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1. Introduction

d ~
N . .
Given C*-vector fields 4;= ) Ai(x) p 0<i<n, on R? and an n-dimensional
j=1 X

Brownian motion (B, ..., BY), we consider the stochastic differential equation
dXi=Y Aj.(Xt)odB,{+Af)(Xt)dt, 1<i<d, (L1-1)
j=1
X,=xeR", ‘ (1.1-2)

where the symbol o denotes the symmetric stochastic differential of Stratonovich
(1t6, K. [4]). We denote by #(4,, ..., 4,) the Lie subalgebra of X(R?) generated
by A4, ..., A,, where X(IR% is the Lie algebra of all C®-vector fields on R* with
the bracket product:

[X,Y]=XY-YX, X, YeX(RY.

We also denote by C([0, ®)—IR") the set of all continuous functions U,,
te[0, o), with values in R".
Recently, Doss, H. [1, 2] showed that, if the total differential equation
J . )
ﬁh’(a, Py=Al(h(=, ), 1=isn, 1=j=d, (1.2-1)
e, 0)=a (1.2-2)

(xeR?, BeR", h=(h', ..., h%) is completely integrable, then the solution of (1.1)
can be expressed in the form

X,=h®(x, B.),, B,), (1.3)
where the functional

@: R*x C([0, o) »IR") — C([0, c0) »R?)
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is obtained by solving certain ordinary differential equation. One can easily see
that the integrability condition of (1.2) is equivalent to the condition that the Lie
algebra ¥(A,, ..., 4,) is Abelian. On the other hand, Gaveau, B. [3] treated a
special class of stochastic differential equations in the case when #(A4,, ..., 4,) is
not Abelian. For example, consider the case when

, 0

g 0 _0 4,0
“oaxz N ax

A1=_+2x2—— A2

A.=
Oxt ox3’ 0=0

(d=3, n=2). Then, .#(4,, A,) is nilpotent® of step2 and X, is expressed as a
function of multiple Wiener integrals of order <2 (see Example 2.1 of the next
section). These works of Doss and Gaveau suggest that there will be a general
relation between

(a) the representability of the solutions of stochastic differential equations in
a form similar to (1.3) by means of multiple Wiener integrals,
and

(b) the nilpotent property of the associated Lie algebras.

The purpose of this paper is to investigate such a relation in full under a
general setting.

Before stating our main results, we must introduce some notations. E
denotes either the set {0, ..., n} or the set {1, ..., n}; it will be decided in each
occasion. We put

Ep)y={=0y, ..., 1)1y, ...,15,€E, 1Za=<p}, p=1L12, ...,
E(o0)= U1 E(p),
=

and define vector fields 4, for Ie E(c0) inductively by the formula
Aty i = Ay, iam 00 A (1.4)

For simplicity, we assume that the components of A,, IeE(), are Lipschitz
continuous on R’ We also define processes B/, =0, IcE(0), inductively by the
formula

t
Bl i) = [ Bls a0 o 4 Bls, (1.5)
0 .

where BY =1, t 20, by definition, and from now on we write 4, __, and Bjt-%

instead of A, ., ,and B, respectively.

1 A Lie algebra & is said to be nilpotent of step p if the p-th term of the series:
(2. Z]1= L[, 211=12, [, [ 2, Z]]]=...

vanishes, where
k
[+, %]:{Z [a;, b];a,€4,b,eB,i=1,...,k k=12, }
i=1

for each &7, B= ¥
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The main result (Theorem 2.1) of Section 2 is now stated as follows: If
Z(Aos ..., 4,) 1s nilpotent of step p, then there exist a subset F of E(p) (E
={0,...,n}) and a function he C*(R*x R *¥ - R%? with the property that

Xt:h(x’ (B):I)IEF)

is the solution of stochastic differential equation (1.1) for each xeRR“. The proof
of this theorem will be given in Section 3. The converse of this theorem is also
true as will be proved in Section 4. An extension of a result of Doss, H. [1, 2]
will then be presented in Section 5. Namely, we will prove the following
theorem: If #(A,, ..., 4,) is nilpotent of step p, then there exist a subset F of
E(p) (E={1, ..., n}), a function he C*(R*x R *F-R9) and a functional

@: R?x C([0, 0) =R *F)— C([0, c0) > R?
having the property that
Xt:h(@(xa (BI‘)IEF)Ia(Bz‘I)IEF)7 I%OJ

is the solution of (1.1) for each xelR“.

2. Construction of a Functional when #(4,, ..., A,) is Nilpotent

In Sections 2 and 3, we put E={0, ..., n}. We fix a positive integer p. The set

{y=0"Nrepp: V'R, I€E(p)}

will be identified with IR™, where m= # E(p). The coordinate system on IR™ is
also denoted by y', IeE(p). We define vector fields Q,, icE, on R™ by

0 . .
Q=g+ B ot @y

We will denote by £(Q,+ A4,, ieE) the Lie algebra generated by the vector fields
0,+ A, ieE, on R™*,

Let R(E) be the linear space with basis E and let T(E) be the tensor algebra
based on R(F), i.e.,

TE)=RAR(E)YD(R(E)®(RE)D...
Define the bracket product in T(E):
[a,b]=a®b—b®a, a, beT(E).

Let IL(E) be the Lie subalgebra of T(E) generated by E. We denote by 7 and A
the injections: E—TM(E) and E—IL(E) respectively. Recall that (T[(E), 1) is a free
algebra generated by E, ie., for each algebra «# and a mapping 0: E — =, there

2 CP(RYxR*F R4 is the set of all C™-functions: R x R*F— R4 where #F is the number of
elements of F
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exists a unique homomorphism 6: T(E) —» ./ such that 8o t=6. Recall also that
(IL(E), 4) is a free Lie algebra generated by E, i.e., for each Lie algebra ¥ and a
mapping 9: E - %, there exists a unique homomorphism 6': IL(E) - % such that
§ o A=6. We define [i,, ..., 1, ]ellL(E) for (i, ..., i,)e E(c0) by

[ila LR ia:l :[[ih vy ia—l]o ia]

inductively. Each [i,, ..., ,] is expressed as

[lla cevy a] Z Ch ...,ﬁ]l@ ®Jb (22)

(j1s-ees Jo)eE{0)

the matrix (¢]); jepe).
Since ¢/=46/, i, jeE, we can always take a subset F < E(p) that satisfies

Property 2.1. F is a maximal subset of E(p) such that the column vectors of
C(E, p): (C{)IeE(p) for JeF are linearly independent.

Let r be the rank of the matrix C(E, p) and fix a bijection:
vi F+E@P~F+{1,....d}>{1, ...,m+d} (2.3)

with vw(F)={1,...,r}, v(EQp)~F)={r+ 1, ....m}, v({1,...,d})={m+1,...,m+d},
where F+ E(p)~F+{1, ..., d} is the direct sum of these sets.
Proposition 2.1. Suppose that ¥ (A;, i€E) is nilpotent of step p. Then we have

) 2={L(Q,+ A, icE); qeR™ "%} is an r-dimensional differential system that
satisfies the integrability condition.

ii) For each FcE(p) with Property 2.1, there exists a unique function
feC®(R" ¥ x R"—IR™ "9 satisfying the followings:

a) fiq;uy=u' for each 1<i<r, geR™ ", ueclR".

b) M, ={f(q;w); ucR"} is a leaf > of D, for each geR™**.

) fla:q", ..., q4)=q for each q=(q*, ..., g"*)eR" .

Now we can state

Theorem 2.1. Suppose that L (A,, ..., A,) is nilpotent of step p. Let F be a subset
of E(p) (E={0, ..., n}) with Property 2.1. Then
Xi=1"90,...,0,x; Bf), 1<i=d, 20,
[——;

m

is the solution of (1.1) for each xeR®, where BF =(B}), ...
We present

G, )
A,=———2x! g

5,
Example 2.1. Let d=3, n=2, A4, =—+2x* e FIeE

PR 4o=0

3 A maximal integral manifold of 2 is called a leaf of Z
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d
Then A1_2:—4a§, Ay ,1=A; 4 ,=0. Hence ¥(A,, Ay, A,) is nilpotent of

step 2. We may take F=1{0, 1, 2, (0, 1), (0, 2), (1, 2)}. Noting that (1.1-1) takes the
Jorm:

ax! 1 0

dB!
ix?|=| o 1 o[dB;],
ax?| |2x2 -2x? ‘
we have
x'+ B}
Xt: XZ‘I‘BIZ ]

x*+2(x?B}—x'B})+2(B! B> -2 B}"?)

where x =(x!, x%, x3).

3. Proof of Results in Section 2

First we prepare several lemmas. Recall that Q;, ieE, was defined by (2.1). We
define

Qil,,...ia: [Qil,‘...ia_la Qia]
inductively for (i, ..., i,)e E(o0).

Lemma 3.1. i) For each (i,, ..., i,)eE(p), we have

o 0
11g.eesd Z L1 .aasl Jla e )
T S @ \Gyltda
0
Ki, ook
-+ Z y 1502 Kp — )
K1y ook, Jivines
biagp 6)1 1 by Ji Ja
ki,...,kpeE

ii) For each (i, ...,i)eE(o0)~ E(p), we have
Qil,...,iazo'

Proof. i) We can easily verify

Qiia= 2l Qg Qi

J1s -, jacE

Hence, it is enough to prove

)
le"'Qja NC';yjlan-vja
0
2 ki,....k
+ y 1503 KD - —
kivoirkp, 1o Ja?
brakp ay 1 b:J1 Ja

ki,....kpcE
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where ~ denotes coincidence except differential operators of degree >2. We
have, for each b<p—1 and j,, ..., j,,j€E,

0 0
ki, ke
(ayjls-n:jb+ Z v aykl,-..,kcsjly--~,jb) Qf

c+bZp
kiy ..., ke€E
d 0
Ki,.ons K.
~ ‘*—*—‘4— z y O e
J1soees J Kisoaikcs j ,...,Jb)
(ay 1 b cib<p ay 1 e J1
ki,...,kceE
. 5,
ST
x ( Z y ! a 11 ig 1)
a+1=<p y
i1,...,geE
0 0
I3 k
i o Z Tk o _ .
J s Jbs J ks oeanke, J1s condby
ayl Jp crbTigp ay1 e J1 by J
ki, ..., ke€E
Thus, we have proved i).
ii) Noting
o 0
Q, . = cltrde
| ST | Z 1y eesl J1s vuns J
T i e 0y v

and (2.1), we easily obtain ii). Q.E.D.

Let F be a subset of E(p) with Property 2.1. We choose a subset G of E(p)
with r elements such that the matrix C(G, F)=(c]);cq, jcr is invertible.

Lemma 3.2. If #(A,, i€E) is nilpotent of step p, then, (Q;+ A,),, I€G form a basis
of 9,=2L(Q,+A4,, icE), for each geR"**.

Proof. Set
E*={(i,,...,1i);14, ..., 1,€E}, a=1,2,..., (3.1
and '
Co=(CDrege,gerr» &b=12,.... (3.2)

By Lemma 3.1, vector fields Q;+ A4,, I E(0), are represented as the row vectors
of the matrix:

E' E* ... Ef 1.4
E* [ C! * * * _
E? 0 C% * * *

0 0 * *
E? 0 0 0| Cr| =
O e Lololololol

(3.3)
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Hence, (Q;+A4)),, [€G, are linearly independent. Since £(Q;+ A,, i€E) is span-
ned by Q;+A4,, I€E(p), it is enough to prove that each Q,+A,, I€E(p), is a
linear combination of Q,+A4,, JeG. By the definition of G, {[j,,...,Jj,];
(Ji» ---»Jp)EG} form a basis of the linear subspace of #(E) spanned by

{[iy, -.s 115 (g, -, i)EE(P)}.
So that the homomorphism: I{E)— %(Q,+ A;,icE) gives us the desired
result. Q.E.D.

For each IeE(p), let Qf(y), JeE(p), be components of Q,. Set Q(G,F)
=(Q)1e6. ser- We see by (3.3) that there exists the inverse matrix of Q(G, F),
which will be denoted by R=(R});.r ;.- Recalling (3.1), we put

F'=E°~F, G°=E°~G, a=1,..,p. (3.4)

Lemma 3.3. Let 1<a, b<p and let 1eF®, JeGP’. Then we have
i) R} is a polynomial of yX, KeE(b—a), if b>a.
ii) R} is a constant, if b=a.
i) RI=0, if b<a.
Proof. Let R be the inverse matrix of C(G, F). Set S=Q(G, F)- R and define
M‘“):(M‘I“”)LJE(;, a=1,...,p—1, by
—87, if IeG* and JeG**1u...UGP,
M@ =11, if I=J,
0, otherwise.

Since multiplication: x M means the operations:

addition of (—S7) x (I-th column) to (J-th column),

for IeG* and JeG**lu...UGP,
we have

SMY  Me-D= -
) 0 1
So that, if we put

R@=RO MWD M@  g=1 .. p—1,
we obtain Q(G, F)~*=R¥~ Y, Since

Si= > Q¥RQY, JeG

KeFb
Lemma 3.1 implies that S7 is a polynomial of yX, KeE(b—a) for each IeG* and
JeG® with a <b. Then, it is easy to verify that R{” is a polynomial of yX, KeE(b
—a), for IeF? JeG? with a<b (c=1,...,p—1). Q.ED.
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Let u be the inverse mapping of v in (2.3). We define functions T)(z), zeR™**
forr+1<is<m+d, 1Zp=rby

Z Rl (', ..., 2™ Q¥ ..., Z™),
if r+1Zi<m

Ti(z)= ‘ ='= (3.5)
Y RL (2, 2 AL ),

fe6 it m+1<i<m+d.

Lemma 34. Let i<m and p(i)eE". Then values of T}, 1<p<r, depend only on
2@, [eE(b—1).
Proof. Let u(i)eE? and u(p)eF® Then we have

Y, R0, if aZb,

Ti—!1eGou...uGP

0, ifa>b,

by Lemma 3.1 and 3.3. Using these lemmas again, we see that Rfl(p)(zl, e 2™
and Q*0(z', .. z") are functions of '), JeE(b—1), when a<b and
IeG*u...uG". Q.E.D.

m+d)

Denoting by z=(z, ..., the system of coordinates in R™*“, we have

Lemma 3.5. Suppose that ¥ (A,;, i€E) is nilpotent of step p. Then we have

m+d
i) ( 6 Y T ), 1<p<=r, form a basis of 9, for each geR™*4,

i=p¢-+1 Pal
ii) (dzi— Y Tp"dz”), r+1<i<m+d, form a dual basis of @q,. for each
p=1 q

qEIRm+d.
iii) The system of total differential equations:

dvi=Y Tiu',...,w,v*" 0" du?, r+1Zism+d, (3.6)
p=1

is combletely integrable.

iv) For each solution v of (3.6) defined on an open set O <R, the set {(u, v(u));
uel} is an r-dimensional integral manifold of 9.

Proof. By the definition of T;, we have

K m+d 6
JZG Ri(Q;+4)= TR Y T a7
e i=r+1

for IeF. Since R is invertible, Lemma 3.2 gives us i) and ii). Noting that [Q;
+A4;, Q;+A,] is a linear combination of Qx+ Ay, KeG, for each I, JeE(p), we
have iii) by the theory of complete system. It is easy to show iv) by i). Q.E.D.
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Lemma 3.6. Suppose that £(A;, i€E) is nilpotent of step p. Then the Eq. (3.6) with
initial condition

gt . @)= L Y (3.7)
has a unique solution defined on R, for each q=(q*, ..., ¢"*%)eR™*+*.

Proof. First we will show a procedure to solve the equation
dvi=Y Tiu',...,u" vt . 0" ) du, (3.8-1)

vi(g', ... 4)=4d, (3.8-2)

for r+1<i<m. When iev(E*~ F?), Lemma 3.4 implies that cach T}, 1 <p<r, is
a function of z'®, IeE'. Then, noting that F'=E! the Eq (3.8-1) for
iev(E2~ F?) takes the form:

Y Tiu', ... u")du’,

1=p=r

which gives us solutions ¢, iev(E*~ F?), defined on R”. Now suppose that we
have obtained the unique solution ¢ for iev(E*~ F?)u...Uv(E°~ F?). Then it is
easy to obtain v, iev(E**!'\F**'), by Lemma 3.4. To prove uniqueness and
existence of global solution of (3.8) for i=m+1, it is enough to note that

Ti!, .., vt L o™t

=Y RL Wt v o) ARt L ot
IeG

for m+1<i<m+d and that the components of A;, IeG, are Lipschitz
continuous. Q.E.D.

Proof of Proposition 2.1. By Lemma 3.2, & is an r-dimensional differential
system. Since #(Q,+A4,;,ieE) is a Lie algebra, & satisfies the integrability
condition. Now, let G be a subset of E(p) such that C(G, F) is invertible. Then
the solution of (3.6) and (3.7) gives us a function f(q, u)=(f(qg, 1)) PP
geR™*% ueR", defined by

fig,w=u', 1=<i<r,
and
fig, wy=v(w), r+l1<i<m+d.
Then, Lemma 3.5 iv) implies that
M, ={f(q,w);ucR"} (3.9)

is an r-dimensional manifold of &, for each ge R™*“, Now, fix any geR™*? and
let M be an r-dimensional integral manifold of & that contains g. Let w be the
restriction of the mapping (z',...,z"): R™"¥—R" to M. Let ({!,...,{") be a
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system of local coordinates of M around g. Since

] 0zt o

a—é’p—léigm-f—d oLP oz

and

d 2
T — 10
(62"+ 2 T 62‘)4’ =0=n

r+1Zis<m+d

form a basis of T, M, we have

) ow’ 5, s,
— ) = + ’Ta_l;) .
(3ép)q 1§§§r (5? )q (aza r+1§;§m+d 0z'/q

1

Consequently, there exists w~' around (z*(g), ..., Z'(¢)) and further it follows
from Lemma 3.5 ii) that w—! is a solution of (3.6) and (3.7). Thus, M coincides
with M 4 in a neighborhood of ¢. So that, we obtain the maximality of M,
gelR™+4 The above argument also shows that the function f is independent of
the choice of G.  Q.E.D.

We put
Y, =(B)res - (3.10)
To prove Theorem 2.1, we prepare

Lemma 3.7. Y, is the solution of the stochastic differential equation:

Y=Y Ql(Y)edBl, IeE() (3.11-1)
jeE
Y, =0. (3.11-2)

Proof. By the definition of Bi*'-~', we have
dB:'h s la =Bi1, wela-1g dB;"

when a>1. On the other hand, we have

L (pheesdeni e f a1,
J1s eees Ja m X t 312
& {5%, if a=1, ‘ (312

by the definition of Q,. Hence, (B});.g, satisfies (3.11). Q.E.D.
Lemma 3.8. Let f be the function in Proposition 2.1. Then we have

i0,...,0,x; BF)=B*D,  r+1<ism, =0, (3.13)
t t

m

for each xeR“.
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Proof. Set V,=(£;(0, ..., 0, x; B)),, | <;<m- Since V=0, it is enough to prove

dvi=} 0i(¥Y)-dBl,
jeE

for r+1<i<m. When p(i)eE®, we have

dvi= 3 T{BF, W) jeview—1~m) © dBLP

1spsr
by Eq. (3.6) and Lemma 3.4. When b=2, we have
avi=3% THBf)o dB!®),

lspsr

since E(1)~ F =¢. Then, Eq. (3.11-1) gives us

av'= ) {(Ryp Q1)) (1) Q4PAY))} o dB]

1<p=r Ieq, jeE

=2 {5;01°(Y)} - dB].

JjeE, IeG
Hence we have
Vi=BO  iev(EQ2)\F).
Now suppose that we have proved

Vi=BD  for iev(EQ)~F)u...uv(E(a)~ F).

Then it is easy to prove (3.14) for iev(E(a+ 1)~ F) by Eq. (3.15).

Proof of Theorem 2.1. Put
Zi=f%0,...,0,x; BY), 1<i<m+d, X'=2'0, 1<i<d,
Z,=(Z},...,Z"%,  X,=(X .., X9

Then we have
Z,=(Yp0, YR xsm)  xumed)y

by Lemma 3.8 and condition a) for f. Equation (3.6) gives us

dXi = Z T;,v(“(Zt) o dBf(p)

1=p=vr
= ). {T;™(Z)Q4"(Y)} - dBl.
lsp=r
Then we have
dX;= > {R(Y) AY(X) Q4P (X))} o dB]
1=p=Zr IcG, jeE

= ), {84xX)}0dB],

JeE, IeG

(3.14)

(3.15)

Q.E.D.

(3.16)

as R=Q(G,F)~'. Hence we obtain (1.1-1). It is easy to see Xo=x by

(3.7). QE.D.
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4. Converse of Theorem 2.1

We put E={0, ..., n} and m(p)=#E(p), p=1,2, .... We prove in this section

Theorem 4.1. Suppose that there exists a function he C*(R*x R™®—>R?) such
that X, ,=h(x,(B))jcp,y) i5 the solution of (1.1) for each xeR?  Then,
FL(A4,, ..., A,) is nilpotent of step p.

First we prove

Lemma 4.1. For each he C*(R™® - R), we have
dh(Y)=3 (Q;h)(Y)-dB,,

icE
where }’Iz(Bf)IeE(p) and Q,, ieE, are vector fields defined by (2.1).
Proof. Applying 1t8’s formula, we have

oh
(V)= ¥ 55 (¥)edB]

IeE(p)

Then, Eq. (3.11-1) gives us

oh .
dh(Y)= % {Qf(K)a—y,(K)}OdBi

IcE(p),icE

=Y (0,h)(Y)dB.. QED.

icE
Lemma4.2. Let X, be the solution of (1.1). Suppose that there exist
geC®(R¢>R) and he C*(R™P - R) such that

gX)=h(y), 120 (4.1)
Then we have

(4;8)(X)=(Q;m(Y), icE, 120 (4.2)
Proof. Taking stochastic differential of (4.1), we have

Y (4;8)(X)odB;=7Y (Q; ) (Y)<dB, (4.3)

ieE icE
by Lemma 4.1. Hence, we have

Y {(4,8) (X)—(Q,h) (£} =0,

1<i=Zn
so that

(4;8)(X)=(Q:h)(Y), 1si=n. (4.4)
Then, (4.3) and (4.4) give us

(4,8 (X)=(Q,h)(Y). QED.
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Proof of Theorem 4.1. Suppose that X, =h(x, Y) is the solution of (1.1) for each
xeR% Lemma 4.2 gives us

AX)=(Q,; M) (Y), ieE, 1=<j=d.
Using Lemma 4.2 again, we obtain

Ay, - Ay AL NXD=(Q,, ... QL W)Yy,

4.5)
iy ooniy €, 1<j<d.

By (2.2), we obtain

. i1, .cip+1 . A
Aj1,~.~,jp+1 . Z le'-"’JP+1A‘1"' ip+1?

i1y ip+1€E
Q. .= Y ceelgo 0o
J1s - Jp+1 X Jisvndp+t Ly Zilp+1
ity.eyip+16E

Hence

A£1 --~ajp+1(Xl):(le~'~-9jp+1hj) (Yt)’
J1s "'7jp+1€E) [<j=d.

Then Lemma 3.1 ii) gives us

Al =0, Jjy.sJpi1€E, 15j=d, xeR%

Jisdprt

Hence #(4,, ieE) is nilpotent of step p. Q.E.D.

5. The Functional when #(4,, ..., A,) is Nilpotent

In this section, we suppose that #(4,, ..., 4,) is nilpotent of Step p. So, we put
E={1,...,n}. Meanings of other symbols: m, r etc. are changed according to the
change of E. Take a subset F of E(p) that satisfies Property 2.1. Let

fzw)=(f W) cizmear 2ER™ uelkR’,

af of af af
0 127 Zm+d’ aull" a r
by 0y f, s Opsaly Opsart fo vvs Omawr f TESPECtively. Put h=(f"T1 ., fm*9),

Proposition 5.1. For each xeR* and U=(U,),5 e C([0, o) ~R"), there exists D
=(D,),,€C([0, 0) >R which is the unique solution of an ordianry differential
equation:

be the function in Proposition 2.1. will be denoted

= Y ALK, ...,0,D,; U))
15i=d M
m (5.1-1)
X0, h(f(0,.., 0, D3 U 0, ..., 0)

:
m r
Dy=x. (5.1-2)

To prove Proposition 5.1, we prepare
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Lemma S.1. For each compact K< R', we have
i) sup 10,0, A(f(0, ..., 0, x;u); 0, . )]J <o0, 1gi=d,
xelRd W

uek m r

i) sup [|h(0, ..., 0, x; w)| (1 +[x[)) <o

Proof. Noting that the values of fi(z;u), r+1<i<m, are independent of

Zmtt 2" we put

gz, ., 2" W)=z W)y g <izme
Then we have

SO, x; w)=(u, g(0; w), h(0, x; u)).
To prove i), note that

5m+ih(f (0, x; u); (1—1) u)
h(u, g(0; u), h(0, x; u); u)

m+1

-3 u"j(am+d+p6m+ih)(f(0,x; u); (1 —s)u)ds.

1€psr
Since
W, g(0;u), 271, .., 2" uy=2"", 1<£j<d,
we have
O Wi, g(0; u), RO, x; u); u)=0], 1=i,j<d.

Next, Eq. (3.6) gives us

(am+d+pam+ihj) (Z7u)
d .
=i {1 Rl g2, ..., 2" ) Af((z; w)}
IeG
= Z R;IL(p)(uﬂ g(Zl, - ))AA (h(Z u
IeG,15k<d
X Oy B (25 1),

Hence, we have

14

U § By as p Ot ) (F(0, x5 )3 (L —5) u) ds
0

t
<const | [
0]

h(f 0, x5 u); (1 =s) W) ds

m+i

CNE =L A for E=(2 L, EERY
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for xeR%, ueK, 0<t<1. Then, Gronwall’s inequality gives us i). To prove ii),
observe that

t
RO, x;tuy=x+ > fu?o

1=2p=2r 0

Then Eq. (3.6) gives us

h(0, x; su) ds.

m+d+p

O+ a4 W0, x5 51) =IZE; R\ (su, g(0; su)) Ay(h(0, x; su)).

Hence we have

t

Ju? 8,y gy, 10, x5 su0)ds
0

T
< const (f | A0, x; su)|| ds—l—l)
0
for xelRY, ueK, 0<t<1. So that we obtain ii) by virtue of Gronwall’s
inequality. Q.E.D.
Proof of Proposition 5.1. Fix T, a>0 and Ue C([0, co) >IR"). Put
Ft,x)= ) Ayh(0,x;U))d

1<i<d

h(f(0,x;U);0), [0, T], xeR%. (52)

m-i

By Lemma 5.1, there exists a constant b>0 such that
IF(t, )l <b(Ix]| +1), xeR"
Hence, if we put w(t)=(a+1)expbt—1, te[0, T], w satisfies

d
%2 [F@ 2 (ee[0, T, Ix] = o (2)).

Then, applying Perron’s theorem, we obtain a solution of (5.1) defined on the
interval [0, T] for each x: | x|| £a. Uniqueness follows from the local Lipschitz
continuity of F(t, x). Q.E.D.

Now, Proposition 5.1 gives us a functional
@: R?x C([0, 0) »R")— C([0, o) > R?)
defined by
&(x, U),=D,, xeR?% UeC([0, ©)—IR"), t=0.

Theorem 5.1. Suppose that £ (A, ..., A,) is nilpotent of step p. Then
X,=h(, ...,0, &(x, BY),; BY), t=0,

is the solution of (1.1) for each x<IR"
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To prove Theorem 5.1, we prepare

Lemma 5.2. We have

Y 0 WO, x5 1);0)8,,, ;H40, x; u) =0}

15j%4d
for each xeR%, uelR’, 1<i, k<d.
Proof. By the condition c) for f, we have

h(f(0, x; u); 0)=
6
Differentiating by , we obtain (5.3). Q.E.D.

Now we present

Proof of Theorem 5.1. Set
D,=®(X, BY),

and
X,=h(0, D,; BY).

We have
ap F
aX,= Y = O+ 10, D,; B)) dt
15isd
+ Y Bpiq.,h0,D,; Bf)odBL®.

l=psr

Equations (5.1) and (5.3) give us

) lea L W(O0,D;B)= Y 8/ A5(h(0,D,; B))

1 ieq dt 15ksd
J
AH(X).

Then, as the proof of Theorem 2.1, we obtain

Z am+d+p (0, D,; BzF) © dBtl(p)
1=p=r

= Y ATIH(FO, D BN) 01 (Y)} o dB;

1Zp=r,icE

= Z {Ru(p)( z) AJI(h(Oa Dz; Bf)) Qil(p)(Y;)} © dB:

1Zp=r,icE IeG

S Al(X)o dBL

1<isn

It is easy to see that X,=x. Q.E.D.

Y. Yamato

(5.3)

Acknowledgment. The author wishes to express thanks to Professor N. Ikeda for his encouragement.



Stochastic Differential Equations and Nilpotent Lie Algebras 229

References

1. Doss, H.: Liens entre équations différentielles stochastiques et ordinaires. C.R. Acad. Sci. Paris
Sér A 283, 939-942 (1976)

2. Doss, H.: Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré
13, 99-125 (1977)

3. Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur
certain groupes nilpotents. Acta Math. 139, 95-153 (1977)

4. 1td, K.: Stochastic differentials. Appl. Math. Optimization 1, 374-381 (1975)

5. Jacobson, N.: Lie algebras. New York-London: Wiley 1962

Received July 7, 1978



