Zeitschrift fiir

7. Wahrscheinlichkeitstheorie verw. Gebiete Wahrscheinlichkeitstheorie
47, 195-203 (1979) und verwandte Gebiete

© by Springer-Verlag 1979

On the Probability of a Symmetric Stable Process
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§ 1. Introduction and Summary

Let X =(X)),;, be the standard symmetric stable process in RY of index 2, with
0<a<2. That is, X has stationary independent increments whose continuous
densities, relative to Lebesgue measure in R, are given by the Fourier inversion
formula

1 )
p(X;U):@T)N [ emi ™ exp(—ulél)dé, xeRY, u>0; (1.1)
RN

moreover, X ,=0, and X has sample paths which are right continuous and have
left limits everywhere For =2, X ,, is standard N-dimensional Brownian
motion. We write R=(R,),, for the correspondlng radial process:

=X, (1.2)

It is well known (confer Fristedt (1974)) that X is point recurrent if «> N,
neighborhood recurrent but not point recurrent if «=N, and transient if «<N.
For the most part we shall be dealing with the non point recurrent case, a< N,
When a< N, with probability one, the sample paths of X wander off to o as
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t— oo. When a=N, with probability one, the sample paths have the interesting
property of coming arbitrarily close to 0 as ¢ — co without ever actually returning
to 0. These path properties are elaborated on by the following result, which,
from the point of view of almost sure convergence, gives a definitive answer to
the question of how slowly X can escape to oo, or approach 0, as the case may
be:

Theorem 1.0. Let R=(R,),, be the radial part of the standard symmetric stable
process in RY of index o, with 0<a<min(2, N). Let

g: b (A (e)'

be a function such that \(t) is nondecreasing in t. Then
o 0
P{R,Zg(t) infinitely often as t >0} = (1.3)
according to whether

[ st v@)ar =" | (L4

here

1/h, (4 (1) :{t(‘//(f))m“" L ifa<N

tlog( (1)), if a=N.

Theorem (1.0) is due to Dvoretzky and Erdds (1951) for a=2 <N, to Spitzer
(1958) for o=2=N, to Takeuchi (1964a) for « <min(2, N), and to Takeuchi and
Watanabe (1964) for a=1=N. The case ®=2<N is treated also by Motoo
(1959). A function g for which the probability in (1.3) is O (resp. 1) is called a
bottom outer (resp. inner) bound on R. Now to say that g is a bottom outer
bound is just to say

(1.5)

p(t)=P{R,<g(u) for some uzt} -0 (1.6)

as t - o0. The main result of this paper gives the rate of convergence in (1.6):

Theorem 1.1. Let R be the radial part of the standard symmetric stable process in
RY of index o, with 0<a<min(2, N). Put

L, n=K,nVan (1.7)

with

(1.8)
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and

_a, if a<N

Vv =y i 2=N. (1.9)
Let

g: Lo (LA ()

be a function such that the integral in (1.4) is convergent, and for which one has

oy N 10} ifa<N
BN UL (R (L0
Then as t -0
p,()=P{R,=g(u) for some uzt}=(1+o(1)1,(1), (L.11)
where
Ig(t):La,N?hd!N(u,lp(u))du, (1.12)

h being defined by (1.5).

For example, in the transient case, one has

K 1
PR, Su'ju for some uz th~~ 5% <oy
» :

for each {>0. Theorem 1.1 provides the following heuristic interpretation of the
integral test of Theorem 1.0. For any bottom bound g, be it outer or inner, one
can conceive of the tail integrals I,(¢) of (1.12) as trying to approximate the tail
probabilities p,(¢) of (1.11). One then has the following string of implications: g is
an outer bound <p,(f)—0<«I,(t)—>0< the integral in (1.4) is finite. That
a similar phenomenon takes place in connection with most other so-called
strong forms of the iterated logarithm is one of the themes of Wichura (1979).
In the case a=2, Kono (1975) has recently generalized Theorem 1.0 in several
directions while Robbins and Siegmund (1973) used martingale techniques to
obtain exact, but for the most part unwieldy, expressions for p,(t) for a restricted
class of g’s. Also for a=2, Wichura (1973) obtained (1.11) for a rather narrow
class of g’s using an elaboration of Motoo’s technique (Motoo (1959)). Theo-
rems 1.0 and 1.1 have counterparts for ¢ tending to 0; we shall not dwell on this
point (confer Takeuchi (1964b)).

As will be shown in Section 3, Theorem 1.1 follows in a fairly elementary
manner from the probabilistic estimates below. For t<v and £¢>0, put

H(t,v;e)=P{R,<g'" for some t Su=v}. (1.13)



198 M.J. Wichura

Theorem 1.2. Let O<a<min(2,N), and let K=K, y and v=v, y be defined by
(1.8) and (1.9). Then as &0, t and v remaining fixed, one has

Hit,v:6)=(1 —i—»o(l))K% (1.14)
for a< N, and
H(t,v:2) =(1 +0(1) K 28U/D—log(l/o) (1.15)

log(1/e)

fora=N.

Using Laplace transform techniques, Spitzer (1958) established (1.15) for «
=2, and Takeuchi and Watanabe (1964) established it for a«=1. A similar
approach may be made to yield (1.14) for a«=2; however when a«<2 the
necessary estimates do not seem to be available (confer Takeuchi and Watanabe
(1964), p. 209). In Section 2 we shall derive (1.14) (for all o< N) using a result of
Port (1967).

§ 2. Proof of Theorem 1.2

We embark now on the proof of Theorem 1.2, As remarked in the introduction,
only the transient case (1.14) need be treated here. Accordingly, suppose until
further notice that

O<a<2, a<N,
Put
h(t)=h, y(t)=P{R,=1 for some u=t}.

The following lemma identifies the asymptotic behavior of # (and, incidentalliy,
establishes Theorem 1.1 for a horizontal boundary g):

Lemma 2.0. One has

lim £ h(t)=K 2.1)

t— oo
with K=K, y and v=v, y being defined by (1.8) and (1.9).
Proof of Lemma 2.0. It follows from Port (1967, p. 162) that the limit in (2.1) is

p(0;1) C(B) / (%—1)

where by (1.1)
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and where - N - N—g
2 2

cB)= N—q o o N2
r > +1)r 5 r 2 2*n

is the capacity of the unit ball B in R relative to the potential kernel for X (cf.
Blumenthal and Getoor (1968) p. 71, and Takeuchi (1964a) p. 111). Combining
these expressions produces the constant K, y. [

We need one additional pair of estimates. For this set

h(t,v)=h, y(t,v)=P{R,<1 for some tSu=<v}.
Lemma 2.1. Let O0<t<v<w< o0 be given. Then
(i) h(tv)=h(t)—h().

(i) A, v)§1h(_—t)h?%l%.
Proof. (i) is immediate. To get (ii). introduce the events

A={X,£1 for some t<u<v}, B={X,|>1 forall z>w}
and for tZuzv, [yl <1 set

J(u,y)=P(B|X,=y).

For fixed y, f is clearly decreasing in u. For fixed u, f is increasing in |y|; this
intuitively plausible fact is established in Lemma 2.2. Hence

inf{f(u,y): tsusv,lyl=1}=f(v,0).
Putting
t=inf{u=z: |X <1},

we therefore obtain
_ [, X) _P(ANB) _ h(t)—h(w)
HO=PDEL 00 T 0 S T=he-o

We can now establish (1.14). From the scaling property ¢'/*R_ /F@ R, we get

H(t,v;e)=P{R,Ze'™ for some t u=<v}=H(t/c,v/c;¢e/c) (2.2)
for any ¢>0. In particular
H(t,v;8)=h(t/e, v/e)

and Lemmas 2.0 and 2.1 provide the estimates

(1 +o(L) K e*(1/t"—1/w")

(L+o() K (e = 1) SHE00S 51 G e oy

valid for any w>wv. (1.14) follows upon first letting ¢} 0, then w|v.
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The following result was appealed to in the course of proving Lemma 2.1,
and will be needed again in the next section. Here we do not require o <N.

Lemma 2.2. Let 0<a <2, N=1. Let 0<t<w= o0, let r>0, and for yeRY set
F(y)=F,. (y)=P{X,+y<r for some finite v satisfying t Sv=w}.
Then F is a decreasing function of |y|.

Proof. Put u=w—t and note that
F)=E@(y+X)=[P(y+2)p(z;1)dz

where p(+;t) is the density of X, and ®(x)=F, . (x). It is well known (cf.
Blumenthal and Getoor (1968) p. 19) that p(-;t) is a mixture of spherically
symmetric multivariate normal densities, and is therefore spherically symmetric
and decreasing along rays from the origin; in particular it is unimodal in the
sense of Anderson (1955). The function @ is clearly spherically symmetric; that it
is also decreasing in |x| follows from the scaling property of X:

&(x;)=P{{X,+x,|=r for some s=<u}

=P{|X,+x,|<rp for some sZup*} = P(x,)

for p=|x,|/|x,;l= 1. The desired conclusion follows from Anderson (1955). [

§ 3. Proof of Theorem 1.1

It will be convenient to introduce the function x=x, y defined for x>0 by

()= x", if a<N
" llog(x), if a=N’

where v=v, y is given by (1.9). In terms of x we may restate Theorem 1.2 as

(e(1/1) —xc(1/u))

H(t,u;e)~K, y < (12) 3.1
as ¢]0. Set
© 1
S, (0)= ! w0 dt=I,(t)/L, (3.2)

(confer (1.12)).
We will prove Theorem 1.1 under a growth condition on y which is slightly
weaker than (1.10), namely

lim limsup ¥, .(y)=1, (3.3)
cll Tt oo
where

max(x (i (s)), k(¥ (1))
min (xc (Y (5)), < (¥ (1))

Vm(l//)=Vm=sup{ D8, t=>1, 1§t/s§c}.
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© 1

Suppose henceforth that (3.3) holds. Since we are assuming | ————dr<oo, we
necessarily have Ly (D)

Y(t)>o0 as t—o0. (3.4)
To avoid trivialities we assume ¥ (¢)>1 for all ¢ of interest.
A. The Upper Bound
We will first derive an asymptotic upper bound on

Py (1) =P{R,Z(t/iy (1)) for some t=1}.
Let 7 be given. Let ¢>1 and set

n=tc*, k=0.
For k=1, denote the interval [n,_,,n,] by J,, and set

ne=inf{y(t): ted.}, I,=sup{y(r): tel,}. (3.5)
Notice

1<sup {@ k= 1} V..

k(7)

Clearly

P ()= Y P{R,Z(n/y,)"'* for some teJ,}
k=1

0

= Z H(n_y,m;n/v)= Z H(1/e, 13 1/7,),
k=1

k=1

the last step holding by the scaling property (2.2). From (3.4) it follows that
1/7,— 0 uniformly in k as ©— oo, so by (3.1)

k(c)— k(1)
x(ve)

uniformly in k as T— o0. Accordingly as 7 — o,

H(l/e.1;1/p)=(1+0o(1) K

k(o)—x(l) & 1 n—n,_,

p, (=1 +0(1)V, K 1-1jc & () n
k(c)—w(1)
(o) V, K= = (o).

Upon letting 71 o0 and then ¢ |1, we obtain

P = (1 +o(1) K (1) K () (3.6)
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with

, v, if a<N
“”‘{1, if a=N.

Notice «'(1) K =L, y (confer (1.7)).

B. The Lower Bound

We will now show that the right hand side of (3.6) is also an asymptotic lower
bound on p (7). For this let = be given. Let 1 <b<c, and define times n,, k=0,
inductively by the rule ny=1, and

S L% if kis even
1 \bn, if kisodd’

Throughout the rest of the argument, restrict the indices k and [ to even values.
For k=0, let J, now denote the interval [n,,n, . ,]; define y, and I} by (3.5). One
has

(R, < (¢ (0)"" for some ¢ in [, m, T}
2{R,=(n, /)™ for some ¢ in [, n,, 1}

call this last event 4,. We will use the elementary inequality
pg(f)zP(kUO A)z Y [P(A)(1 =) P(A4]4)]. (3.7
= k=0 I>k

We begin by estimating the sum of conditional probabilities. It follows from
Lemma2.2 and the method of argument employed in the proof of Lemma 2.1
that

PAJA)SHm—nyy ey —my; m/T)SH(1—1/b,c; 1/1)

mys =y (10— 1/B) —(1/0)
oMK =

whence

Z P(AllAk):O(jg(nk+2)) =o(1)

I>k

uniformly in k, as T— co. This and (3.7) imply

py(1)Z(1+0(1)) Z P(4y.

But
P(A)=Hm,m ;m/L)=H(,c;1/1)
K x(l)—x(ljc) me, ;—n

2(l+o (1)) Viow be—1 nk()
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whence
K x()—«(1/c) )
py(1)2(1 +0(1))m ng(f),

the o(1) term here tends to 0 as t— o0, b and ¢ remaining fixed. Upon taking
limits first as 7100, then as b1, and finally as c| 1, we get the desired

PO Z (1 +0(D) K K (1) £,(0).
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