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w 1. Introduction and Summary 

Let  X =(Xt) ,< o be the s t a n d a r d  symmet r i c  s table  process  in R N of index e, with 
0<c~<2 .  Tha t  is, X has s t a t iona ry  independen t  increments  whose cont inuous  
densities,  re lat ive to Lebesgue  measure  in R N, are  given by the Fou r i e r  invers ion 
fo rmula  

1 
p(x; u)=(27c) u R~ ~ e-'<x'~> exp(-ulg]=)dg' x e R  N, u > 0 ;  (1.1) 

moreover ,  X 0 = 0, and  X has sample  pa ths  which are r ight  con t inuous  and  have 
left l imits  everywhere.  F o r  c~=2, X./2 is s t anda rd  N -d ime ns iona l  Brownian  
mot ion .  We write R = (R~)t_> 0 for the co r re spond ing  rad ia l  process :  

R ,= lXt / .  (1.2) 

I t  is well  k n o w n  (confer F r i s t ed t  (1974)) tha t  X is po in t  recurrent  if ~ > N ,  
n e i g h b o r h o o d  recur ren t  bu t  no t  po in t  recur ren t  if c~ = N, and t rans ien t  if c~ < N. 
F o r  the mos t  pa r t  we shall  be dea l ing  with the non po in t  recur ren t  case, c~__< N. 
W h e n  c~ < N, with p robab i l i t y  one, the sample  pa ths  of  X wander  off to oe as 
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t ~ ~ .  When c~ = N, with probability one, the sample paths have the interesting 
property of coming arbitrarily close to 0 as t ~ oo without ever actually returning 
to 0. These path properties are elaborated on by the following result, which, 
from the point of view of almost sure convergence, gives a definitive answer to 
the question of how slowly X can escape to oo, or approach 0, as the case may 
be: 

Theorem 1.0. Let R=(Rt)t>_o be the radial part of the standard symmetric stable 
process in R N of index c~, with 0<~__<min(2,N). Let 

g: t'-"~ (t/t~(t)) 1/~ 

be a function such that O(t) is nondecreasing in t. Then 

0 
P{Rt<g(t  ) infinitely often as t ~oo} =1 (1.3) 

according to whether 

ha, s(t, O(t))dt < oo., (1.4) 
= 0 0  

here 

tgt"t")) 4[t(O(t))u/~-l' if ~ < N  (1.5) 1/h~,N(t, 
= ( t  log(O(t)), if C~ =X.  

Theorem (1.0) is due to Dvoretzky and ErdSs (1951) for a = 2 < N ,  to Spitzer 
(1958) for ~ = 2 = N ,  to Takeuchi (1964a) for a<min(2,N),  and to Takeuchi and 
Watanabe (1964) for a = I = N .  The case c~=2_<N is treated also by Motoo 
(1959). A function g for which the probability in (1.3) is 0 (resp. 1) is called a 
bottom outer (resp. inner) bound on R. Now to say that g is a bottom outer 
bound is just to say 

pg(t)=P{R,<g(u) for some u> t} ~ 0  (1.6) 

as t ~oo.  The main result of this paper gives the rate of convergence in (1.6): 

Theorem 1.1. Let R be the radial part of the standard symmetric stable process in 
R ~ of index c~, with 0<c~__<min(2,N). Put 

L~,N=K~,NV~,N, (1.7) 

with 



Rates of Escape for Stable Processes 197 

and 

I N - - u ~ , i f ~ < N  

v~'N=I 1, /f c~=N. (1.9) 

Let 

g: t .~  (t/~t(t)) ~/~ 

be a function such that the integral in (1.4) is convergent, and for which one has 

lim ~(t)--l, with ~'" (O(t), i fc~<N (1.10) 
s.t~oo,t/s+, ~(s) ~(t)={log(O(t)), if ~=N.  

Then as t -+ oo 

pg(t)=P{Ru<g(u ) for some u>=t} =(1 +o(1))Ig(t), (1.11) 

where 

Ig(t) = L~, N j ha, N( u, O(u)) du, 
t 

h being defined by (1.5). 

For example, in the transient case, one has 

K~. s 1 
P{R.<=u*/~/u ~ for some u>=t} o: ~ t (N-~)~- 

(1.12) 

for each ~>0. Theorem 1.1 provides the following heuristic interpretation of the 
integral test of Theorem 1.0. For any bottom bound g, be it outer or inner, one 
can conceive of the tail integrals Ig(t) of (1.12) as trying to approximate the' tail 
probabilities pg(t) of (1.11). One then has the following string of implications: g is 
an outer bound ~pg(t)-+O<=>Ig(t)--+O~=> the integral in (1.4) is finite. That 
a similar phenomenon takes place in connection with most other so-called 
strong forms of the iterated logarithm is one of the themes of Wichura (1979). 
In the case e=2 ,  Kono (1975) has recently generalized Theorem 1.0 in several 
directions while Robbins and Siegmund (1973) used martingale techniques to 
obtain exact, but for the most part unwieldy, expressions for pg(t) for a restricted 
class of g's. Also 'for ~=2, Wichura (1973) obtained (1.11) for a rather narrow 
class of g's using an elaboration of Motoo's technique (Motoo (1959)). Theo- 
rems 1.0 and 1.1 have counterparts for t tending to 0; we shall not dwell on this 
point (confer Takeuchi (1964b)). 

As will be shown in Section 3, Theorem 1.1 follows in a fairly elementary 
manner from the probabilistic estimates below. For t < v and e > 0, put 

H(t, v; O= P {R,<=e 1/~ for some t <_u <_v}. (1.13) 
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Theorem 1.2. Let 0<c~__<min(2,N), and let K=K~,  N and v=v~, N be defined by 
(1.8) and (1.9). Then as ~.~0, t and v remaining fixed, one has 

tt(t ,  v; ~) = (1 +o(1)) K 
1 / V - 1 / v  ~ 

1/~ v 

for ~ < N, and 

H(t, v;e) = (1 + o(1)) K log(l/t) - log(I/v) 
log(l/e) 

(1.14) 

(1.15) 

for ot = N. 
Using 

=2, and 
approach 
necessary estimates do not seem to be available (confer Takeuchi and Watanabe 
(1964), p. 209). In Section 2 we shall derive (1.14) (for all ~<N)  using a result of 
Port (1967). 

Laplace transform techniques, Spitzer (1958) established (1.15) for ct 
Takeuchi and Watanabe (1964) established it for ~=1. A similar 
may be made to yield (1.14) for e = 2 ;  however when c~<2 the 

w 2. Proof of Theorem 1.2 

We embark now on the proof of Theorem 1.2. As remarked in the introduction, 
only the transient case (1.14) need be treated here. Accordingly, suppose until 
further notice that 

0<~=<2, ~ < N .  

Put 

h (t) = h~,N(t ) = P {R, < 1 for some u > t}. 

The following lemma identifies the asymptotic behavior of h (and, incidentally, 
establishes Theorem 1.1 for a horizontal boundary g): 

Lemma 2.0. One has 

lim t v h(t) = K (2.1) 
t ~ o O  

with K =K~, N and v=v~. N being defined by (1.8) and (1.9). 

Proof of Lemma 2.0. It follows from Port (1967, p. 162) that the limit in (2.1) is 

0 
where by (1.1) 
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and where 

is the capacity of the unit ball B in R N relative to the potential kernel for X (cf. 
Blumenthal and Getoor (1968) p. 71, and Takeuchi (1964a) p. 111). Combining 
these expressions produces the constant K~, N. [] 

We need one additional pair of estimates. For this set 

h(t,v)=h~,N(t,v)=P{R,<-_l for some t<_u<_v}. 

Lemma 2.1. Let 0 < t < v < w < oe be given. Then 

(i) h(t ,v)>h(t)-h(v) ,  

h( t ) -h(w) 
(ii) h ( t , V ) < l _ h ( w _ v ) .  

Proof (i) is immediate. To get (ii), introduce the events 

A={IX,  I< I  for some t < u < v } ,  B={IX,  I>I  for all z>w}  

and for t<_u<v, ly[<l  set 

f(u, y) = P(BIX,  = y). 

For fixed y, f is clearly decreasing in u. For fixed u, f is increasing in lyl; this 
intuitively plausible fact is established in Lemma 2.2. Hence 

inf{f(u, y): t _< u _< v, lyl < 1} =f(v, 0). 

Putting 

=inf{u >__ t: IXu] < 1}, 

we therefore obtain 

h(t ,v)=P(A)N ! f(z,X~) dp=P(Ac~B)  < h( t ) -h(w) 
f(v,O) f(v,O) = l - h ( w - v ) "  [] 

We can now establish (1.14). From the scaling property cl /~R. /SR,  we get 

H(t, v;e)=P{R,<=e 1/~ for some t < u < v }  =H(t/c,v/c;e/c) (2.2) 

for any c > 0. In particular 

H (t, v; ~) = h(t/~, v/e) 

and Lemmas 2.0 and 2.1 provide the estimates 

. . . . . . . . . . .  ( l+o(1) )Ke~(1 / t~- l /w  ~) 
(l +o(1))Ke"(1/ t~- l /v  )~-ntr, v;e)~- . . . .  , 

- - (1  - (1  +o(1) )KeV(w-v)  v) 

valid for any w>v. (1.14) follows upon first letting e+O, then wSv. 
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The following result was appealed to in the course of proving Lemma 2.1, 
and will be needed again in the next section. Here we do not require e < N. 

Lemma 2.2. Let  0 < e < 2 ,  N > I .  Let  O < t < w < oo , let r>0 ,  and for y e R N set 

F(y)=Ft,w;r(y)=P{lX~+ y[ <r  for some finite v satisfying t < v < w } .  

Then F is a decreasing function of  ]yl. 

Proof. Put u = w -  t and note that 

F(y) = e ( ~ ( y  + x,)) = S ~(y  + z) p(z; t) dz 

where p(.; t)  is the density of X t and q~(x)=Fo,u;r(x ). It is well known (cf. 
Blumenthal and Getoor (1968) p. 19) that p(.;t) is a mixture of spherically 
symmetric multivariate normal densities, and is therefore spherically symmetric 
and decreasing along rays from the origin; in particular it is unimodal in the 
sense of Anderson (1955). The function ~b is clearly spherically symmetric; that it 
is also decreasing in Ix[ follows from the scaling property of X: 

q~(xl)=P{[X~+ x l [ < r  for some s<u}  

= P  {[X~ + x2[ <-_r p for some s < u p~} > qS(x2) 

for p = [x2[/[xl[ > 1. The desired conclusion follows from Anderson (1955). [] 

w 3. Proof of Theorem 1.1 

It will be convenient to introduce the function ~c =/s defined for x >0  by 

tc(x)=~x ~, if c~<N 
[log(x), if c~=N' 

where v=v~, N is given by (1.9). In terms of tc we may restate Theorem 1.2 as 

(~(1/t) - K (l/u)) (3.1) 
H( t ' u ; e )~K" 'N  /r 

as e ~ 0. Set 

1 dt =Ig(z)/L~ N (3.2) 
J g ( z )  = t~c(O(t)) 

(confer (1.12)). 
We will prove Theorem 1.1 under a growth condition on 0 which is slightly 

weaker than (1.10), namely 

lim limsup V~,c(r = 1, (3.3) 
c;1 "d'oo 

where 

�9 [max0c(r ~c(r 
K,c(0) = v~,c = sup ~ ~ .  s, t >= ~, 1 <=t/s <=~ f . 
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Suppose henceforth that  (3.3) holds. Since we are assuming ~ - -  
necessarily have 

O(t)-*co as t - * c o .  

To avoid trivialities we assume O(t)> 1 for all t of interest. 

201 

1 
dt < co, we 

t ~ (0 (t)) 

(3.4) 

A. The Upper Bound 

We will first derive an asymptot ic  upper  bound  on 

pg(z)=P{Rt<(r/O(t)) 1/~ for some t>v} .  

Let  ~ be given. Let  c > 1 and set 

Dk----TC k, k ~ O .  

For  k > 1, denote  the interval In k_ 1, nk] by Jk, and set 

?k=inf{O(t):  teJk}, Fk=sup{O(t) :  teJk}. (3.5) 

Notice 

l < s u p I ~ :  k > l } < V ~  c. (K(oA) = , 

Clearly 

pg('C)~ ~ P { R t < = ( n k / T k )  1/~ for some t ~ d k }  
k=l 

= ~ H(ilk_>G;ilk/yk)= ~ H(1/e, 1;1/7k), 
k=l k=l 

the last step holding by the scaling proper ty  (2.2). F r o m  (3.4) it follows that  
1/~k--+O uniformly in k as r ~  co, so by (3.1) 

~(c) - to(l) 
H(1/c, 1; 1/7k) =(1 + o(1)) K 

~:(70 

uniformly in k as ~ --+ co. Accordingly as -c --+ co, 

. .  ~(c)- tr  1 
pg(z)-<(l+o(1))  V~,~ ~ k 1 ~c(rk) 

<(l +o(1))V~cK~C(~-l~}lc!jg(z ). 
= , ( - )/ 

Upon  letting r T co and then c $1, we obtain 

pgU)<(1 + o(1)) to'(1) K Jg(v) 

llk - -  Ilk - 1 

tl k 

(3.6) 
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with 

v, if c~ < N 
~c'(1)= 1, if c~=N. 

Notice ~:'(1) K = L , ,  N (confer (1.7)). 

M.J. Wich u ra  

B. The Lower Bound 

We will now show that the right hand side of (3.6) is also an asymptotic lower 
bound on pg(Z). For this let z be given. Let 1 < b < c ,  and define times n k, k>0,  
inductively by the rule n o = r, and 

_ ~c nk, if k is even 
nk+l - - (bn  k, if k is odd " 

Throughout the rest of the argument, restrict the indices k and l to even values. 
For k>  0, let Jk now denote the interval Ink, nk+ 2]; define 7k and F k by (3.5). One 
has 

{Rt<(t/O(t)) 1/~ for some t i n  [nk, nk+l] } 

~_ {R t < (nk/Fk) TM for some t in Ink, n k + lJ } ; 

call this last event A k. We will use the elementary inequality 

Pg(Z)>P( U Ak)>= ~ [P(Ak)(1- ~ P(AtlAk))]" (3.7) 
k=O k=O l>k  

We begin by estimating the sum of conditional probabilities. It follows from 
Lemma2.2 and the method of argument employed in the proof of Lemma 2.1 
that 

P(AllAk)< H(nz--nk+ ~,nt+ l--nk; n]Ft)< H(1-1 /b ,c ;1 /Ft )  

nl + 2 - nl ~c(1/(1 - i/b)) - ~c(1/c) 
=(1 + o(1)) K nt+2 ~C(~) 1 -- 1/(b c) ' 

whence 

P(A~]Ag)=O(Jg(nk + 2))=~ 
l>k  

uniformly in k, as z ~ oo. This and (3.7) imply 

pg(z)>(1 +o(1)) ~ P(Ak). 
k=O 

But 

P (Ak) = H (nk, n k + 1 ; nk/Fk) = H (1, c ; 1/Fk) 

K ~(1)-tr nk+2--n k 
>(1 +O(1))-V,cb b c - 1  nk~C(7k) 



Rates of Escape for Stable Processes 203 

whence 

K ~:(1)- ~(1/c) 
pg(z)>(1 +~ ( b -  i/c) c 

the o(1) term here tends to 0 as z + • ,  b and c remaining fixed. Upon taking 
limits first as z ]" 0% then as b $1, and finally as c $1, we get the desired 

pg(z) > (1 + o (1)) K ~c' (1) Yg (z). 
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