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1. Introduction 

It is well known that lacunary subsequences of the trigonometric system behave 
like independent random variables. For  instance, a theorem of Salem and 
Zygmund (see [4]) states that if 

nk+ link > q > 1 (1) 

then cos 2n nkX obeys the central limit theorem i.e. 

t N t l ira2 x: Z c ~  =q~(x). 
N ~  [ k = l  

(Here 2 is the Lebesgue measure on [0, 1].) A sharpening of this result (see 
Erd5s [2]) states that cos 2~ nkX satisfies the central limit theorem also in the 
case when we replace (1) by the weaker condition 

n k + a/nk > 1 + Ck/]/k c k ~ oo. (2) 

And this latter condition cannot be weakened any further: for any constant c > 0 

there is a sequence {rig} of integers such that nk+ a/nk> 1 + c / l f k  and the sequence 
cos 2rcnkx does not satisfy the central limit theorem. Consequently, (2) is the 
optimal growth condition for the central limit theorem. This does not mean, 
however, that in the absence of (2) the central limit theorem never holds. From a 
result of Salem and Zygmund ([5], Theorem (3.1.1)) it follows easily that if {E,} 
are independent r.v.'s taking the values + 1 with probability 1 / 2 - 1 / 2  each and 
nl(co)<n2(cn)<.., denote the indices n such that e ,=  +1 then the sequence 
cos 2~ nk x obeys the central limit theorem with probability one. Since lim nk/k 

k~oo 

= 2 a.s. by the law of large numbers, we see that there are sequences {nk} with n k 
=O(k) such that cos 2re nkX obeys the central limit theorem. The growth order 
n k = O(k)  is much slower than that dictated by (2) (it is easily seen that (2) implies 

n k / e V ~  oo) and of course it is the slowest possible (except the constant in O) 
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since n k> k holds for any strictly increasing sequence {nk} of integers. As to the 
size of the "gaps" nk+ 1 -  nk' however, the situation is different. For the sequence 

{rig} above we have lim (rig+ 1 -  nk)/log k = 1 a.s. by the well known "pure heads" 
k~oo 

theorem of Erd6s and R6nyi (see [3-1). Our purpose is to show that there is a 
sequence {nk} such that cos 2re nkX obeys the central limit theorem and the gaps 
rig+ ~ --n k are of smaller order of magnitude than log k, and in fact these gaps can 
grow as slowly as desired. More exactly we shall prove the following 

Theorem. Let f(k)-~oo be any function. Then there is a strictly increasing 
sequence {nk} of positive integers such that nk+l--nk=O(f  (k)) and the sequence 
cos 2zr nkX satisfies the central limit theorem. 

Whether there exists a sequence {nk} such that nk+l--nk is bounded and 
cos 2To nkX obeys the central limit theorem we were unable to decide. 

The proof of our theorem depends also on a random construction for the 
sequence {nk}. To give an explicit (nonrandom) construction producing the same 
effect seems to be much harder. In [-1] we constructed a large class of sequences 
{nk} growing slower than exp((logk) 3) such that cos 2zcnkx obeys the central 
limit theorem but the problem of constructing an explicit sequence nk----O(k ~) 
(r > 0 is a constant) with the same property remains open. 

It can be asked if there is a sequence {rig} of integers for any given f (k)  ~ oe 
such that nk+l--nk=O(f(k)) and cos2rcnkx obeys the law of the iterated 
logarithm. The answer is in the affirmative; indeed, the random sequence {rig} 
constructed in the proof of our theorem will be such that cos 2~z nkX obeys the 
law of the iterated logarithm with probability one. (This will follow trivially 
from the classical law of the iterated logarithm and Fubini's theorem; see the 
Remark at the end of our paper.) 

2. Proof of the Theorem 

Without loss of generality we may assume that f(k)  is positive, non-decreasing, 
integer-valued and f ( k  + 1) __< 2f(k). Let 

U 1 = {j: 1 _<j<f(1)}, 

U2 = U: f ( l )  < j  <f (1)  +f(2)}, ..., 

U k = {j: f ( l )  + . . .  + f ( k -  1) < j  =<f(1) + . . .  +f(k)} . . . . .  

Let nl, n2, ... be independent random variables on some probability space 
(f2, .~,P) such that nl is uniformly distributed over U 1 (i.e. it has its values from 
[71, each element of U 1 having the same probability), n 2 is uniformly distributed 
over [I2 etc. Then evidently 

nk+l -- nk <=f(k + 1) +f(k)  < 2f(k  + 1) <4f(k) .  

We are going to show that, for almost all coef2, the sequence cos2~nk(co)x 
obeys the central limit theorem. Let 
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1 
2k(x) =E(cos 2 ~ n k ( c o ) x ) = f ~  ~ cos 2~zjx (3) 

jeUk 

~ok(x ) = cos 2re n k x - 2k(x ) 1 (4) 

Clearly, 2k(x)=ak b k where a k = f  (k) -1, b~= ~ cos 2rc j x  and here ak--,0 decreas- 
jeUk 

and the partial sums of b k remain bounded for all x~(0, 1) (since 
/ 

ingly 

cos2rcjx <oo for x~(0, 1)]. Hence, using summation by parts we see s u p  
k >1 j=l  ! 

that 2k(x)= ~ akb k is convergent for x~(0, 1) and thus, for any fixed coef2, 
k=i k=l 

cos 2~ nkx obeys the central limit theorem if 0k(x) does and conversely. Let 

1 
t 

I 
JN=JN('~'fff))=! k=ll~ ( 1 - ~ - ~  (f)k(X)) dX' 

We are going to show that JN~ ~ 1 a.s. for every fixed - 1  _< 2 < 1 and also that 

IN=e-X~/:JN+o(1) (N-~oo) (5) 

for any fixed 2, co. These two statements, together with Fubini's theorem, imply 
that TN~ is asymptotically normal (as N-~ oo) for almost all co~Q where 

1 N 

From the last fact we immediately get the asymptotic normality of the whole 
sequence T N since, for every fixed e), the L2(0, 1) norm of IT M -  TNaI is =< 1 2 / 1 ~  
for N3<M<<_(N+I) 3 by an easy calculation (using the fact that the ~0k's are 
orthogonal over [0, lJ (which is evident from (3), (4)) and I~0k(x)l __< 2). 

To see (5) we fix e) and expand the integrand of I N by using expz 
= (1 + z) exp(z2/2 + o(z;)) (z--+ 0) to get 

CPk(X) ! exp --(1 +o(1)) ,.-, cp2(x) dx (6) I N = ! ~  1 + ~  ~- 
k=l k=l 

where the o(1) is uniform in 0_<x < 1 and - 1  __<2_< 1. It is easy to see (using e.g. 
the orthogonality of the sequence {cos227rnx-1/2} and the Rademacher- 

N 
Mensov convergence theorem) that N - I ~  cos22rcnkx~l /2  for a.e. x~(0, 1) 

k=l 

In the sequel we shall not  indicate the variable co in n k or q~k(x). We also emphasize here 
al though it will be clear from the formulas - that the symbol E (for expectation) will always be 
meant  with respect to co 
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and hence by the closeness of cos2rcnkx and Ok(x) we also have 
N 

N - I ~  ~02 (x) --,1/2 a.e. which shows that the exponential in the integral (6) 
k = l  

tends to e -'~2/2 for a.e. xE(0, 1). Since this exponential is < 1 and the absolute 
value of the product in the integral (6) is 

N 

1-I (1 + 222 q~2 (x)/N)l/2 < e4X 2 
k = l  

by 1 + x <_- e x, (5) follows from the dominated convergence theorem. 
To show Ju3~l a.s. for a fixed -1<2<_1 we compute the mean and 

variance of JN. Evidently 

since the random variables 1 + i2 q)k(x)/1/N)2 are independent and E Ok(x)= 0 for 
all x. Furthermore, putting Ok(x, y)=Erpk(x ) Ok(Y) we get 

E [JN- 112 =E(JNffN)-- 1 

i2 q~k(x)) i~i (1 i2 q)k(Y))dxdy-1 
(7) 

i2 i2 222 ~ok(y)~ 
=E i00k=li I ]  (1 + ~  q ) k ( x ) - ~  q~k(Y)+-~- Ok(x) ] dx dy-1 

=o o k=l + N -  dy-  

where in the last step we exchanged the expectation with the integral and the 
product sign in the third line of (7) (the terms of the product are clearly 
independent r.v.'s) and used again E q~k(x ) = E q~k(y ) =0. Let 

- ~ 222 

y)-=l W- y) 
then using l+x=exp(x+O(x2)) for ]xl <1 (notice ]~k(x, y)[<4) we can write the 
product in the last integral of (7) in the form 

where the constants in O are absolute (provided - 1 <_ 2 <_ 1). By the definition of 
0~(x, y) we have 

0k(x, y) ---liz- ~ (cos 2rcjx - 2k(x))(cos 2r~jy- 2k(y)) (9) 
j tr,,] j~Uk 
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whence we can see that  the system {Ok(x,y)} is o r thogona l  over  [0, 1] 2. This fact 
and [0k(X, Y)[_--<4 show that  the integral  of  G~(x,y) over  [0, 1] 2 is < 16/N, hence 
integrat ing (8) and using Schwarz 's  inequali ty we see that  the last integral  in (7) 
is 1 +O(N -1/2) i.e. we have  

which evidently implies JN3 ~ 1 a.s. by the Beppo Levi theorem. Q.E.D. 

Remark. Using a s tandard  trick (cf. e.g. [5]) one can see immedia te ly  that  the 

sequence {~pk(X)} (and by the convergence of ~ 2k(X ) also the sequence 

{COS2~nkX}) obeys the law of the i terated logar i thm for a lmost  every co~f2. 
Indeed, for any fixed xe(0,  1) the ord inary  law of the i terated logar i thm (for 
independent  r.v.'s) applies to the sequence {(Pk(X, CO)}; clearly I~0~(x)l <2, E~ok(x ) 
= 0  and by an easy calculat ion we get (using (3), (9) and 2 k ( t ) ~ 0  for 0 < t <  1) 

E(p2(x)=~k(X,x)=f(k) -a ~ cos2 2~jx +o(1) 
j~Uk 

= 1 /2+2k(2X) /2+O(1)=  1/2+O(1) if X~(0, 1), X:~ 1/2. 

Hence,  for every fixed x~(0, 1), x # 1/2 the relat ion 

N 

lira (NloglogN) -1/2 ~ ~ k ( x , o ) = l  
N ~ o o  k =  1 

holds for a.s. o ~ 2 ;  by Fubini ' s  t heorem the last relat ion also holds a.e. in x for 
a lmos t  all ~ 2 ,  proving  our  s ta tement  above.  
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