}\right)  \tag{4.5}\\
& i_{1}, \ldots, i_{p+1} \in E, \quad 1 \leqq j \leqq d
\end{align*}
$$

By (2.2), we obtain

$$
\begin{aligned}
& A_{j_{1}, \ldots, j_{p+1}}=\sum_{i_{1}, \ldots, i_{p+1} \in E} c_{j_{1}, \ldots, j_{p+1}}^{i_{1}, \ldots, i_{p+1}} A_{i_{1}} \ldots A_{i_{p}+1} \\
& Q_{j_{1}, \ldots, j_{p+1}}=\sum_{i_{1}, \ldots, i_{p}+1 \in E} c_{j_{1}, \ldots, j_{p+1}}^{i_{1}, \ldots, i_{p+1}} Q_{i_{1}} \ldots Q_{i_{p}+1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A_{j_{1}, \ldots, j_{p+1}}^{j}\left(X_{t}\right)=\left(Q_{j_{1} \ldots, j_{p+1}} h^{j}\right)(Y) \\
& j_{1}, \ldots, j_{p+1} \in E, \quad 1 \leqq j \leqq d .
\end{aligned}
$$

Then Lemma 3.1 ii) gives us

$$
A_{j_{1}, \ldots j_{p+1}}^{j}=0, \quad j_{1}, \ldots, j_{p+1} \in E, \quad 1 \leqq j \leqq d, \quad x \in \mathbb{R}^{d} .
$$

Hence $\mathscr{L}\left(A_{i}, i \in E\right)$ is nilpotent of step $p$. Q.E.D.

## 5. The Functional when $\mathscr{L}\left(A_{1}, \ldots, A_{n}\right)$ is Nilpotent

In this section, we suppose that $\mathscr{L}\left(A_{1}, \ldots, A_{n}\right)$ is nilpotent of Step $p$. So, we put $E=\{1, \ldots, n\}$. Meanings of other symbols: $m, r$ etc. are changed according to the change of $E$. Take a subset $F$ of $E(p)$ that satisfies Property 2.1. Let

$$
f(z ; u)=\left(f^{i}(z ; u)\right)_{1 \leqq i \leqq m+d}, \quad z \in \mathbb{R}^{m+d}, \quad u \in \mathbb{R}^{r}
$$

be the function in Proposition 2.1. $\frac{\partial f}{\partial z^{1}}, \ldots, \frac{\partial f}{\partial z^{m+d}}, \frac{\partial f}{\partial u^{1}}, \ldots, \frac{\partial f}{\partial u^{r}}$ will be denoted by $\partial_{1} f, \ldots, \partial_{m+d} f, \partial_{m+d+1} f, \ldots, \partial_{m+d+r} f$ respectively. Put $h=\left(f^{m+1}, \ldots, f^{m+d}\right)$.
Proposition 5.1. For each $x \in \mathbb{R}^{d}$ and $U=\left(U_{t}\right)_{t \geqq 0} \in C\left([0, \infty) \rightarrow \mathbb{R}^{r}\right)$, there exists $D$ $=\left(D_{t}\right)_{t \geqq 0} \in C\left([0, \infty) \rightarrow \mathbb{R}^{d}\right)$ which is the unique solution of an ordianry differential equation:

$$
\begin{align*}
\frac{d D}{d t}= & \sum_{1 \leqq i \leqq d} A_{0}^{i}(h(\underbrace{0, \ldots, 0}_{m}, D_{i} ; U_{t}))  \tag{5.1-1}\\
& \times \partial_{m+i} h(f(\underbrace{0, \ldots, 0,}_{m} D_{t} ; U_{t}) ; \underbrace{0, \ldots, 0}_{r}) \\
D_{0}= & x \tag{5.1-2}
\end{align*}
$$

To prove Proposition 5.1, we prepare

Lemma 5.1. For each compact $K \subset \mathbb{R}^{r}$, we have
i) $\sup _{\substack{x \in \mathbb{R}^{a} \\ u \in \mathbb{R}}} \| \hat{\partial}_{m+i} h(f(\underbrace{0, \ldots, 0}_{m}, x ; u) ; \underbrace{0, \ldots, 0}_{r})^{4}<\infty, \quad 1 \leqq i \leqq d$,
ii) $\sup _{\substack{X \in \mathbb{R}^{i} \\ u \in \mathbb{K}}}\|h(\underbrace{0, \ldots, 0}_{m}, x ; u)\| /(1+\|x\|)<\infty$.

Proof. Noting that the values of $f^{i}(z ; u), r+1 \leqq i \leqq m$, are independent of $z^{m+1}, \ldots, z^{m+d}$, we put

$$
g\left(z^{1}, \ldots, z^{m} ; u\right)=\left(f^{i}(z ; u)\right)_{r+1 \leqq i \leqq m}
$$

Then we have

$$
f(0, x ; u)=(u, g(0 ; u), h(0, x ; u))
$$

To prove i), note that

$$
\begin{array}{rl}
\partial_{m+i} & h(f(0, x ; u) ;(1-t) u) \\
= & \partial_{m+i} h(u, g(0 ; u), h(0, x ; u) ; u) \\
& -\sum_{1 \leqq \rho \leqq r} u^{\beta} \int_{0}^{t}\left(\partial_{m+d+\rho} \partial_{m+i} h\right)(f(0, x ; u) ;(1-s) u) d s .
\end{array}
$$

Since

$$
h^{j}\left(u, g(0 ; u), z^{m+1}, \ldots, z^{m+d} ; u\right)=z^{m+j}, \quad 1 \leqq j \leqq d,
$$

we have

$$
\partial_{m+i} h^{j}(u, g(0 ; u), h(0, x ; u) ; u)=\delta_{i}^{j}, \quad 1 \leqq i, j \leqq d
$$

Next, Eq. (3.6) gives us

$$
\begin{aligned}
& \left(\partial_{m+d+\rho} \partial_{m+i} h^{j}\right)(z ; u) \\
& \quad=\frac{\partial}{\partial z^{m+i}}\left\{\sum_{I \in G} R_{\mu(\rho)}^{I}\left(u, g\left(z^{1}, \ldots, z^{m} ; u\right)\right) A_{I}^{j}(h(z ; u))\right\} \\
& =\sum_{I \in G, 1 \leqq k \leqq d} R_{\mu(\rho)}^{I}\left(u, g\left(z^{1}, \ldots, z^{m} ; u\right)\right) \frac{\partial}{\partial x^{k}} A_{I}^{j}(h(z ; u)) \\
& \quad \times \partial_{m+i} h^{k}(z ; u)
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& \left\|u^{\rho} \int_{0}^{t}\left(\partial_{m+d+\rho} \partial_{m+i} h\right)(f(0, x ; u) ;(1-s) u) d s\right\| \\
& \quad \leqq \mathrm{const} \int_{0}^{t}\left\|\partial_{m+i} h(f(0, x ; u) ;(1-s) u)\right\| d s
\end{aligned}
$$

${ }^{4}\|\xi\|=\left\{\left(\varsigma^{1}\right)^{2}+\ldots+\left(\xi^{d}\right)^{2}\right\}^{1 / 2}$ for $\xi=\left(\xi^{1}, \ldots, \xi^{d}\right) \in \mathbb{R}^{d}$
for $x \in \mathbb{R}^{d}, u \in K, 0 \leqq t \leqq 1$. Then, Gronwall's inequality gives us i). To prove ii), observe that

$$
h(0, x ; t u)=x+\sum_{1 \leqq \rho \leqq r} \int_{0}^{t} u^{\rho} \partial_{m+d+\rho} h(0, x ; s u) d s
$$

Then Eq. (3.6) gives us

$$
\partial_{m+d+\rho} h^{i}(0, x ; s u)=\sum_{I \in G} R_{\mu(\rho)}^{I}(s u, g(0 ; s u)) A_{I}^{i}(h(0, x ; s u)) .
$$

Hence we have

$$
\left\|\int_{0}^{t} u^{\rho} \partial_{m+d+\rho} h(0, x ; s u) d s\right\| \leqq \operatorname{const}\left(\int_{0}^{t}\|h(0, x ; s u)\| d s+1\right)
$$

for $x \in \mathbb{R}^{d}, u \in K, 0 \leqq t \leqq 1$. So that we obtain ii) by virtue of Gronwall's inequality. Q.E.D.

Proof of Proposition 5.1. Fix $T, a>0$ and $U \in C\left([0, \infty) \rightarrow \mathbb{R}^{r}\right)$. Put

$$
\begin{equation*}
F(t, x)=\sum_{1 \leqq i \leqq d} A_{0}^{i}\left(h\left(0, x ; U_{t}\right)\right) \partial_{m+i} h\left(f\left(0, x ; U_{t}\right) ; 0\right), \quad t \in[0, T], \quad x \in \mathbb{R}^{d} \tag{5.2}
\end{equation*}
$$

By Lemma 5.1, there exists a constant $b>0$ such that

$$
\|F(t, x)\| \leqq b(\|x\|+1), \quad x \in \mathbb{R}^{d}
$$

Hence, if we put $\omega(t)=(a+1) \exp b t-1, t \in[0, T], \omega$ satisfies

$$
\frac{d \omega}{d t} \geqq\|F(t, x)\| \quad(t \in[0, T],\|x\|=\omega(t))
$$

Then, applying Perron's theorem, we obtain a solution of (5.1) defined on the interval $[0, T]$ for each $x:\|x\| \leqq a$. Uniqueness follows from the local Lipschitz continuity of $F(t, x)$ Q.E.D.

Now, Proposition 5.1 gives us a functional

$$
\Phi: \mathbb{R}^{d} \times C\left([0, \infty) \rightarrow \mathbb{R}^{r}\right) \rightarrow C\left([0, \infty) \rightarrow \mathbb{R}^{d}\right)
$$

defined by

$$
\Phi(x, U)_{t}=D_{t}, \quad x \in \mathbb{R}^{d}, \quad U \in C\left([0, \infty) \rightarrow \mathbb{R}^{\prime}\right), \quad t \geqq 0
$$

Theorem 5.1. Suppose that $\mathscr{L}\left(A_{1}, \ldots, A_{n}\right)$ is nilpotent of step $p$. Then

$$
X_{t}=h\left(0, \ldots, 0, \Phi\left(x, B_{\cdot}^{F}\right)_{t} ; B_{t}^{F}\right), \quad t \geqq 0
$$

is the solution of (1.1) for each $x \in \mathbb{R}^{d}$.

To prove Theorem 5.1, we prepare
Lemma 5.2. We have

$$
\begin{equation*}
\sum_{1 \leqq j \leqq d} \partial_{m+i} h^{j}(f(0, x ; u) ; 0) \partial_{m+j} h^{k}(0, x ; u)=\delta_{i}^{k} \tag{5.3}
\end{equation*}
$$

for each $x \in \mathbb{R}^{d}, u \in \mathbb{R}^{r}, 1 \leqq i, k \leqq d$.
Proof. By the condition c) for $f$, we have

$$
h(f(0, x ; u) ; 0)=x .
$$

Differentiating by $\frac{\partial}{\partial x^{i}}$, we obtain (5.3). Q.E.D.
Now we present
Proof of Theorem 5.1. Set

$$
D_{t}=\Phi\left(X, B^{F}\right)_{t}
$$

and

$$
X_{t}=h\left(0, D_{t} ; B_{t}^{F}\right) .
$$

We have

$$
\begin{aligned}
d X_{t}= & \sum_{1 \leqq i \leqq d} \frac{d D^{i}}{d t} \partial_{m+i} h\left(0, D_{t} ; B_{t}^{F}\right) d t \\
& +\sum_{1 \leqq \rho \leqq r} \partial_{m+d+\rho} h\left(0, D_{t} ; B_{t}^{F}\right) \circ d B_{t}^{\mu(\rho)} .
\end{aligned}
$$

Equations (5.1) and (5.3) give us

$$
\begin{aligned}
\sum_{1 \leqq i \leqq d} \frac{d D^{i}}{d t} \partial_{m+i} h^{j}\left(0, D_{t} ; B_{t}^{F}\right) & =\sum_{1 \leqq k \leqq d} \delta_{k}^{j} A_{0}^{k}\left(h\left(0, D_{t} ; B_{t}^{F}\right)\right) \\
& =A_{0}^{j}\left(X_{t}\right) .
\end{aligned}
$$

Then, as the proof of Theorem 2.1, we obtain

$$
\begin{aligned}
\sum_{1 \leqq \rho \leqq r} & \partial_{m+d+\rho} h^{j}\left(0, D_{t} ; B_{t}^{F}\right) \circ d B_{t}^{\mu(\rho)} \\
& =\sum_{1 \leqq \rho \leqq r, i \in E}\left\{T_{\rho}^{m+j}\left(f\left(0, D_{t} ; B_{t}^{F}\right)\right) Q_{i}^{\mu(\rho)}\left(Y_{t}\right)\right\} \circ d B_{t}^{i} \\
& =\sum_{1 \leqq \rho \leqq r, i \in E, Y \in G}\left\{R_{\mu(\rho)}^{I}\left(Y_{t}\right) A_{I}^{j}\left(h\left(0, D_{t} ; B_{t}^{F}\right)\right) Q_{i}^{\mu(\rho)}\left(Y_{t}\right)\right\} \circ d B_{t}^{i} \\
& =\sum_{1 \leqq i \leqq n} A_{i}^{j}\left(X_{t}\right) \circ d B_{t}^{i}
\end{aligned}
$$

It is easy to see that $X_{0}=x$. Q.E.D.
Acknowledgment. The author wishes to express thanks to Professor N. Ikeda for his encouragement.

## References

1. Doss, H.: Liens entre équations différentielles stochastiques et ordinaires. C.R. Acad. Sci. Paris Sér A 283, 939-942 (1976)
2. Doss, H.: Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré 13, 99-125 (1977)
3. Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certain groupes nilpotents. Acta Math. 139, 95-153 (1977)
4. Itô, K.: Stochastic differentials. Appl. Math. Optimization 1, 374-381 (1975)
5. Jacobson, N.: Lie algebras. New York-London: Wiley 1962

Received July 7, 1978


[^0]:    1 A Lie algebra $\mathscr{L}$ is said to be nilpotent of step $p$ if the $p$-th term of the series:

    $$
    [\mathscr{L}, \mathscr{L}] \supset[\mathscr{L},[\mathscr{L}, \mathscr{L}]] \supset[\mathscr{L},[\mathscr{L},[\mathscr{L}, \mathscr{L}]]] \supset \ldots
    $$

[^1]:    ${ }^{2} C^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{\# F} \rightarrow \mathbb{R}^{d}\right)$ is the set of all $C^{\infty}$-functions: $\mathbb{R}^{d} \times \mathbb{R}^{\# F} \rightarrow \mathbb{R}^{d}$, where $\# F$ is the number of elements of $F$

[^2]:    3 A maximal integral manifold of $\mathscr{D}$ is called a leaf of $\mathscr{D}$

