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Let M t be a continuous martingale, with Mo=0.  Set M*=supLMs{, and let 
s<=t 

(M) t  be the increasing process associated with M (the unique increasing 
process such that M 2 - ( M )  is a local martingale). The classical Burkholder- 
Gundy inequality states that there exist universal constants cp, Cp, such that 

II(M>~ II~_-<Cpl[M*ltp, 0<p<oo. (1) Cp IIM*II~<__ 1/2 

We shall summarise an inequality like (1) by saying that the quantities M* and 
(M31/2 are equivalent. 

- - / o o  

It is natural to look for other functionals of M which are equivalent to 
M*.  Let Igt(M ) be the local time of M at a; we may, and shall, take Lat(M) to 
be jointly continuous in (a, t) - see [9]. In [2] it was shown that the quantity 
L*(M)=sup  L~o~(M) is equivalent to M* and ( M > ~ 2 :  w e  have 

a 

% IIM*IL~< IlL*lip< cp IIM*llr (2) 

Now let Ut(M,a,b) be the number of upcrossings made by M across the 
interval (a, b) in the time interval [0, t], and let 

U*(M, ~)=sup Ut(M, a, a + e), 
a 

Vt(M) = sup e U,* (M, c). 
~ : > 0  

In I l l  it was shown that, for each e>0, 

cp I IM~l lp -~  I1~ U*(M, ~)llp ~ Cp IIM~II ~, (3) 

so that e U*(M, 5) is very nearly equivalent to M*. Also, M. Yor (private 
communication), proved that, for each a, 

Ilsup ~ U~(M, a, a-t-~)llp~ Cp IIM*llp. (4) 
e > O  

In this paper we show that V~ is equivalent to M*.  

, This paper was partly written while the author  was visiting the University of British Columbia 



170 M.T. Barlow 

Theorem 1. Let M be a continuous local martinagale, with M o=0. There exist 
universal constants Cp, C v, 0 <p < o% such that 

c~ IIM*IIp__< II goo(M)l[._- < C. IIM* II.- (5) 

The left hand side of (5) is easy to prove. On the other hand, as Voo(M) 
+ Voo(-M) is greater than each of M* ,  L*(M)  and <M>I~ 2, the right hand 
side is stronger than the right hand inequality in each of (1)-(4). For, by L6vy's 
downerossing theorem, L~oo (M) = lira e Uoo (M, a, a + e), so that 

a,tO 

L *  (M) < Vo~ (M). (6) 

As U~(M,O, sup Ms-cS)= 1 for 0<cS<sup Ms, we deduce that 
s s 

sup M s < V~ (M), (7) 
s 

M* __< V~ (M) + Voo ( -  M). (8) 

Finally, <M>o~= ~ I ~ ( M ) d a < 2 M * L * ( M ) ,  and therefore, since L*(M)  
- o o  

< V~o ( - M)/x V~ ( - M) < �89 (Voo (M) + V~ ( - M)), we have 

( M )  1~2 < Vo ~ (M) + Voo ( -  M). (9) 

Let B, be a Brownian motion with B o = 0, and let ( 4 )  be the usual filtration 
of B - that is, the usual augmentation of the filtration (r(Bs, s < t  ). Our main 
tool in the proof of (5) is a decomposition of the path of B, which was also 
used in [1]. We define the skeleton of B on the grid 2 -mz ,  denoted B (m), as 
follows. 

Set 
"C O = 0 ,  

"C,+ l= in f{ t  >'c,: IBt-B~,I=2-m},  

B~ m) = Bur. 

Thus B (") is a simple symmetric random walk on 2 - "  2g. 
It is intuitively clear, and was proved in Lemma 2.1 of [-1] that, conditional 

on whether B~,+I-B~. equals + 2 - "  or - 2  -m, the path B~.+t-B~,, 0 < t < z , +  1 
- % ,  is independent of the process B (~). 

Before stating the precise independence result we will use, we need some 
notation. Set fq~=a(B(")). Let a = k 2 - " ,  keZ,  let Ty=inf{s>0:  [Bsl--y}, N 
= Ur,(B, a, a + 2-m), and let Ra, S~, R a, S 2 . . . . .  R N, S N be the endpoints of the 
upcrossings B makes from a to a + 2  -m before time T~. Thus we have 

BR,=a, Si=inf{t>=Ri: B t = a + 2 - " } ,  

a - 2 - m < B t < a + 2  -m for R i < t < S  i, 

and the process W~=BR,+t--BR, is a Brownian motion started at 0, and 
conditioned to hit 2 - "  before - 2  -~. Note that while the S~ are stopping times, 
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the R i are not. Set 

K?(a) = I2s, (B) - L~, (B) = L%-R, (Wi) �9 (10) 

Since the conditioning of W i does not affect the value of L~ by 
Tanaka's formula we have EK'~(a)=EL~ -m. Lemma2.1 of [1] 

- -  - - m  states that W i is independent of f#,,, and thus we have E(K'~(a)[N, , ) -2  . 
Hence, if A is any ~#m measurable random variable with range 2 -m 7Z, we have 

E(K?(A)I f#m)=2-% I<-i<-UT,(B,A,A+2-m).  

(Note that Ur~ (B, A, A + 2 ~) is fq,, measurable.) 

Proposition 2. For each x > 0 

P(Vr~ (B) > x) < 1_ 4 E L *  (B). 
X 

Proof. Let 
Zm= max UT~(B,a,a+2-m), 

a e 2 - ~ 7 /  

(11) 

N=inf{m>O: Zm> 2mx}, 

Hence 

so that N is a stopping time/(f#m). 
Now 

L*(B)>= I(N < oo)LAT~(B) 
ZN 

__> I(N<~)E K,~(A~) �9 
i = 1  

zm 

EL*(B)>=E l(N=m ) 
- 0  i = 1  

KT(Am)] 

= E  l(N=m ) ~ E(K.~(Am)[~qm) 
n= i = 1  

as Z,,, {N=m} are f#~ measurable 

[2 ] = E  l(N=m) Z,, 2 - "  by (11) 
- 0  

= E l(u < o~) 2-N ZN 

> x P(N < oc). 

Thus P(sup2-mZm>x)<____x-~EL*rl(B). To conclude the proof, we note the 
m 

pathwise inequalities 

and let A m be the smallest a at which this maximum is attained: Z m and A,, are 
both Nm measurable. Let x > 0 be fixed, and let 
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U*I (B, 2-m) < max UTl(B,a,a+2-'m+l), 
a~2 (m + 1) 7/ 

Vr~(S ) <2  sup 2 -m U*~(B, 2 m), 
m > 0  

which together imply that VTI(B )_< 4 sup 2 -m Z,,. 
m>_0 

We now use some standard machinery for proving martingale inequalities 
to deduce Theorem 1. The following lemma is due to Lenglart, Lepingle and 
Pratelli [7], and is given here in the slightly improved form used in [3J. Here 
]lBrll o~ = ess sup IBrl. 

Lemma3.  Let At, B t be two previsible increasing processes, with A0=Bo=0 .  
Suppose there exists q>0,  a > 0  such that, for every couple of stopping times S, 
T, with S < T, 

E ( A T -  As)q <a IIBTII~ P(S < Z). 

Then for every moderate function F, there exists a constant C F depending only 
on a and F, such that 

EF(AT) < Cv EF(Br) for all stopping times T. 

In particular, 
IlArllp<CellBrll; 0 < p < o e .  

Proof of Theorem 1. The left hand side of (5) is an immediate consequence of 
(6) and the left hand side of (2). 

To establish the right hand side, it is enough to show that, for any stopping 
time T, 

II VT(B)[I p < Cp liB*lip. (12) 

For, by the Dubins-Schwarz theorem [4], any continuous martingale M is the 
time change of a stopped Brownian motion, and the quantities V(M) and M* 
are preserved under time change. 

By scaling the Brownian motion Bt, we have Vr,(B)=yVr,(B/y)~yVr,(B). 
By Proposition2, E(Vr,(B))I/2=c<~, and therefore E(Vr...,(B))l/2=cy 1/2. 
Hence, if T is any stopping time, setting y=I]B}]]~, we have T<Ty, and so 
EVT(B)I/2 1/2 * 1/2 <cy =cllBTlloo . 

Now let S < T be two stopping times, Q =Pl(s< T), and/3 t=  Bs+t-Bs.  Then 

and so 
VT(B) < Vs(B ) + VT_s(B ) + B~ l(s < T), 

E(VT(B ) - Vs(B)) 1/2 <= E [ (V T _s(B)-t-  B~) 1/2 l(s < r)] 

<=EQ(Vr_s(B)I/2)p(s< T)+ B* 1/2 II rll~ P(S<Z) 
< C ~* 1/2 , 1/2 =(  [IBT_slloo +IIBTII~ )P(S>T)  
<(1 + 2 c  B*II 1/2 )]l , , ,~ P(S<T) as S*_s<2S* .  

Applying Lemma 3 we obtain (12), which completes the proof of the Theorem. 
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Remarks. 1. The  p r o o f  of  T h e o r e m  1 also gives (5) for m o d e r a t e  funct ions F :  

c t EF (M*) < EF (V~ (M)) < C~ EF (M*). 

2. A l though  (5) is s t ronger  than  the L* inequal i ty  (2), its p r o o f  rests on the 
finiteness of  EL*r~(B), and  p r o v i n g  this is the  ha rd  par t  of  the L* inequal i ty .  It 
m a y  be done  either by  using the R a y - K n i g h t  t heo rem [6, 8], as in [-23, or  by 
using the G a r s i a - R o d e m i c h - R u m s e y  1emma [53, as in [3, Cor  5.2.1]. A direct  
p r o o f  of (5) wou ld  of  course  also establ ish (2), via (6), and  it is poss ible  tha t  
some var ia t ion  of  the me thod  of P ropos i t ion  2 would  yield such a proof.  F o r  
each fixed a=k2  -m, the process  Y~=2-nUrl(B,a,a+2 - ')  is a mar t ingale ,  
which converges  to L~TI(B), and  this is essential ly the m e t h o d  used by  Yor  to 
ob ta in  (3). However ,  the process  max  yk2-~  is not  a mar t ingale ,  and  appears  to 

k 
have qui te  compl i ca t ed  behaviour .  
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