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Summary.  The almost  sure approximat ion  of  yon Mises-statistics and U- 
statistics by appropr ia te  stochastic integrals with respect to Kiefer processes 
is obtained. In  general these integrals are non-Gauss ian  processes. As 
applications we get almost  sure versions for the est imator of  the variance 
and for the )~2-test of goodness of  fit. 

1. Introduction 

Let { X j , j > I }  be a sequence of independent  identically distributed r a n d o m  
variables with c o m m o n  distribution function F. Let F, be the empirical distri- 
but ion function of  a sample of  size n. The empirical process R is defined as 

e(s, t )=t(Fm(s)- f (s))  , s~lR, t>O 

where It]  denotes the largest integer not  exceeding t. Let h: R 2--, N be a 
measurable function and let p > 1. As in [8] we define 

(1.1) Ilhl]v=(S~lh(x,y)lPdF(x)dF(y))l/P+(~th(x,x)fdF(x))l/P. 

If I[hl]1< oo then the stochastic double integral 

(1.2) V,(h) = ~ ~ h(x, y)R(dx, n)R(dy, n) 

is well defined and is called a v o n  Mises statistic. Disregarding normaliz ing 
constants  and the usual symmetry  assumption on h we define the U-statistic 

(1.3) U.(h) = • h(X,, Xj). 
l < i t - j < n  

It is closely related to the von Mises statistic. (See (1.12) below.) 

* This work was done while the last author was a visiting professor at the Institut fiir 
Mathematische Stochastik at the University of G~Sttingen during the Spring of 1982. He thanks the 
Institut and its members for their hospitality 
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A separable Gaussian process {K(s , t ) ,O<s<l , t>O}  is called a standard 
Kiefer process if K(s,O)=O, K(O, t )=K(1,  t ) - 0  and 

EK(s,t)=O, 0_<s_<l, t>0 ,  

EK(s , t )K(s ' , t ' )=( tAt ' ) s (1-s ' ) ,  0 < s < s ' < l ,  t,t'>O. 

If n is an integer then K(s, n) can be best written as 

(1.4) K(s, n)-- ~ Bj(s) 
j<=n 

where {Bj( .) , j=I} is a sequence of independent standard Brownian bridges 
considered as C[0, 1J-valued random variables. 

For I/hll 2 < oo the stochastic double integral ~ ~ h(x, y) K(dx, t) K(dy, t'), t, t'MR 
has been defined and investigated in [4]. In much of the present paper, 
however, we only need these integrals for t , t ' z N  and by the above remark 
these can be reduced to double integrals with respect to Brownian bridges. 
These latter integrals have already been defined in [81. 

Our theorems show that 

(1.5) Wt(h) = ~ ~ h(x, y)K(dx,  t)K(dy, t), t~O 

is the canonical process to approximate the von Mises statistic in the sense 
that it plays the same role as Brownian motion does for the approximation of 
partial sums of random variables or the extremal process does for the approxi- 
mation of partial maxima of random variables. 

We now state our results. 

Theorem 1. Let {X j , j>  1} be a sequence of independent random variables with 
common distribution function F. Let h: ~2 ~ ]R be a measurable function with 
HhH2<oo. Then without changing the law of the sequence {Xj , j> I}  we can 
redefine it on a new probability space on which there exists a standard Kiefer 
process {K(s, t), 0<s__< 1, t>0} such that 

(1.6) n-  1 max ]Vm(h) - Wm(h*)l -~ 0 in probability. 
m ~ n  

Here h* is defined by 

h*(x , y )=h(F- l (x ) ,F- l ( y ) )  x, yMR. 

Theorem 2. Let {X~,j>= 1} and h be as in Theorem 1, but instead of I!h][2 < 0(3 we 
assume that 

(1.7) ~ S (h(x, y) log Ih(x, y)])2 dF(x)dV(y)+ ~ (h(x, x) log ]h(x, x)l)2 dF(x) < oo. 

Then the conclusion of Theorem 1 remains valid but with (1.6) replaced by 

(1.8) V~ (h) - Wn(h*) = o(n log log n) a.s. 

Theorem 3. Let K be a standard Kiefer process and let I!h]!2 < oo where the norm 
1!'l!2 is defined in (1.l) with respect to the uniform distribution on [0, 1]. Then 
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there exists a constant C(h) depending only on h such that with probability 1 

lim sup (2 n log log n)- 11 W,(h)l = C(h). 
n ~ o o  

Corollary 1. Under the hypotheses of Theorem 2 we have with probability 1 

lim sup (2n log log n)- 11Vn(h) I __ C(h*) 
n ~ o o  

where h* is defined in Theorem 1. 

Remark. In Sect. 3 we determine C(h) as the maximal eigenvalue of a certain 
integral operator. For certain kernels h and their statistics we shall give the 
numerical value C(h) in Sect. 8. In particular, a recent result of Cs~tki [3] 
follows. 

In most applications h has some smoothness properties. The following 
theorem takes care of them. 

Theorem 4. Let {Xj , j> I}  and h be as in Theorem 1. Suppose that in addition h 
has the following properties 

(1.9) Hh]!2+a<oo for some 6>0.  

(1.10) There is a refining sequence of partitions {cffr),r>l} of ~ ,  cffr)= { Air, 
1_<iN 2 r} and h(i,j, r)cN, 1 < i, j <  2 r and constants C and 7 > 0 such that 

[]h- ~ h(i,j,r)lA,~• <= C2 -r~. 
l <=i,j<--2 r 

Then (1.8) holds with an error term ~n  1-~ where 

(1.11) 2 = 6/(4 c~ (2 + 6)), c~ = (96/7) + (36/6)  + 20. 

Theorems 1, 2 and 4 immediately yield corresponding results for the U- 
statistic via the relation 

(1.12) U~(h)-n(n-  1)c 1 = V,(h)+n(c 1 - c 2 ) -  ~, (h(Xj, X~)-c2) 
j < n  

+n Z (Y h(x, Xj)dF(x)-ca)  
j<=n 

+n Z (~ h(Xj, y)dF(y)-cl) .  
j<-_n 

Here Cl=y_[h(x,y)dF(x)dF(y ) and c2=~h(x,x)df(x). (1.12) follows im- 
mediately from (1.2) and (1.3). It is easy to see (Lemma 2.5 below) that if 
l!hll2<oo then (as a matter of fact the argument used to prove Corollary 2 
below shows that S~h2(x,y)dF(x)dF(y)<oo is sufficient for the following dis- 
cussion) 

(1.13) V,(h)~nlogn a.s. 

The law of the iterated logarithm yields 

(1.14) ~ (h(Xj, Xj ) -Cz)~(nloglogn)  ~ a.s. 
j<=n 
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Consequently, if Var (~ h(x, X)dF(x))#  0 or if Var (~ h(X, y)dF(y))4 = O, we can in 
(1.12) discard V,(h) and the left side of (1.14) since the last terms in (1.12) have 
order of magnitude n ~ and are thus the dominating terms. Yet as these 
dominating terms are sums of independent identically distributed random 
variables results on U-statistics in the case of nonvanishing variances fall into 
the domain of a well-developed theory. 

This fact and several of the applications mentioned below have led to the 
following definition. A function h: IR2--~. with Ilhlla<oo is called degenerate 
for F if for all x, y~lR 

(1.15) h (s, y) dF (s) = ~ h (x, t) dF (t) = O. 

Thus by (1.12) if h is degenerate with respect to F and if (1.7) holds then 
Theorem 2 and Corollary 1 immediately imply 

(1.16) Un(h ) -  Wn(h*)=o(n log log n) a.s. 

and 

(1.17) l imsup(2nloglogn)-l lU,(h)l= C(h*) a.s. 
n ~ o o  

respectively. Also if IIhH2 < oO then (1.6) implies 

n 1 max I U m (h) + m c 2 - Win(h*)] --* 0 in prob. 
m ~ n  

and likewise under the hypotheses of Theorem 4 we obtain 

U,,(h)+nc 2 - W,(h*)~n a-~ a.s. 

As a matter of fact it is easy to see by standard arguments that the following 
result holds. Let A = {(x, y): 0 < x + y < 1} be the complement of the diagonal of 
['0, 1] 2. 

Corollary 2. I f  h is degenerate with respect to F and S ~ hZ( x, y)dF(x)dF(y)< oo 
then (1.16) and (1.17) holcl with h* replaced by h* 1A. Moreover we have 

n 1 max iUm(h ) _  Win(h, 1A)[ ~ 0 in prob. 
m ~ n  

Also under the hypotheses of Theorem 4 but with (1.9) weakened to 
~ ~ Ih(x, y)12+~dF(x)dF(y)< oo we have 

U,(h)-W,(h*lA)<n 1-~ a.s. 

In the non-degenerate case invariance principles for the U-statistic can be 
found in  [,13, 14, 20] etc. These generalize and refine Hoeffding's [,11] classical 
theorem on the asymptotic normality of n - ~ ( U , ( h ) - n ( n -  1)cl). 

However, many interesting situations lead to the degenerate case. Several 
applications are mentioned in Sects. 1 and 2 of Hall [10]. We shall add a few 
more in Sect. 8. In the degenerate case distribution invariance principles have 
been proved by Neuhaus [-18], Hall [-10] and Denker et al. [-4]. No almost 
sure nor probability invariance principles appear to have been published so far. 



Invariance Principles for yon Mises and U-Statistics 143 

Section 2 contains moment  inequalities for von Mises and U-statistics. The 
proof of Theorem 3 including the value of C(h) are given in Sect. 3. In Sect. 4 
we give the proof  of Theorem 4, and in Sect. 5 the proofs of Theorems 1 and 2. 
Possible extensions of these results are discussed in Sect. 6. Finally, in Sect. 7 
we give two sets of sufficient conditions on functions h to satisfy (1.10). 

2. Preliminaries 

Throughout  this paper we shall assume that h is a degenerate kernel. This is 
no loss of generality since if we set 

h 1 (x, y) = h (x, y) - S h(s, y) dF (s)-  ~ h (x, t) dF (t) + ~ ~ h (s, t) dF (s) dF (t) 

then h 1 is a degenerate kernel. Also h I satisfies I[hlH2+a< 0% 3 > 0  and (1.10) if 
h does. Moreover,  V,(hl)= Vn(h ) and Wt(h0= W,(h). 

We need to introduce some notation. If A c N  is a measurable set and L 
N is a finite set of integers we write 

R(A, L)=  ~, (1 (Xj6A) -F(A)). 
jsL 

We also need the notion of a Kiefer process more general than the one 
introduced in Sect. 1. A separable Gaussian process {K(s, t), s~lR, t >= 0} is called 
a Kiefer process if K(s,O)=O, seF,, lim K(s,t)= lira K(s,t)=O, for all t=>0, 
EK(s,t)=O for all sE]R, t > 0  and . . . . . . .  

EK(s, t)K(s', t ' )=  (t/x t')F(s)(1 -F(s')) s<=s', t, t' ~0  

where F is a distribution function on ~ .  We note that if K is a standard Kiefer 
process and if K v is a Kiefer process with respect to F, as just defined then 
with h* as in Theorem 1 

~ h(x, y)KF(dx, m)Ke(dy, n)= ~ S h* (x, y)K (dx, m)K (dy, n). 

This follows from the definition. (See [4].) We also write 

K(s, I ) =  K(s, n ) -  K(s, m), K(A, 1)=~ 1A(s)K(ds, I) 

if I = (m, n] for integers m, n and if A ~ P, is a measurable set. 
For  a = ( a l ,  a:) and n= (n l ,  nz) , al, ni~7l.+ , i=1 ,  2 we set 

S (a, n) = ~ h (X i, X j) 

where the sum is extended over all i and j with a l < i < a l + n l ,  az<j<az+n2.  
Throughout  this section we assume that ][h[12+a< oo for some 3>0 .  

Lemma 2.1. ES2(a, n ) < 2 n l n  2 IIh/l~. 
Proof. We have 

ES 2 (a, n )=  ~ Eh (Xi, X j)h (X k, Xt) 
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where the sum is extended over all i,j,k, 1 with a ~ < i , k < a l + n  1 and 
a 2 <j, l <  a 2 + n 2. By Fubini 's  theorem and (1.15) all terms in the sum vanish for 
which one index is different f rom the other  three. The lemma follows now 
easily f rom these remarks.  

L e m m a  2.2. Let 0<_c5 <_ 1. Then there is a constant A, depending only on 6 such 
that 

ElS(a,n)[2+,~<= A 2+6 1+�89 IIhll2+~(nxn2) �9 

Proof. Without  loss of generality we can assume that  Ilhll2+~<l. We shall first 
prove the inequality under  the addit ional  assumption 

(2.1) al +nl  Ga2 or a2 +n2 <al .  

Recall that  there exists a constant  Co, depending only on 6, such that:  If 
{Y~,j=> 1} is a sequence of independent  identically distributed r andom variables 
with E Y  1 = 0  and EIYll2+~< ~ then for all integers m__>0, n=> 1 

(2.2) E <c n l + ~ g l g l l  2+~. 
j=m+l  

Applying Fubini 's  theorem and (2.2) twice we obtain 

(2.3) E IS(a, n)[ z+~ < c  2 n l + ~ n l + ~ E  h~X 1 2 ~, D X2)l 2+a. 

We now prove the desired inequali ty for 

a i = a  2 and n l = n 2 = n .  

We follow ideas of D o o b  1-6, p. 226f]. Wi thout  loss of generality we can assume 
a ~ = a z = 0 .  It is enough to prove that  there exists a constant  C such that  

E IS(0, n)l 2+~ =< Cn 2 +~ (2.4) 

implies 

(2.5) E IS(0, 2n)l 2+~ < C(2n) 2 +~, E IS(0, 2n + 1)l 2+~ < C(2n + 1) 2 +~. 

F r o m  this (2.4) will follow for all n = (n, n) by induction.  
Now 

S(0, 2 n ) =  S(0, n) + S((0, n); n) + S(n, n) + S((n, 0); n) 

.~-$1-]- $2 ~- $3 ~- $4. 

Note  that  S 2 and S 4 satisfy (2.1) and that  S 1 and S 3 are independent.  N o w  

EIS 1 +S312+a<E{(S1 + 83)2(1811~ + IS31~)} 

<E{ISll2+O + 15312+a + 21511 [$311 +~ 

+215~11+~1531+5~1531~+ 1511 ~ 53}2 

< 2EISll2 +O + 4EISll EISlll  +a + 2ES~ EISll L 
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By H61der's inequality and Lemma 2.1 we get for t /=3,  1 and 1 +3  

E IS 11' < (2 n2) ~'. 
Hence 

E IS 1 +S3]2+o<=2EISIIZ+e'+ 12.2�89 2+'~. 

Consequently we obtain using Minkowski's inequality and (2.3) 

(2.6) ELS(O, 2n)[Z+~<((EhSa +S31Z+~)I/(z+a)+(EIS212+~) ~/(2+a) 
+ (E 1S412 + ~ + a)) 2+ 0 

= < C(2n) 2+~ 

if C is chosen so large that 2~/(a+~)+(12.2~/C)~/(2+~)+5(c2/C)~/(2+~)<2. This 
proves the first part of (2.5). To prove the second part we write 

S(0, 2n + 1)= S(0, 2n)+ S((2n, 0), (1, 2n))+ S((0, 2n), (2n, 1)) + S(2n, 1). 

Hence by Minkowski's inequality, (2.3) and (2.6) 

E lS(O, 2n + l )12 +~_< ((E lS(O, 2n)[2 +~)l/(2 +~ + 2cZ/(2 +~)(2n)�89 + l ) 2 +~ 

< C(2n)2+~ < C(2n + 1) 2+~ 

by our choice of C. 
The case of general a and n follows now easily. The set of summation 

indices are lattice points in a rectangle with vertices (al,a2), (a~+nz,a2), (a 1 
+n~,a2+nz), (al,az+n2). We can decompose this rectangle into a square 
(possibly empty) whose diagonal lies on the 45 degree line and three rectangles 
(some possibly empty) all lying either above or below the 45 degree line. 
According to this decomposition we write 

S(a,n)= TI + T2 + T3 + T4, say 

where T I = ~ h ( X i ,  X ) with a < i , j < a + m  for some a and m<n and T2, T 3 and 
T 4 are such sums considered in (2.1). Hence by Minkowski's inequality 

E IS(a, n)[ 2+~ ~ (C 1/(2 +3)+ 3 c2/(2+~))2+~(n I n2) 1 +,~/2 

= A(nl n2) i +~/2. [] 

We also need a maximal inequality. For a= (a i ,  a2) , n=(n l ,  nz) let 

M(a, n) = max {IS(a, p)[: 1 <P i  < nl, 1 <P2 < nz,P = ( P~, P2)}. 

The following lemma follows immediately from Lemma 2.2 and Theorem 8 of 
Moricz [-16]. 

Lemma 2.3. We have for 0 < 3 < 1 

E(m(a,  n))2+o < A(nl n 2 ]lhl12+~ log2n i log 2n2) i+}~. 



146 H. Dehling et al. 

For  a=(aa ,  a2), n=(n l ,  n2) we write 

(2.7) T(a, n)= ~ ~ h(x, y)K(dx,  (a 1, a I + nl])K(dy, (a 2, a 2 + n2] ) 

where K is the standard Kiefer process and 

N(a, n) = max {I T(a, P)I: 1 < Pl ~ hi, 1 ~ P2 ~ n2}" 

Lemma 2.4. Lemma 2.3 holds with M replaced by N. 

Proof By (1.4) and (2.7) we have 

T ( a , n ) = ~ h ( x , y ) B i ( d x ) E ( d y ) = ~ Z i j ,  say 

where similar to the definition of S(a, n) the sums are extended over all i and j 
with a~<i<=al+nl,  a 2 < j < a 2 + n z .  Hence and by [16, Theorem 8] for the 
proof of the lemma it suffices to show that 

(2.8) E I T(a, n)l 2 + a < A (n 1 n2) 1 + ~.  

This can be proved in the same way with the argument given in the proof of 
Lemma 2.2. Since 5e(n -1 T(0, (n, n)))= 5e(T(0, 1)) by (2.7) and since 

(2.9) ~ ( r  -~ V~(h))~ 5~(T(0, 1)) 

by [8] we obtain from Fatou's lemma and Lemma 2.2 

(2.10) n-  2-aEI T(0, n)12+a = E IT(O, 1)12+a 

< lim in f r -  2- a E i V~(h)12 +a 
r ~ o o  

<A 2+a HhlP2+0. 

This shows that EIZl~lg+a<oe.  In the same way one can show that 
E[Ztgl2+a< oe. For  this we replace (2.9) by 

~ ( r  - ~ ~ ~ h(x, y)R(dx,  (n, 2n])R(dy, (0, n]) ~ s (Z12 ) 

which follows from [4, Theorem 5] applied with K = 2 ,  % -  2 - 2 ,  m l = r n z = l  
and t a = t 2 = l .  Hence we obtain as in the proof of (2.3) that (2.8) holds if 
(2.1) is satisfied. (2.10) replaces (2.4). The proof of (2.8) in the general case 
finally can be completed in the same way as the proof of Lemma 2.2. [] 

Lemma 2.5. Let h: ~2---->]Px. with Ilhll=< o% degenerate or non-degenerate. Then 
as n ~ o e  

V , (h)~nlogn  a.s. 

Remark. Lemma 2.3 immediately yields the bound n log 3 n. 

Proof Recall that we can assume without loss of generality that h is degener- 
ate. Hence by (1.12) 

(2.11) V,(h) = U,(h)+ ~ h(Xj, X~). 
j<=n 
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Let Y ,  be the o--field generated by X 1 , . . . , X  .. Then {V, (h) -nSh(x ,x )dF(x) ,  
5q,, n > l }  is a martingale by [14, Lemma 2.1]. (Here is the quick proof: Since 
E {h(X,, X,)[• ,_ 1} = Eh(X~, X1)= S h(x, x)dF(x) and since for i < n 

E {h (X i, X,)I S , _  ~ } = ~ h (X~, y) d r  (y) = 0 

by independence the claim follows from (1.12).) Hence by Doob's inequality 
(the martingale version of Kolmogorov's inequality) and by Lemma 2.1 we 
have 

P {max ]Vm(h ) -  m ~ h(x, x)dF(x)l > 2kk} 
r n < 2  k 

4 2  2kk-2(E(Vz~,(h))Z q- 22kllhl[22)~k 2. 

Thus by the Borel Cantelli lemma max ]Vm(h)142kk a.s. Now let n be given. 
m ~ 2  k 

Find k such that 2 k- 1< n < 2 k. Then 

IV,(h)[<max IVm(h)l~2kk~nlogn a.s. 
m ~ 2  k 

3. Proof of  Theorem 2 

We first prove an exponential bound for W 1 (h). 

Theorem 5. Let K and h be as in Theorem 3. Then for all 0<t<(4]lhll2) -1 

( 3 . 1 )  Eexp(tWl(h))<exp(ZtZlLhl[2 +tlLhll2). 

Proof. We first prove (3.1) under the additional assumptions that h is sym- 
metric, i.e. h(x,y)=h(y,x) ,  O<=x,y<= 1 and that h vanishes on the diagonal, i.e. 
h(x,x)=O, 0<x_<l .  Then it follows from [8] and [18] that Wt(h ) can be 
represented in the form 

Wl(h) -~ ~ 2,(N~2-1) 

where {Ni, i=>l} is a sequence of independent standard normal random vari- 
ables and the 2i's are constants satisfying ~ 2/2</Ih[lZ2 . Thus 

i>_1 

E exp (t W 1 (h))- l~ E exp (t21(Ni 2 - 1)) 
i>__l 

= 1~ exp(--t21)(1-2t21) ~ 
i > - i  

= l~ exp ( - t2 i - - � 89176  
i>__1 

~exp(�89 ~ 4t222)_<exp(2t 2 ]lhll 2) 
i > 1  

since [x + log(1-x)]  <=x 2 for Ix[= <1. This proves (3.1) under the additional 
assumptions that h is symmetric and vanishes on the diagonal. 
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(3.2) 

Then 

(3.3) 

We now prove that 

(3.4) 

H. Dehling et al. 

To remove these extra assumptions we put A--{(x, y): O<=x4=y< 1} and 

f =h la ,  g = h - f  

W, (h) = W~ (f )  + W 1 (g). 

W, (g)= ~ h(x, x)dx a.s. 

To see this we note that g is degenerate with respect to G, the uniform 
distribution on [0, 1]. Hence by (2.9) 

~ a ( r -  1 Vr (g)) --+ ~C,e(W 1 (g)). 

But by the strong law of large numbers we have with probability 1 

r :1 V~(g) = r-* ~ g(ui, ui) + ~ h(x, x) dx. 
i<_r 

Here {u i, i=> 1} is a sequence of independent random variables uniformly dis- 
tributed over [0, 1]. These two relations imply (3.4). Next define h' by 

h' (x, y)= l(h (x, y)1 a (x, y)+ h (y, x)1 a (y, x)). 

Then h' is symmetric and vanishes on the diagonal. Moreover, by an easy 
calculation Wl(h')= W,( f )  and IIh'll2< IJh/12. Hence by (3.3), (3.4) and the spe- 
cial case already proved 

E exp (t W 1 (h))= exp (t W~ (g))E exp (t W 1 (f)) 

<=exp(t[Ih[[2 + 2te[lh[[2). [] 

Next we prove a crude version of Corollary 1. 

Lemma 3.1. Let K and h be as in Theorem 3. Then with probability 1 

lira sup (n log log n)- ~ W n(h) < 20 II h II 2. 
n~oo 

Proof. Recall that by (1.4) 

Wn(h)= ~ SS h(x,y)Bi(dx)B~(dy ). 
i , j<n 

Let ~'~n be the o--field generated by B 1, ..., Bn and set 

c = E .f j" h(x, y) B 1 (dx)B 1 (dy). 

Then {W,(h)-cn,  ~ , ,  n> 1} is a martingale. Hence by Doob's maximal in- 
equality for submartingales and by Theorem 5 with t=(5 I]hll2) - 1  w e  have for 
each k>  1 
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P {max (%(h) - n c) > 10.2 k I[ h I12 log log 2 k} 
n < 2  k 

= P {max exp (2- k t (W n(h) - n c)) > exp (2 log log 2k)} 
n=<2 k 

exp ( - 2 log log 2 k) E exp (2- k t (Wa~ (h) - 2 k c)) 

4 k  2Eexp(tWl(h))<k-2 

since s for all n > l .  The lemma follows now from the 
Borel Cantelli lemma. [] 

We now start with the proof of Theorem 3. Recall that G denotes the 
distribution function of the uniform distribution on [0, 1]. Let 2 be the Lebes- 
gue measure on [0, 1] and let ~b: [0, 112~IR be a measurable function in 
L2(2 x 2). Define an operator A,: L~(2)~ U(2), associated with qS, by setting 

1 

A4,(f)(x) = S f(Y) ~(x, y)dy. 
0 

Then A4 is a Hilbert-Schmidt operator and if q5 is symmetric, i.e. O(x,y) 
= qS(y, x) then A+ is self-adjoint and we have 

(3.5) IIA,[I = sup (A~f, f )  = max {[#[: # eigenvalue of A~}. 
I ISI l=l  

Next, let h: [0, 112---~]R be such that l lhll2<~ where /I H2 is defined in (1.1) but 
with F replaced by G. Let h I be as in the beginning of Sect. 2, but also with F 
replaced by G, i.e. 

I I 1 1 

h l(x, y)= h(x, y ) -  ~ h(s, y)ds-  I h(x, t)dt + f ~ h(s, t)dsdt. 
0 0 O0 

Finally, let 
~(x, y) = }(h i (x, y) + h i (y, x)). 

Then h is symmetric and degenerate for G. 
The following lemma identities the limit in Theorem 3. 

Lemma 3.2. Let h be as above with Ilhll2 < oo. Then with probability 1 

lira sup (2 n log log n) 17 W, (h)J = JI Ai, JI- 
n~oo 

Proof. We first note that Wt(h ) = Wt(~ ). Moreover, by (3.4) and since 

2e((t-~K(s, t))o<=s<=l)=SY((K(s, 1))0_<s_<t) for all t > 0  
I 

(3.6) W~(g) ~= t -~ W1 (g)= t ~ h(x, x)dx. 
o 

Hence by (3.3) and since Ag--0 we can assume for the proof of the lemma 
without loss of generality that h is symmetric, vanishes on the diagonal, is 
degenerate for G and satisfies [Ihl12< oo. 

Now h can be represented in L2(2 x 2) in the form 

(3.7) h(x, y)= ~, 11Jj(x) f j(y) 
j>=l 
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where #j are the eigenvalues of the operator A h and where {f~, j>l}  is a 
system of corresponding eigenfunctions orthonormal with respect to L:(2). 

#2 Since h vanishes on the diagonal we have ~ j = [[hp] 2 and the processes {W,(h), 
n>0} and { ~ #~(Yj2(n)-n), n>0} have the same laws. (See [4], Lemma 7.) 

./>_1 
Here {Yj, j__> 1} is a sequence of independent standard Brownian motions. Also 
by (3.5) 

(3.8) [IAhl F = m a x  I~./I. 
j _ - > i  " 

We now set 
hk(X,y)= ~ #~fj(x)fj(y) if x * y  

j<k  

=0  if x=y. 

Let e>0.  Then by (3.7) ]lh-hklr2<e/20 and 

(3.9) ]lAh--Ah,,ll <~ 

if k is sufficiently large. Consequently and by Lemma 3.1 we get 

(3.10) limsup(2nloglogn)-llW,(h--hk)l<e a.s. 
n ~ o o  

Now since {W(hk),n>=O } and { ~  #j(yj2(n)-n), n=>0} have the same maws we 
have with probability 1 j_-<k 

lim sup (2n log log n)- 11W.(hk)l 
n ~ o o  

-- l imsup (2n loglog n)- a I ~ #2(Yj2(n)- n)] 
n~oo  j<=k 

= lira sup (2n log log n)- 1 ] ~ ~Lj Y9 (n)[ 
n ~ c r  j ~ k  

=sup {t ~ #ix2[" ~ x~____ 1} = m a x  1/@ = IlAhkll 
j<=k j<=k j<=k 

by the compact law of the iterated logarithm for standard Nk-valued Brownian 
motion. The lemma follows now from (3.9) and (3.10). [] 

4. Proof  of  Theorem 4 

We need the following trivial fact. 

Lemma 4.1. We can assume without loss of generality that the h(i,j, r) in (1.10) 
satisfy 

Ih(i,j, r)] __<T e/~ 

Proof. This follows immediately from (1.10) since 

~ Ih(x, y)121 {Ih(x, Y)I >d'/a}df(x)dF(y)<d-' ~ ~ [h(x, y)12+adF(x)df(y) 
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and 
S Ih(x, x)l a 1 {Ih(x, x)l >d ~/~} dE(x)<-_d=' ~ Ih(x, x)la+~df(x) 

upon  setting d = 2  ~. [ ]  

Recall that  by the remark at the beginning of Sect. 2 we can assume without  
loss of generality that  the kernel h is degenerate for F. Thus 

~h(x , y )R (dx ,  L)R(dy, M)= Z h(X~,X~). 
i sL,  j e M  

We also recall the definition of a general Kiefer process K t .  Throughou t  this 
section, however, we will suppress the index F in K F unless stated otherwise. 

For  convenience we introduce some notation.  In  addit ion to c~ and 2, 
defined in (1.11) we set 

(4.1) r /= 4/7 

and 

(4.2) tk=t(k)=[k~], Hk=(tk_l,tk]C~Z, nk=CardHk, k = l , 2  . . . . .  

Thus 

(4.3) k~-l ~ n k ~ k  ~ 1 

Moreover ,  we write 

(4.4) r k = [-t/log k/log 2], d k = 2 rk 

so that  

(4.5) d k <= k ~. 

Before Presenting the details we shall give an outline of the p roof  of 
Theorem 4. On H k we part i t ion the real line into d k sets A(i, k)=A~rk, 1 < i < d  k 
where A~r are chosen according to (1.10). Next, we define the "skeleton pro- 
cess" {Rk, k> 1} of the empirical process R by 

(4.6) Rk(i)=R(A(i,k),Hk) l < i < d  k. 

R k is a sum of n k independent  identically distributed r andom vectors with 
values in Nd~ and hence by the multivariate central limit theorem close to a 
normal  distribution. We then can apply a result of [-19] to obtain an almost  
sure approximat ion  of R k by Gaussian r andom vectors Yk = { Yk(i), 1 <i<dk}. By 
a simple measure theoretic a rgument  we then can choose a Kiefer process K 
such that  Yk=K(A(i, k), Hk), 1 < i < d  k, k= 1, 2 . . . . .  This process has the desired 
properties. In  order  to prove this we shall first use L e m m a  2.3 to show that  

max {~h(x,y)R(dx,  m)R(dy, n)-~Sh(x,y)R(dx, tk)R(dy, t~) } 
tk<m<=tk+ l , t i  <n<=tl+ l 
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and the same expression with R replaced by K are sufficiently small. This 
reduces the problem to estimating the difference 

~ h (x, y) R (dx, tk) R (dy, tk)-- ~ ~ h (x, y) K (dx, tk) K (dy, tk). 

In the next step we reduce this once more using Lemma  2.2 to the estimation 
of (here tr = ~c(k)= Vk~]) 

~ h(x, y) R(dx, (t~, tk] ) R(dy, (t~, tk])--~ h(x, y) K(dx, (t~, tk] ) K(dy, (t~, tk] ). 

In these integrals we can replace h by a suitable step function and using (1.10) 
we subsequently can control the error introduced. The stochastic integrals over 
these step functions can be represented as sums involving R and K and thus 
their difference can be estimated without much difficulties. 

We shall now present the details of the proof. By (4.6) and the definition of 
R we have 

(4.7) Rk(i)= ~ ( l{X,~A(i ,k)}-F(A(i ,k)) ) ,  l<i<<_d k. 
n~Hk 

Hence R k is a sum of independent identically distributed random vectors with 
mean 0 and covariance matrix C k = ((q~(k))) where 

(4.8) clj(k ) = -F(A( i ,  k))F(A(j, k)) if i , j  
=F(A(i ,k))(1-F(A(i ,k)))  if i=j. 

We apply Yurinskii 's theorem [22] and get for the Prohorov distance 

(4.9) n (~ (n[~  Rk), M/'(O, Ck))~n;+ d~ ~ k -(~-1)/9+"/3. 

Here ~ ( O ,  Ck) denotes the Gaussian law with mean zero and covariance 
matrix C k. Hence in view of (4.9) we obtain applying [19, Theorem 3] without 
loss of generality a sequence {Yk, k > l }  of independent ~A/(O, Ck)-distributed 
random vectors such that 

P {[lnk~ Rk - Y~II ~ Ck (~-1)/9+r//3} ~k-(a-1)/9+./3 ~ k -  2 

using (4.1). Here C is a positive constant implied by ~ in (4.9). The Borel 
Cantelli lemma yields as k ~ c~ 

(4.10) ][n[~ Rk - Yk[I ~ k-(~- 1)/9+,/3 a.s. 

As is easily seen the sequences {n;~K(A(i,k),Hk), l<_i<-d k, k > l }  and 
{Yk, k >  1} have the same law. Hence by [2, Lemma A l l  we can assume 

(4.11) Yk(i)=n;~K(A(i,k),Hk), l <_i<_d k, k> l 

where Yk(i) denotes the i-th component  of Yk" Hence by (4.10) and (4.11) we get 
with probabili ty 1 

(4.12) ( ~ (R(A(i, k), Hk)-- K(A(i, k), Hk))2)~ ~ k -(~- 1)/9+r//3n k 
i <=dk 

k (7~247 
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Let  ~ = [ k  }] 

(4.13) I k = (t~, tk] 

and 

(4.14) gk(X, y)= ~ h(i,j, r~)1 {x6A(i, to)} 1 {yeA(j, ~c)}. 
l < i , j < d ~  

L e m m a  4.2. We have with probability 1 

(4.15) ~gk(x,y)(R(dx, Ik)R(dy, Ik)--K(dx, Ik)K(dy, lk))~t~ 7/18. 
,k 

Proof. Since l k=  ~ H l we have using (4.14) 
I = ~ + 1  

f gk (X, y)R (dx, Ik)R (dy, Ik)= ~, f ~ gk( x' Y)R (dx, H,)R (dy, Hm) 
g <l,m<=k 

= ~ ~ h(i,j,r~)U(A(i,~c),U,)R(A(j,~c),Um). 
~c<l,m<=k 1 <=i,j<=d~ 

Writing the stochastic integral with respect to the Kiefer process in the same 
way we can rewrite the left side of (4.15) in the form 

(4.16) Z 
~c < l , m < k  

{ ~ h(i,j)(R(A(i),H~)-K(A(i),Hz))R(A(j),Hm) 
1 < i , j < d K  

+ ~ h(i,j)(R(A(j), Hm)- K(A(j), Hm))K(A(i), H~)}. 
1 < i , j < d ~  

Here  we dropped ~ in h and A. By (4.5), (4.13) and L e m m a  4.1 

(4.17) max [h(i,j, r~)] ~ k ~/~ ~ k 2/0. 
l < i , j < d  

Thus the last inner sum in (4.16) is 

(4.18) ~k2/6~ [R(A(]),Hm)-K(A(]),Hm) I ~ IK(A(i),H~)I. 
j <--d~ i <=d~ 

By (4.1), Cauchy's  inequality, (4.12) and (4.5) 

(4.19) ]R (A (j, ~c), Hm)- K (A (j, ~), Hm)l 
j<=dK 

<= ~ ]R(A(j,m),Hm)-K(A(j,m),Hm)[ 
j<=dm 

<=d~( ~, (R(A(j, m), Hm)- K(A(j, m), Hm))2) �89 
j ~ d m  

, ~ m � 8 9  ( 7 ~ + 2 ) / 1 8 + 5 n / 6  a . s .  

To estimate the last sum in (4.18) we define the r andom vector K l 
=(K(A(i,l),Hz), l<i<__dl). Since ni-~Kl is Gaussian with mean  zero and co- 

-�89 variance matr ix  C z as defined in (4.8), we obtain glln t glll2=trCt<l since 
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{A(i, l), 1 <=i<=dl} is a partition of the real line. Hence by the Fernique-Landau- 
Shepp inequality 1-7] there is a constant c > 0 such that 

P{n i -~ l lK l l l>p}<exp( -cpa) ,  p > l .  

We set p = l ~ and use the Borel Cantelli lemma and (4.3) to get 

IIKt[[ ~n~ l~ ~ l ~ a.s. (4.20) 

Since 

~. [K(A(i), Hz) I __< ~, [K(A(i, 1), Hi) I =<d~ IIK,]I 
i<d~ i<dz 

we obtain from (4.17)-(4.20) that with probability 1 

(4.21) [ ~ h(i , j ) (R(A(j) ,Hm)-K(A(j) ,Hm))K(A(i) ,H,)[  
1 <=i,j<=dK 

d~k2/ak(7a+ 2)/18 + 5r//6 k�89 ~ k2/~+ (8~+ 1)/9 + 4t//3. 

Since [R(AU), Hm)l ~IR(A(j), Hm)--K(AU),  Hm)[ + IK(A(j), Hm)[ we obtain by 
(4.17)-(4.20) the same estimate for the first inner sum in (4.16). Hence by (4.16), 
(4.21), (4.1), (4.2) and (1.11) we obtain the result. 

Lemma 4.3. We have with probability 1 

max ]V,(h)-V~(h)l~t~ -~. 
tk<n<=tk+ l 

Proof The left side is bounded by M ((tk, 0), (nk, tk + 1))+M((0, tk), (tk + 1, nk))" By 
symmetry it is enough to estimate just one of these quantities. Recall that we 
assume without loss of generality ]]h[]2+~_< 1. By Markov's inequality, Lemma 
2.3, (4.2) and (4.3) we get 

P { M ((tk, 0), (n k, tk + 1))~-~ tk 1-s ~ tk (1 -'~)(2 +a)(log k)4+ 2a (nktk) 1+ �89 
.~ k-~(1-4)(2+ a)kt2~- 1)(1 + ~a)(log k)4+ 2a 

k(~a- ~)(2 + 6) (log k) 4 + 2a. 

By (4.1) and (1.11) the exponent of k is less than - 1 .  Hence we can apply the 
Borel Cantelli lemma and obtain the result. 

Lemma 4.4. We have with probability 1 

(4.22) 

and 

(4.23) 

~ h(x, y)R(dx,  tk)R(dy , t~) ~ ~ 

S ~ h (x, y) R (dx, t~) R (dy, t~) ~ t 7/a. 

Proof The left side of (4.22) equals S(0, (tk, t~)). By Markov's inequality, Lemma 
2.2, (4.2) and (1.11) we have 

P {S(0, (tk, t~))>=t~ Is} ~ t ; 7 / 4 t k t ~ k  � 8 8  k -s.  
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The Borel Cantelli lemma immediately yields (4.22). Similarly the left side of 
(4.23) equals S(0, (t~, t~)) and the desired estimate follows in the same way. 

Lemma 4.5. We have with probability 1 

~ (h (x, y ) -  gk(X, y))R (dx, (t~, tk] ) R (dy, (t~, tk] ) < t~ - z. 

Proof. By (4.14), (4.5) and (1.10) we have I lh-gkl lz~k �89 Define Sk(a, n) 
in the same way as S(a, n) but with h replaced by h - g  k. Then 

~ (h(x, y)--gk(X, y))R(dx, (t~, tk])R(dy, (t~, tk] ) = Sk(t ~, t k --t~)= S k. 

By Chebyshev's inequality, Lemma 2.1, (4.1) and (4.3) 

z) t2 b -  2 ,~ k -  2 + 2a~ .~ k--}  P{lSk[>t~-z}<tU z(~ ~k'~ 

The Borel Cantelli lemma yields the result. 
Because of Lemma 2.4 we see that Lemmas 4.3-4.5 remain valid with R 

replaced by K. In view of the outline of the proof of Theorem I given at the 
beginning of this section we obtain Theorem 3 from Lemmas 4.2-4.5, from the 
adaptions of Lemmas 4.3-4.5 to the Kiefer process via seven applications of 
the triangle inequality and the fact that 

(4.24) ~ ~ h(xl y)Kv(dx, n)KF(dy , n)= ~ ~ h*(x, y)Ka(dx , n)Ka(dy, n) 

as was observed at the beginning of Sect. 2. 

5. Proof  of  Theorems  1 and 2 

Before we start with the proofs we want to make several remarks. Proofs based 
on the representation of h in the form (3.7) presumably will not be any simpler 
than the ones given below, particularly, since we will use much of the material 
developed in Sect. 4. Moreover, proofs based on (3.7) do not lend themselves to 
a generalization of these theorems to kernels h in more than two variables. 

We first prove a crude version of Corollary 1. 

Proposit ion 5.1. Under the hypotheses of Theorem 1 we have with probability 1 

l imsup (n loglogn) 1 g,(h)<goollhil2. 
n ~ o o  

The proof of Proposition 5.1 will be given in a series of lemmas. We put 

(5.1) v,,= Vm- V,,_ 1, m> l 

and denote by 5e,, the a-field generated by X 1 . . . . .  X m. 

L e m m a  5.2. We have with probability 1 

(5.2) lim sup (m log log m)- 1 2 E(vml~m_O<611hll~. 
m ~ o o  
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Proof Since h is degenerate we have by (2.11) 

(5.3) -~ v 2 ~ ( ~ h (X,, Xm)) 2 + ( ~ h (X m, X j)) 2 + h 2 (Xm, Xm). 
i<rn j < m  

As E{h2(X~,Xm)I~C~m_I}<= I[hll~ we need to concentrate only on the first term 
in (5.3). By independence we have 

1 

E{( ~ h(Si, Sm))21S~m_l} = ~ ( ~  h(Si, u))2du 
i < m  0 i < m  

= EI Z h(X~, 2 
i < m  

The lemma follows now from the law of the iterated logarithm for sequences of 
random variables with values in the Hilbert space L2(F). (See e.g. [12, 
Theorem 4.1].) [] 

Next, we put 

(5.4) ym--=vml{Ivml~5OIIhll2m}, wm=y,,-E(y,,l~,,_l), m>l. 

Lemma 5.3. We have with probability 1 

lim sup (n log log n)- 1 ~ Wm< 600 II h II 2" 

Proof For fixed k>  1 the sequence {Win, ~/Tm, 1 < m < 2  k} is a martingale differ- 
ence sequence uniformly bounded by c=lO011hl122 k. We apply Lemma 5.4.1 
and Corollary 5.4.1 of Stout 1-213 with 2=  1/c and obtain 

P {max exp (2 Y' �9 1 ~2 3 wm-~,~ ~ ~, E(w~l~m_l))>�88 -2. 
n < 2  k m < n  ra<n 

Hence by the Borel Cantelli 1emma there is with probability 1 a ko=ko(cO ) 
such that for all k > k o 

(5.5) max2 Z wm<21~176188 ~, E(w~l~m_l) 
n < 2  k m < n  m < 2  k 

==_21oglog2k+ 322 • E(v~loc'qm_l) �9 
m < 2  k 

Now Lemma 5.2 implies that there exists with probability 1 an mo=mo(CO) such 
that for all re>too(CO ) and all e) 

Hence by (5.5) 
E(v2lS~m_ 1)< 12 Ilhl[2m log log m. 

max 2 ~ wm< 3 loglog 2 k. 
n < 2  k rn<n 

We substitute 2 and obtain the lemma. [] 
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For  the proof of Proposition 5.1 it remains to show that in Lemma 5.3 w m 
can be replaced by v m. This will follow from the following two lemmas and the 
strong law of large numbers applied to the sequence {h(X n, X,), n> 1}. 

Lemma 5.4. With probability 1 there exists an mo=mo(O9 ) such that for all 
m ~ m  o 

]wm-ym[ _-<2 Ilhl12 log log m. 

Proof Recall from the proof of Lemma 2.4 that {vm-Sh(x ,x)dx ,  5r m, m>= 1} is 
a martingale difference sequence. Thus by (5.4) and Lemma 5.2 there exists 
with probability 1 an too=too(CO) such that for all m>=m o 

Iwm- yml = le(yml 2~m_ l)l < le (vm l {Iv~l > 5O IIh ll 2m}lLP~_ l)l + Ilhl12 
<(50llhllm m- 1)E(v~l~m 1)+ [[hll2 <2  [[h[]2 loglogm. 

Lemma 5.5. We have with probability 1 

n - 1  ~ h ( X i ,  Xn)---*O. 
i<n 

Proof It is enough to show that for each e > 0 

(5.6) n -1 ~ h(X~,X,)>e only finitely often a.s. 
i<n 

Since we can replace h by 19h/e without violating (1.8) it suffices to show (5.6) 
with e = 19. Put 

G = n/log n 

g,(x, y)=h(x, y)l {h <= z,} 
and 

h,(x, y)=g,(x, y ) -  ~ g,(u, y ) d u -  y g,(x, v)dv+ y y g,(u, v)duav. 

We shall prove that with probability 1 both 

(5.7) n -1 ~, (h(Xi, X , ) -  h,(X~, X,)) > 3 
i<n 

and 

(5.8) 

happen only finitely often. 
To prove (5.7) we set 

n -1 ~ h,(Xi, X,)>16 
i<n 

I i (n )=n  -1 F~ h(X.  X.)I{h(X~, X.)>~~ 
i<n 

12 (,,) = ~-1 2 ~ h(u, x . )  1 (h(u, x . )  > ~~ du 
i < n  

13 (n) = n- 1 2 ~ h (Xi, v) 1 { h (Xi, v) > % } d v 
i<n 
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and 
I4(n) =~ ~ h(u, v)l {h>z,}dudv 

4 

and observe that the left side of (5.7) equals ~ Ij(n). Now 
j = l  

(5.9) 

Next, since 

~" P(Ii(n),O)<__ ~ nP{h(X1,X2)>'c,} 
n>_ l n> l 

= ~ n ~ P{'cj<h(Xl,Xz)<-_'Cj+l} 
n> l j>=n 

~ jZP{'cj<h(Xl. X2)<='cj+l} 
j >  :t 

~ hE(x, y) log h2(x, y)dxdy < oo. 

12 (n) =< ~ I h (u, X,)I 1 {Ih(u, X,)I > z,} du 
<~2 ~ ~h2(u,X,)du=z2tA, (say) 

we obtain by Jensen's inequality with 4)(x)= x log x 

(5.10) 

Further, 

P(I:(n)>l)< ~ P(A.>'c.)< ~ P(O(A.)>n) 
n>- I n> l n> l 

E q~ (A1) ~ E y 4) (h 2 (u, XO) du < oo. 

(5.11) ~ P(I3(n)>l)<= ~ n-lE(~h(Xi, v)l{h(Xi, v)>z,Idv) 2 
n ~ l  n > l  

< 2 n-1S~h2(x,y)l{h(x,Y)>z,}dxdy 
n > l  

= ~ n 1 ~ Eh2(Xi,Xz)l{zj<h(Xi,X2)<zi+l} 
n > l  j > n  

~ logjEh2(X1, X2)l {'cj<h(Xa, X2) =<'cj+ 2} 
j>_-I 

Eh2(X1, X2) log 2 h (X1, X2) < oo. 

Since trivially I4(n)--,O (5.7) follows from (5.9), (5.10), (5.11) and the Borel 
Cantelli lemma. 

For the proof of (5.8) let X o be a random variable with 5r 2,q(X 0 and 
independent of the sequence {Xj , j> I} .  Let ~ be the a-field generated by 
Xo, X 1 .... ,X~. Then {h,(X~,Xo), 4 ,  l < i < n }  is a martingale difference se- 
quence satisfying 

(5.12) h.(X~, Xo) <-_ c = 4% 

and 

(5.13) E 2 o~" E(h, (X i, Xo)I~*~_ 1)<= 2 ~ S h2 (u, Xo)du + 2 ~ y ~ h 2 (x, y)dxdy 
i<n i<n i<n 

< 2n ~ h2(u, Xo)du + 2n I ~ hZ( x, y)dxdy. 
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We now apply Lemma 5.4.1 and Corollary 5.4.1 of Stout [-21] with 2=  1/c and 
obtain 

P{n -1 ~ h,(Xi, X,)>16} 
i<n 

=P{logn/(4n) ~ h,(X i, Xo)>41ogn } 
i<n 

--<P{exp0" Z h,(Xi, X0))'exp(-�89 1 +�89 
i<n 

. ~ E(h2(X,,Xo)]~ i))>/~ 2} 
i<n 

+P{�89 +�89 y'  E(h2(Xi, X0)lJ ~ 0 > 2  logn} 
i<n 

<=n- 2 + p {S h2(u, Xo)du> 8z,} 

~ n -  2 + p(An> 8zn) 

by (5.13). Now (5.8) follows from (5.10) and the Borel Cantelli lemma. Since 
(5.7) and (5.8) together prove (5.6) with e= 19 Lemma 5.5 is proven. [] 

We now turn to the proof of Theorem 2. Several steps in the argument also 
will be used in the proof of Theorem 1, given at the end of this section. We 
modify the proof of Theorem 4 as given in Sect. 4. Let ek+O slowly and put 

(5.14) tk= I ~  ( l q - ~ j ) ,  n k = t k - - t  k l = t k _ l e k  , 
j<k 

Moreover, we choose sequences MkToo and gk'~OO both slowly at a rate to be 
determined later. Next, let fz: N2__,IR, l=> 1 be a sequence of simple functions 
with sets of constancy being measurable rectangles A~ x Aj such that 

(5.15) IIh-f{la <2 z 1/600. 

Denote by d(fi) the number of values fz assumes. By Proposition 5.1 we have 
for every l>  1 

lim sup (n loglog n) 1V,(h-fl)__< 2- t -  1 a.s. 
n~oo 

and by Lemma 3.1 we have the same relation but with V, replaced by W,. 
Hence we can find a sequence r z~" ~ such that 

P {sup (n log log n) 1 V, (h -fz) --> 2 - t} ~ 2-  t. 
n~ri  

Thus by the Borel Cantelli lemma we have that 

(5.16) sup (n loglogn) 1V.(h-fz) ~ 0 a.s. 
n~rz 

and 

(5.17) sup (n log log n)- 1W,(h_fl) ~ 0  a.s. 
n~rl  



160 H.  D e h l i n g  et al. 

We now approximate h on (t k, tk§ 1] by a subsequence of {fz, l >  1} defined 
as follows. We let l=  l(k) be the largest integer satisfying 

(5.18) r~<t~, [[f~[[~<M k and d(ft)<=dg 

where Mk, d k and also e k tend to their respective limits slowly at a rate still to 
be determined. We define 

(5.19) gk = fl(g)' 

Since l(k)-*oo we have [[h--gk][2~0. 
We now follow the proof of Theorem 3. Relation (4.9) becomes 

7c(Y (n; 1 ek), JV (O, Ck) ) ~ n;  ~ d~. 

We can assume without loss of generality that ek$0 and dkTOO so slowly that 
n;~-~dk< o0. Then (4.12) gets replaced by 

k_>_l 

(5.20) ( ~ ( R ( A ( i , k ) , H g ) - K ( A ( i , k ) , H g ) ) 2 ) ~ n ~ n ~ d ~ n ~ .  
i <=dk 

Lemma 5.6. Let Ik=(t~, tk). Then we have with probability 1 

~ g~(x, y)(R(dx, Ik)R(dy, Ik) -- K(dx,  Ik)K(dy, Ik) ) ~ n k. 

Proof. We follow the proof of Lemma 4.2. The bound in (4.19) is replaced by 
d~nfi. (4.20) still reads [rKzH~@l~. Hence the bound in (4.21) becomes 

1 ~ 1 1 �9 

M k d k  . . . . .  nl i n k  dk k . Thus we obtain in the lemma the bound M k d k k ~ n ~ n  k if 
both ~k$0 and MkToo sufficiently slowly. [] 

The following lemma is an immediate extension of Lemma 5.4.1 and 
Corollary 5.4.1 of Stout [21]. 

Lemma 5.7. Let {U,,W,, n >  1} be a supermartingale with EU I =0. Let Uo=0 and 
Yi = U~ - U i_ 1 for i > 1. Suppose Yi < c a.s. for some 0 <= c < oo and all i > 1. Let  
2 > 0  and 

Tn=exp(2U, )exp ( - � 89  zc ~ E(Yi2I~/_I)), n > l  
i < n  

and To= 1 a.s. Then {Tn,~, n>0} is a non-negative supermartingale and for each 
c~>0 

P {sup T, > c~} < 1/~. 
n > 0  

Lemma 5.8. As k--+ oo we have with probability 1 

max [ V,(h) - V~k(h)l -- o (t k log log tk). 
t k < n < = t k + l  

Proof. We use the notation introduced earlier in this section. Because of 
Lemmas 5.4 and 5.5 it is enough to show that 

(5.21) t~<,<t~+~max m =t~u+ 1 Wm = 0 (t k log log tk) a.s. 
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To prove this we apply Lemma 5.7 to the martingale difference sequence 
{w~, 5Y~, t k < m < t k + a} with c = 50 II h II 2 tk + 1 and 2 = 1/(c (4? (k)) where qb (k) $0 is 
chosen such that 

(5.22) el/e(k)ek/q52 (k) ~ O. 

We obtain with c~-- exp (4 log log tk) 

P t  max exp(2  ~ w~)exp(-�89 ~ E(w215r 
( tk<n<~tk+ 1 t?l=tk+ 1 m = t k +  1 

if ek$0 SO slowly that tk>__expk ~. Hence by Lemma 5.2 and (5.14) we obtain 
with probability 1 a ko(cO ) such that for all k>_>k o 

~ ,  tk+ 1 
max 2 Wm<=41oglOgtk + l ~ 2 e z ~  ~ E ( w Z ] ~  1) 

t k < n < t k + l  m = t k + l  m = t k + l  

(4 + ei /4(k)eJ(5 ,000r  2 (k))) log log t k. 

Substituting 2 and using (5.22) we obtain (5.21) and thus the lemma. [] 

Lemma 5.9. As  k ~ ov we have with probabi l i ty  1 

~ (h (x, y) - g ,  (x, y)) R (dx, Ik) R (dy, Ik) = o (t k log log tk). 

Proof.  Let z>0.  By (5.16) there is a set f2 o with P ( ~ o ) = l  and an /o=lo(~,co) 
such that for all co~? o and l > l  o 

sup (n log log n)-  1 V,(h - f l )  < ~. 
n>rl  

Let k be so large that l (K)~ lo ,  so g~=ft  for some l>=l o. Moreover, by (5.18) 
tk>rl(k)>r~(~). Hence for all coef2 o 

( tk loglOgtk)  -1  V~k(h-g~)< sup (nloglogn) 1 V,(h_f l (~))<e" 
n>_rl(~) 

This shows that 
Vt~ (h - g~) = o (t k log log tk). 

Since Lemma 4.4 remains valid if ~k~,0 SO slowly that tk__>expk ~ and with h 
replaced by h - g  this last relation implies the lemma. [] 

We need Lemmas 5.8 and 5.9 but with V and R replaced by W and K 
respectively. 

Lemma 5.10. As  k ~ ~ we have with probabi l i ty  1 

max IWn(h ) -  Wt~(h)l=O(tklOglogtk). 
t k < ~ t k +  J. 
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P r o o f  As in the p roo f  of  L e m m a  3.1 we have 

P t  m a x  ~, (Wm--C)> 2Ollhl[2nk loglogtk} 
(tk<n<=t~+l m = t k +  1 

=PI(tk<,<t~+max ~ e x p ( n [ l t  m = t k +  ~ 1 (w"-c ) )  >exp(41~176 

<exp(--41oglogtk)Eex p n ; l t  ~, w m e x p ( - - c t )  
m ~  tk+ 1 

~ k -  2 E exp(t Wl (h))~k - z. 

The l e m m a  follows now f rom the Borel Cantell i  l e m m a  since nk=ektk_ 1" 

L e m m a  5.11. As k ~ oo we have with probability 1 

f I (h (x, y) - g~ (x, y)) K (dx, Ik) K (dy, Ik) = 0 (t k log log tk). 

Proof Since the analogue  of L e m m a  4.4 remains  valid with R replaced by K it 
is enough to p rove  tha t  with probabi l i ty  1 

Wt~ (h - g~) = o (t k log log tk). 

But this follows f rom T h e o r e m  5 in much  the same way as L e m m a  3.1. We 
have with t = (5 II h - g~ I[ 2)- a and c = E ~ ~ (h - g~)(x, y) B 1 (dx) B 1 (dy) 

P {max (W, (h - g~) - n c) > 20 t k l] h - g~ [I 2 log log tk} 
n<=tk 

< exp ( - 4 log log tk) E exp (t t ;  1 (W~ (h - g~) - t k c)) 

~k-2Eexp( tWl (h -g~) ) ,~k  -2. [] 

The p roof  of  T h e o r e m  2 can now be comple ted  as in the last p a r a g r a p h  of 
Sect. 4. 

Fo r  the p roof  of  T h e o r e m  1 we replace L e m m a  5.8 and 5.9 by the following 
one and observe tha t  they remain  valid if we replace V and R by W and K 
respectively. 

Lemma 5.12. As  k ~ oo 

t [  1 max  ]V,(h)-  Vt~(h)l ~ 0 in probabil i ty .  
t k < n ~ t k + l  

t[ ~ ~(h(x ,y ) -g~(x ,y ) )R(dx ,  Ik)R(dy, Ik)~O in probabil i ty.  

Proof This is an immedia te  consequence of Doob ' s  general izat ion of 
K o l m o g o r o v ' s  inequality, of L e m m a  2.1 and since ek+0. Recall  that  as was 
noted  in the p roo f  of  L e m m a  2.4 {V,(h)-n~h(x,x)dx,  Y) , ,n>l}  is a mar -  
tingale. 

6. Extensions 

T h e o r e m  4 can easily be extended to kernels in more  than two a rguments  and 
to the mul t ivar ia te  case. Let  {X~,j>__I} be a sequence of independent  identi- 
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cally distributed random vectors in N q, q > l  and let {R(s,t),  s e l R  q, t>0}  be 
the empirical process of {Xj , j>I} .  Let h: IR~q~ N d be a measurable function; 
here m > 2. Suppose that for some 6 > 0 

(6.1) ~ I~(yl . . . . .  y~)[Z+~dF(yO...dF(ys)<Oo s=  1,2, . . . ,m 
IR m q 

with the following interpretation. F is the common distribution function of 
{Xj , j>I} ,  and h is defined by a fixed partition C1, ..., C~ of {1 . . . . .  m} via the 
relation ~(Yl . . . .  , y~)=h(xl ,  ..., Xm) with x i = Y  ~ iff i~ Cj. Then Ilhll2+o is defined 
as the sum over all possible integrals of the form (6.1) raised to the power 
1/(2 + 6). For IIh II 2 < oe the von Mises statistic is defined as the Nd-valued process 

V,(h) = ~ h(x 1 . . . .  , xm)R(dx l ,  n) ... R(dXm, n). 

The Kiefer process figuring in the approximating integrals has covariance 
function EK(s,  t)K(s',  t) = min (t, t ')(F(s/~ s ' ) -  F(s).F(s')), s, s'~ N ~ Here s/x s' is 
the vector with components being the minimum of the corresponding com- 
ponents. It is clear now how to reformulate Theorem 4 to conform with this 
more general situation. However, in the error terms the exponent 1 on n has to 
be replaced by �89 The changes required in the proof are routine. 

The extension to the multisample case, i.e. to statistics of the form 

~ h ( X l  . . . .  'Xm~'Yl ' ' ' "Ymz)  H R(dxi ,  nl) I~ e* (dy j ,  n2) 
i~mt j~m2 

where R and R* are the empirical processes of independent samples appears 
not to be obvious. If n~ =n  2 the methods of the present paper still work with 
virtually no changes. However, if n~=n a is not assumed then presumably the 
methods of [1] combined with the methods of the present paper will lead to 
the desired extension. 

7. HSlder Continuity and Bounded Variation 

In this section we give two sufficient conditions on h which guarantee that 
(1.10) holds. All the standard kernels satisfy one of these conditions. A 
function h: I R " ~ N  is called H61der continuous with exponents p, r > 0  and 
constant C if for all x 1 . . . .  , Xm, Ya . . . .  , Y,, 

(7.1) [h(x 1, ..., X m ) - h ( y  1 . . . . .  ym)] s C ~ Ixl-Y~lP(1 + Ixjl~ + lyjlr), 
i , j<m 

Lemma 7.1. Let  h: Nm---,IR be H61der continuous with exponents p, r > 0  and 
constant C and suppose that F is a distribution function on IR ~ having a moment 
o f  order 2(r + p ) + 6  for  some 6>0.  Then there is a constant D with the following 
property: For every d e n  there exists a partition ~= {A(i,d), l < i < d }  o f  N and 
g(il, ..., im)eN such that 

Ilk- ~ g(il . . . .  , im)lA(il,a ) . . . . .  A( im,d) l l2~Od -p~'/(2p+~). 
it,...,im 
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Proof Recall that r[hrl2 was defined in Sect. 6. Put  

(7.2) K =d 2p/(2~ M -  ! K ~/p - - 2  

ci= - K + ( i - 1 ) / M ,  l<i<_d, Co= - ~ ,  ca= +o9. 

For  O<ij<d ( l < j < m )  we set 

(7,3) g(il ,  ..., ira) = h(ci 1 . . . . .  ci m) 

A(ij, d)-- [clj, cij + 1) 

The lemma follows easily by elementary calculations. 

Corollary 7.2. Under the hypotheses of Lemma 7.1 condition (1.10) is satisfied 
with 7 = pc~/(2 p + c~). 

Proof For  r = l , 2  . . . .  apply L e m m a  7.1 with d = U .  As can be seen from the 
p roof  of L e m m a  7.1 we obtain for each r = l , 2  . . . .  a sequence - o o  
= c~o < c ]  < . . .  < c ; .  = + oo and simple functions 

hr = ~ g~(il, "', ira) 1A(il, 2 r) . . . . .  A(im, 2 r) 
O <=ij <2 r 

where A(i, 2~)=[c~,c~+l), 0 < i < 2  r such that  IIh-hrllz<=Co2-rL We define a 
new part i t ion fl(r) of IR into (at most) 2 ~ sets { - o o = b o < b l < . . . < b 2 . = o ~ }  by 
reordering ~ ~) {c~}. {fl(r), r>2} is a refining sequence of part i t ions and 

s < r  1 < i < 2  s 

h ~- 1 is measurable  with respect to the o--field generated by/~(r). [ ]  

The  second condi t ion is on the mean oscillation of h: [0, 1 ] m ~ N .  For  e > 0  
and x~lR m put 

osc (h, ~, x) = sup {I h(x) - h(y)l : y~ ~m, Ix -Yl  < e}. 

L e m m a  7,3. Suppose that h: [0, 1 ] ~ I R  satisfies 

(7.4) sup e ~ ~ (osc (h, ~, x))2dx < oo 
e > 0  IR~ 

for some r > 0 .  Moreover suppose that (7.4) holds along each diagonal of [0, 1] m. 
Then the conclusions of Lemma 7.1 and Corollary 7.2 hold with exponent 
- p 6/(2 p + ~) replaced by - r. 

Proof Let ci=i/d, O<_i<-d and define g(i 1 . . . .  ,im) and A(i,d) by (7.3). Then  for 
each x~A(i l ,  d)x ... x A(i~, d) 

Ih(x)-g(i  1 . . . . .  i~)l<osc(h,  1/d,x). [] 

8. Examples  

Theorems 1 through 4 immediately apply to the s tandard examples frequently 
ment ioned in this context. (See [10].) 

8.1. For  the est imator  of the sample variance S a we have the relation 

n s =n Z Z (x,'xj) (x,-xJ) 
i<n l<=i , j<n l < i ~ - j < n  
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So we can set m = 2  and h ( x , y ) = l ( x - y )  2. Of course, h is non-degenerate, but 
setting h a ( x ) = l x  2 - x  ~ ydF(y)+�89 ~ yZdF(y) and 0-2 = ~ ~ h(x, y)dF(x)dF(y) we 
have 

n 2 ($2 _ 2 0-2) = 2 V, (h) + 4 n 2 ~ h 1 (x)d (F, (x) - F (x)). 

Assuming suitable moment  conditions on F we conclude from (1.13), (1.14), etc. 
that n�89 2) can be approximated by the same Brownian motion as 
4n~hl (x )d(F, (x ) -F(x) ) ,  a result due to Sen [-20]. However, according to 
Theorems 2 or 3 together with Lemma 7.1 and Corollary 7.2 the difference of 
these two expressions can be approximated by a suitable W,. In particular, we 
obtain from Theorems 3 and 2 with probability 1 

lira sup n+/(2 log log n)(n~ (S 2 - 2 0 "2) - -  4n ~ ~ h 1 (x)d(F,(x) - F(x))) = 2 C(h*) 
n~oo  

where C(h*)= 0-2. 

8.2. Similarly for the Wilcoxon signed rank statistic the function 

h(x ,y )=l  if x + y > 0  

= 0 otherwise 

is non-degenerate and one can proceed as in Sect. 8.1, replacing Lemma  7.1 
and Corollary 7.2 by Lemma 7.3. 

8.3. In the test for the sample covariance the function h we are interested in is 
h((xl,y O, (x2, y a ) ) = x l y l - x l y  2 since 

H i n n  

= ~ (xa Yl - xlY2)dF,(xl, Yl)dF,(x2, Y2)- 

So m = q = 2 and the results of Sect. 6 extending Theorem 4 apply. 

8.4. Let F be a distribution function and 11 . . . .  ;It. be a partition of the real 
line with probabilities F(I~)---p~, l<_l<L. Let {X~,i>I} be a sequence of 
independent random variables with common distribution function F. Put 

h(x, y)=  ~ p~- 1 ( lh(x)-pl)(1,~(y)-p,) .  
l < L  

Then the statistic 

z(n,L)= ~ p~l(card{j<n: X~EI,}-npf = ~ h(Xi, Xi) 
l<=L l <=i,j<=n 

is just the one figuring in the z2-test of fit. Notice that h is degenerate as 
~h(x,y)dF(x)=O. The function h satisfies the conditions of Theorem4.  Hence 
for some Kiefer process and some 2 > 0 

;~ (n ,L ) .~h (x , y )K(dx ,  n)K(dy, n)~n 1-~ a.s. 
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O n e  can  easi ly  de r ive  C ( h * ) =  1 (cf. [9]). 

8.5. Le t  e ( n ) = l / n  F n ( x ) - x  (0 < x  < 1) a n d  c o n s i d e r  the  s ta t i s t ic  
x(1 -x) 

1 
nan= ~ ~.~ (x)dx, 

o 

whe re  F n d e n o t e s  the  e m p i r i c a l  d i s t r i b u t i o n  f u n c t i o n  o f  a s a m p l e  o f  size n t a k e n  

f r o m  the  u n i f o r m  d i s t r i b u t i o n  on  [-0,1]. It  is easy to see tha t  n A  n 

= n -  1 ~ h(X~, Xj) is d e r i v e d  f r o m  a yon Mises '  f unc t i ona l  w i th  ke rne l  
1 < i , j < n  

1 

h(x, y) = ~ u(1 - u)) -  1 (1 {x < u} - u)(1 {y < u} - u)du. 
0 

F r o m  C o r o l l a r y  1 a n d  the  resu l t  o f  de  W e t  and  V e n t e r  [5]  we d e d u c e  

l im  sup  (log log  n)-  j n A  n = 1. Th i s  resul t  has  b e e n  o b t a i n e d  by  Cs~tki [3, T h e o -  

r e m  3.1]. 
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