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1. Introduction

Consider a sequence X,, X,, ... of independent random variables (rv); define

S,= > X,. This paper is concerned with determining upper and lower bounds
i=1
on the (almost surely (a.s.) constant) value of limsup S,/C,, where C,cc is a
real sequence. e
When E(X?)< oo for every n, it is natural to consider a norming sequence
of the form C,=(2s? loglogs?)!/?, where s?=Var(S,); indeed, the law of the
iterated logarithm (LIL) is said to hold in its classical form if

n

—E(S
lim sup 5.) z=1as.

noow (252 loglogs?)
But strong limit theorems such as the LIL depend (in principle) on probabili-
ties rather than moments. This fact is borne out by a number of published
results, among which are those of Feller [7], Klass [10] and [11], Klass and
Teicher [12] and Kesten [9] in the independent, identically distributed (i.i.d)
case, and those of Martikainen and Petrov [14] and Tomkins [20] in the
general independent case. As an illustration, consider a rv X with P[X = +k¥]

0 -1
=Ak~3 for k=1, where A= (2 Y k‘3) . Let {X,} be independent rv such
k=1

that X, has the same distribution as X1 (|X]=n"), where I(E) denotes the
indicator function of an event E. It is easy to see that E[X,|= oo for every n=1

and every r>0. But P[X,+0]=P[|X|2n"]=24) k= 3*=0(n"?), so P[X,+0

k=n

1.0.]=0 by the Borel-Cantelli lemma (as usual, “1.0.” means “infinitely often”).
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Therefore S, converges a.s., notwithstanding the fact that all moments are
infinite, so S,/C,—0 as. for every sequence C,%co.

It is helpful to consider the case in which X,/d,—0 as. for some real
sequence d,; by the Borel-Cantelli lemma this is tantamount to assuming

Y PlIX,|>ed,]<co for every e>0. Since Y X,I(X,|>ed,) converges. as.,
n=1 n=1

the choice of {C,} should depend only on {Y;=X,I(|X;|=ed))}. Thus it seems

n

preferable to consider C,=(2g2 loglog g?)'/?, where g>=Var (z YJ>, instead of
J=1

(2s2 loglogs?)'/?. The difficulty with using s, instead of g, stems from the fact
that expectations can overinflate the effects of events of low probability,

perhaps to the point where s,/g,— co. For instance, suppose P[X,=1]=1 2

and P[X,=—n*+1]=1/m* for nzl. Then E(X,)=0, E(X?)=n’>-1 so
sz~n3/3 (we will write “a*~a,” when a*/a,—1). Moreover, P[X,#1 i.0.]=0,
so S,/n—1 as. But then §,/(2s?loglogs?)/?~S, /((2/3)n’ loglogn)'’? -0 as.
Notice that X /d,—0 a.s. for every sequence d,Too in this example.

The main results of the paper will be stated in Sects. 2 and 3, and proved in
Sect. 4. These theorems, which assume nothing about the existence of any
moments of the X,’s, present hypotheses involving only properties of the
individual X’s (rather than those of S,, as in [20]) under which the value of
limsup|S,|/C, or limsup S,/C, may be ascertained.

n— oo R— 00

2. Two-Sided Limit Theorems

This section addresses the problem stated at the beginning of the paper by
presenting hypotheses under which bounds on limsup|S,|/C, can be deter-

mined. These hypotheses involve only properties of each X,, but do not
require any moments of X, to be finite. All theorems of this section will be
proved in Sect. 4.

The following theorem was motivated by a theorem of Teicher [16].

Theorem 2.1. Let X,,X,,... be a sequence of independent rv and suppose

0<B,<B,<..tw is a real sequence. For nx1, define S,=) X, b}
=2 loglog B? and, for ¢>0, i=1

T(e)=B,? ) Var(X, ) 21)
i=1
where
X, ,=(X,v(—eB,b;")AEB,b;", nzl (2.2)

Define the non-negative numbers T — and T+ by

T?=lim liminfT,(s), T?=lim lim sup T,(e). (2.3)

£l0 n-o el0 p-ow
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Let {a,} be a positive real sequence. Assume a,=0(B_b),

i PIX,|>a,] <00, (2.4)

n=1

(Bnbn)‘lZE{XkI(|Xk|§ak)}—>0 as n— oo, (2.5)
k=1
and

Y (B,b) P E{X2I(eB,b" <|X,|<a)}<c0 for every ¢>0  (26)

n=1
and some $>0. If B>1, assume moreover, that
Z B,b, )" Y E{X;I@B,b;'<|X,[<a,)}) <o (2.6")
ReSn<n+1

Jor every £>0 and some integral sequence {n,} obeying n,  =min{n: B, 2cB, }
for some c>1 and all k=1. Then

T_<lim Sollp '1‘7 £T, as. 2.7
and, if T, <o,
S /(B, b)) 0. (2.8)

P . a7:
(Here, “—” denotes convergence in probability ). If, moreover,

limsup B, , /B, < o0 (2.9

n— 0O

then this theorem remains true with T,(¢) replaced by
T,(e)=B;*> Var((X;v(—eB,b; ) reB,b; ). (2.10)
i=1

With a,=B,b, and f=1, (2.4) and (2.5) and the definitions of T_ and T,
are, in a sense, reminiscent of the Degenerate Convergence Criterion ([13],
p. 317). In fact, Theorem 2.1 has the following partial converse.

Theorem 2.2. Let X, S,, B, b and T, (e) be as given in Theorem 2.1; define T_
and T, by (2.3). IfS/(B )—>O and A=limsup|S,|/(B,b,)<w as., then (2.4)

H— O

and (2.5) hold with a,=6B,b, for any 6> A. If, moreover, (2.6) holds for some
B>0 and (2.6") holds if p>1, then (2.7) is also true.

Remark. 1. Theorems 2.1 and 2.2 clearly remain valid for the sequence { —X}.
2. If a sequence C,Tco is given with a view to finding the value of
limsupS,/C,, one might test the hypotheses of Theorem 2.1 using B,

=C,(2loglog C)~1/2,
3. Theorems 2.1 and 2.2 give some clues in the search for an appropriate

choice of the sequence {B,}. One approach is to define B, by the equation .

T,(1)=1 or (cf. (2.10)) T/(1)=1.
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4. Theorem 2.1 uses the truncation X, , defined by (2.2) instead of the sim-
pler truncation X,I(|X,/<eB,b; ') because, unlike Var(X,I(|X,|<¢B,b, 1)),
Var(X, ,) is a non-decreasing function of ¢>0 by Corollary 4 of [1] and,
hence, so is T,(¢). This fact is crucial to our proof of Theorem 2.1. It will be
clear from their proofs (see Sect. 4) that Theorems 2.1 and 2.2 remain true with
T,(¢) replaced throughout by

THe)=B,? Y Var(X,I( X, <eB,b; ")
i=1

I=

if T.* is non-decreasing in ¢ (in particular, if the X’s are all symmetrically
distributed).

3. Some Asymmetrical Strong Limit Theorems

Theorem 2.1, as noted earlier, applies equally to the sequences {—X,} and
{X,}; therefore, its wusefulness is limited to circumstances in which
limsup|S,|/(B,b,) < o a.s. However, Klass and Teicher [12] have shown that it

n— oo

is possible for limsup S,/C,=1 as. and limsup —S,/C,=c0 as., even for iid.

n— o h— O
rv with zero means. The results in this section establish sufficient conditions for
limsup S,/(B,b,) < o as., without making any implications about the limiting

R~ O

behavior of {—S,}.

Theorem 3.1. Let X, X,, ... be independent rv and S,= > X,. Let a,1oo and
i=1

B,Joo be real sequences and ler b?=2loglogB2. For any n>0, define the

constants C(n) and o (n)2Z0 as follows:

n—>w

C(n)=limsup (B, b,)~* Z E{X,v(—nB;b; " )N I(X;La)},
i=1
and

o, (n)=lim limsup B; > Y Var((X; v (—nB;b; ")) I(X;<eB;b; ).
el 0 i

n— 0O i=1
Suppose a,=0(B,b,),
Y P(X,>a,)<o ' (3.1)
=1

n=

and, for some B>0,

Y (B,b) P E{X?#1(¢B,b,'<X,<a)}<co forevery ¢>0. (3.2
=1

n

If B>1, then assume, moreover, that

Y B, b, ) (Y EX.I(eB,b;'<X,La)f <o for every ¢>0
k=1 N EN<nNic+1 (32/)
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where . =min {n: B,2cB, } for some c>1 and all k=1. Then

limsup S,/(B,b,)<27 > K*a_ (n)+C(n) as., (3.3)

n—

where y=n/2'* o (1)) and
K*=min ((1+(e” — 1 ~yb)/32)/b). (3.4)
b>0

If, moreover, a, =lima, ()< oo or C=lim C(y)> — oo, then
{0 nl0

limsupS,/(B,b)<a, +C as. (3.5)

A-> 00

A more standard formulation may be desirable. Modifying Theorem 3.1
slightly, simpler truncation conditions can be obtained.

Theorem 3.2. Assume X, X,, ... are independent rv and S,= z X,. Let a1 o0

and B,too be real sequences and define b,=(2 loglog B2)'/2. Assume a,=0(B,b,),
(3.1) holds, that (2.6) holds for some ﬁ>0 and, if p>1, that (2.6") holds For any
n>0, define the constants

C*(n)=lim sup(B,b,)~* ZE{XI —nB, b7 *£X;<a)}

and

o, . (n)=lim lim sup B, 2ZE{XZI( nB; b7 <X, ZeB,b M)},

gl0 n— i=1

where B, is a real sequence such that B,1oo, and b,=(2 loglog B})'/2.
If C*(n)> —o0 or o (1)< oo then

limsup S,/(B,b,) 22" o, () K¥+ C*(n) (3.6)

n— oo

where y=n/2"%a, (1)) and K} is defined by (34). If, in addition,

C*=lim C*(n)> —co or a_, =lima_ , (7)< co, then
nl0 nlo

limsup S,/(B,b)Sa, ,+C* as. 3.7)

h— o0

4. Proofs of the Theorems

The following lemmas are presented for ease of reference.
Lemma 4.1 (Egorov [3]). Let {a,(e),n=1} be a sequence of non-negative func-

tions defined for all £>0. If Y a,(e)<co for every ¢>0, then there exists a
n=1

sequence {e,} such that ¢,]0 and Y a,(e,) < co.

n=1
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Lemma 4.2 (Tomkins [21]). Let {a, ()} be a sequence of non-negative functions,
defined for all £>0. Define a*—lim inf lim infa,(e). Then there exists a sequence

{e,} such that &,|0 and lim infa, .3,, >a* Moreover, if a,(¢) is a non-decreasin
g

function of ¢ for each nz1, then liminfa,(8,) Sa* for every real sequence {4}

n— oo

satisfying 6,|0.

Lemma 4.3 (Tomkins [217). Let (M, F,, nz1) be a submartingale and let {a,},
{B,} and {c,} be positive real sequences. Suppose B,1oo and define a=limsupua,,

y=1lim sup (loglog B*)!/? ¢, and g(x)=x"%(¢* —1 —x). Assume o< o0 and y< c0.
p n n

If positive numbers C, N and T exist such that
E exp {tM,/(2, B,)} < C exp {t* g(tc,)} (4.1)

whenever n= N and 0=tc,<T, then

. M,
VRSP B Toglog B =" 1
where
Ky,=2"? and K,= min (b~'+bg(yb) for y>0. (4.2)
0<b=yT~1

Lemma 44. Let X, X,, ... be independent rv with zero means. Suppose {a,},

{B,}, and {c,} are real sequences such that, for n=1, Z E(X})Z(x,B,)? and

i=1

X,<c,o,B, as. Then (4.1) holds with C=N=1, M, = Z X; and every T>0.

i=1

Proof. Let s?=Var (Z Xi) and c¢*=c,a,B,/s,. By dint of Lemma 1(i) of
Teicher [18], i=1

Eexp {tM,/s,} <exp {t* g(tc})}
for all t>0 and n=1. Replacing ¢ by ts,/(a, B,),

E exp {tM,/(«, B,)} Sexp {t* 570 * B * g(tc,)}

<exp{t’g(tc,)}
as required. [

Lemma 4.5. Let {X,} be a sequence of independent rv and let a,too be a real

sequence. If 2 P[X,|>a,]<oo and Z Xi/a,—2> 0 then a;* ZE (X, I(X,|£ay))

—0. n=1 i=1 i=1
Proof. Let X*=X I(|X,|<qa,). Then the hypotheses and the Borel-Cantelli
lemma imply a; ! Y X#-%> 0. But then

i=1
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a; ' Y E(XF)=a;" Y E(X¥(X}<a,)-0
i=1 i

i=1
by the Degenerate Convergence Criterion ([13], p. 317). [
The following strong law of large numbers will be used repeatedly.

Lemma 4.6. Let Yl‘, Y,, ... be independent rv with finite means and define T,

=YY, Let BJfoo and b,} be real sequences and suppose that
i=1

Y (B,b) *PE|Y,|*! < oo for some 0.
n=1

If () p<1/2 and |Y,|SKB,b, as. for some K>0, or (i) 1/2<B=1 or (iii)

g>1and Y (B, b,) *"(E(T,, .  —T,)") <co, where n, is any integral sequence
k=1

k+1

such that n,_,=min{n: B,=cB, } for some ¢>1 and all k=1, m,=n, —1, and
b ~b, as k— oo, then (T,—E(T,))/(B,b,)—0 a.s.

Mic + 1

Proof. Under the assumptions of (i), E|Y,|/(B,b,)<K'~**E|Y |**/(B,b,)**;
clearly, then, ) (B, b,)" ' E|Y,|< o0 so the hypotheses of (ii) hold with f=1/2

n=1
when the assumptions in (i) hold. But the desired result follows when
1/2<B=<1 by a result of Loeve ([13], p. 214). It remains only to consider part
(iii).

If B>1, then E|Y,—E(Y)|**<2*#E|Y|*! by the c,-inequality and the
Holder’s inequality. Since E(Y,—E(Y))><E(Y?), it is evident that the hy-
potheses of part (iii) hold with Y, —E(Y,) in place of Y,. Therefore, it can and
will be assumed that E(Y,)=0 in the remainder of the proof.

For brevity, let I, ={n: n,<n<n,, ,}, k=1. Then, for any £>0,

B=P[max|T,—T,|=¢B, b, ]

L 37
nelx

<(¢B, b,)"*E|T, . —T,1** by Doob’s inequality ([2], p. 314)
< Cy(eB,, b,) *{ Y EIYPP+( Y E(Y)Y)

neli nely

ni bnk

for some constant C,; (depending only on B) by an inequality of Rosenthal
[15]. Since B, >B,/c for nel, and b,, /b, —1 by hypothesis, it is clear from

M+ 1

(i) and (ii) that ) B, <co. Consequently, the Borel-Cantelli lemma ensures the
k=1

existence of an integer-valued rv L such that

max |T, - T, |<eB, b for all k=L. (4.3)

(I 1%
nely

Notice that B, 2cB,  =...2c*~'B, for all i<k, so

Nr-1

R

B,

IA

k
B, Y ¢=¥<cB, /(c—1). (4.4)
i=1

i=1
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Now, for nel,, where k=L,

-T)+T,~T,.

mi+q

k-1
\T|=|T,,, + > (T,
=L

ni T ni

k
<|T, |+ Y ¢B, b, by (43)
i=L

<|I,, |+e&cB, b, /(c—1) by (44).

hx A

It follows readily that limsup|T,|/(B,b,) Secf(c—1) as. for every £>0. The

desired conclusion is established. [J

Proof of Theorem 2.1. Lemmas 4.1 and 4.2 ensure the existence of real se-
quences {e, ,}, {¢, ,} and {g, 3}, where ¢, ;0 as n— oo for i=1,2,3, such that

lim sup T, (s, ,)=T72, 4.5)
(B,b) 2P E{X* (s, ,B b~'<|X.|<a)}< o0, (4.6)
nn n n, 2 "n"n n n
n=1

and, if f>1,

S (Buby) (Y E{X’I, iB,bri<|X,|Sa))f <o (46)
k=1

Mk SH<Hk+ 1

in view of hypotheses (2.3), (2.6) and (2.6"). Corollary 4 of Chow and Studden
[1] shows that, for each n=1, T (s) is a non-decreasing function of ¢>0; by
dint of Lemma 4.2, therefore, (4.5) remains true with ¢, = max (¢,,;) in place of

1<i<3

&, 1. Moreover, the series in (2.6) and (2.6") are clearly non-increasing functions
of ¢, 0 (4.6) and (4.6)) are also still valid with ¢, , and &, 5 replaced by ¢,.

Now, following Teicher [16], define w,=¢,B, b !, X, =X, I1(X |<w,), X/
=X, I(X,]>a), X;=X,-X,—X," and X¥=X , (cf. (22)). Let {S,}, {5)}
and {S)'} be the respective partial sums of the sequences {X'}, {X} and {X""},
and let $¥= ) X}.

k=1

Since (2.4) holds, the Borel-Cantelli lemma implies P[X]'#0 i0.]=0.

Therefore, trivially, o
Bn bn

-0 as. as n—oo. 4.7)

Note that (2.5) is tantamount to

E(S,+S,)

B.b, -0 as n—o0. (4.8)

Observe that B, <B, . <cB, , whence it follows that b /b,  —1. So, in

mi + 1 n?

light of (4.6) and (4.6"), Lemma 4.6 implies
(S, —E(S))/(B,b,j—0 as. (4.9)



Limiting Behavior of Normed Sums of Independent Random Variables 115

Now let Y,=X}—X,=w, (I(X,>w,)-I(X,<—-w,), ¥,'=Y I(|X,|>a,) and
Y=Y, —Y" Since P[Y,+0 io.]=P[|X, [>a, 10]=P[X)+0 i0.]=0, ob-

viously (B,b,)~" Y ¥"—>0 a.s. Moreover, applying Kronecker’s lemma to the
k=1

series in (2.4), (B,b,)~' Y B,b,P[|X,|>a,]—0 from which it follows readily

k=1
n

that ‘Z E(Y))| = Z & B, b ' P[1X,|>a]=0(B,b,). Furthermore, Y,

=Y, I(w,<|X,<a,) so IY |=w,=B,b,. In view of (4.6) and (4.6'), Lemma 4.6
y1elds

Y.
s Bt -s) 5
Bn bn B Bn b"

=0 as. (4.10)

In light of (4.7), (4.8), (4.9) and (4.10), it remains only to prove that
Sy —E(S) »

B.b, —0 if T, <o (4.11)
and
Sk —E(S*
T <11msup——B#_T+ a.s. 4.12)

Let v2=Var(S¥). For any £>0, an integer m=m(e) exists such that g <e if
k=zm. Again using Corollary 4 of Chow and Studden [1], it follows that, for
n=m,

1

Var(X, )+ Z Var(X; ,)

i=m

<
S
IA
i
[

3
|

{Var(X, ,)—Var(X; )} +BZ T,(e).
1

;I“

Therefore, since m and ¢ are fixed,

lim sup v2/BZ <lim sup T, (e).

n-—» o0 n— 00

Now let £)0 to get limsupv,/B,<T,, so, by virtue of (4.5),

n— oo

0=T_=liminfv,/B,<limsupv,/B,<T,. (4.13)
In the case when T_ =0, it is possible that v, converges. But then S* — E(S*)
converges a.s. by the Kolmogorov Convergence Theorem ([13], p. 236). There-
fore, since B,To0, (S¥ —E(S¥)/(B,b,)—0 as., so (4.11) and (4.12) both hold if v,
converges.
For the rest of the proof, assume that v, —c0. By CebySev’s inequality and
(4.13), for every >0,

PISy —E(S)|znB,b,]<v,/(nB,b,)* <T2/(nb,)?
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so (4.11) is clear. The right-hand inequality of (4.12) is trivial if T, =00, so
suppose T, <oo. For n=1, define « —sup v,/B, and c,=2¢,/(b,0,). Since |X*

—-E(X¥H|=2w,=c,uo,B,, Lemma 4.4 shows that (4.1) holds for every T >0 with
N=C=1 and M,=S}—E(S}¥). Since a=limsupa,<T, by (413) and

y=limsup2~'?b, c,=0, Lemma 4.3 implies "~
S*
hrnn sup —Bbg_): T, as.

It remains to prove the left- hand 1nequa11ty of (4.12). Define u,
=(2 loglog v3)"/2. Then (S* — E(S¥))/(v, u,)—— 0 by Cebysev’s inequality, whence

. . S¥—E(S%) . .
it follows that lim sup ———"-=0 a.s. Since B, b,>0 for all large n, (4.12) is

R— O n’n

true if T_=0.

Now suppose T_>0. Define f(x)=(2loglogx?)*/?/x, and note that f is
decreasing on the interval (3, o). If n is so large that v,>(T_/2) B,>3, then
u,/v,=f(v,)<f(B,T_/2) and, hence

U, | Xy —E(X7)|

Un

S2u,w, /v, S2f (B, T_/2)yw,~4e,/T_=0(¢,).
Since v, — o0, Kolmogorov’s law of the iterated logarithm yields

— *
lim sup —(—§~)— 1 as.

n— n Un

The left-hand part of (4.12) now follows from (4.13).

Now define T’ and T, by replacing T,(¢) by T, (e) in (2.3). The proof of
Theorem 2.1 will be completed by showing that T =T_ and T, =T, under
(2.9).

Since y=x/(loglogx*)!/? is increasing on the interval (3, oo), there is no
harm in assuming that djg_de, where d;=B,b,. For nziz1 and ¢>0, define

X, . o=X;v(—eB,b; ) reB,b, Then it is clear from Corollary 4 of [1]
that T,(e) = T, (¢) and, hence, that T_ <T,T,£T,.

In view of (2.9), a constant A exists such that limsup B, /B,<A< . Let

0<d<1. Choose an integer N so large that B, <6By and B, , <AB, for all
nzN. For n=N, let j,=min{ild;>dd,}; clearly j—co. Note that, for every
£>0, N_1

B, Y Var(X,, )<B;2e?d}(N—~1)=0(b;?)—0.

i=1

Therefore, using Corollary 4 of [1] again, if j,>N

T ()= B;? Z Var(X, )

i= ,]n+1

z Bn_ ? Z Var (Xi, n, 85)

i=jn+1
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=T'(ed)—B;* Z Var (X, , ,5)+o(1)

i=N
>T/(e8)— ‘ZB‘ZT’ ' (&)+o(1)
2T,(e0)— 1/32)(3 /B3 )T, ().
Consequently,
lim sup 7;,(¢6) £lim sup T, (e)+ 6> A lim sup T} (e).
Letting €0 yields T" £T_+6* A>T’ and T <T, +6*>A>T,. Now let 5|0 to
complete the proof. [

Proof of Theorem 2.2. Since A< oo and S,/(B, bn)—P» 0, it follows from Theorem
2(ii) of Tomkins [20] that (2.4) holds with a,=0B,b, for any é>A. But then
(2.5) holds by dint of Lemma 4.5. Finally, (2.7) results under (2.6) and (2.6")
from an application of Theorem 2.1. []

Proof of Theorem 3.1. Let n>0. There is no loss of generality in assuming that
a,(n)<oo when proving (3.3). For ¢>0 and nz1, define d,=B, b1,
=max(X,, —nd,) (X, Ssd Jand X=X I(ed, <X, <a,).

Now let o2 —supB 2 Z Var(X}) and ¢,=(e+n)/(b,a,) for n=1. Since X,
zn 1 1

—E(X)<(8+’7)d -'Cn n n’
of Lemma4.3 with M, = Z(X’ E(X})), C=N=1, any T>0, a=oas)

J

Lemma 4.4 ensures the Va11d1ty of the hypotheses

=limsupa, and y= y(a)—hmsupZ Y2p ¢, =(e+n)/(2"* o). Consequently, by

Lemma 4.3,

lim sup Z (X;—E(X))/(B,b)<27"?aK, as. (4.14)
where K is given by (4.2). Since any T>0 may be used to determine K, it is
clear that K, may be replaced in (4.14) by K¥, as defined by (3.4).

It follows from (3.2), (3.2), and Lemma 4.6 that
z (X7 —EX)/(B,b)—0 as. (4.15)
By virtue of (3.1) and the Borel-Cantelli Lemma,
lim sup S, /(B, b,) =1im sup Z X, I(X;<a)/(B,b,).
But X, I(X,<a,)=<X,+ X, so, using (4.14) and (4.15),
limsup S,/(B,b,) <2~ ? aK* +lim sup E(X,+ X)/(B,b,) (4.16)

n—> oo n— oo

for every e>0. But a > o, and y—n/2Y%a,) as ¢|0, so, keeping the definition
of C(y) in mind, (3.3) follows by letting £/ 0 in (4.16).
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Moreover, y0 and, hence, K* — K§ as 10, so (3.5) obtains by letting 1]0
in(33). O
Proof of Theorem 3.2. For n>0, ¢>0 and n2x1, define d,=B,b, !, X,
— X, I(—nd,<X,<ed) and X|=X.,I(edy<X,Za,). Note that X,I(X,<a,)
<X, +X.

There is no loss of generality in assuming that o,  (7)<oo. Let o,
—supB 2ZVar(X) and ¢,=(¢+n)/(b,a,). But X,—E(X,)<«,B,c,, so, by

zn i=

Lemmas 43 and 44,
lim sup (B, b,) Z (Xi—EX) <o) KF2~Y?* as. 4.17)

n—= o —

where a(e)=lim a,, y=y(e)=limsup2-12b,c,=(c+n)/(2"*«), and K% is de-

fined by (3.4).
Moreover, by dint of (2.6), (2.6') and Lemma 4.6,

lim (B, b,) Z(X” E(X))=0 as. (4.18)

n— oo

Therefore, in view of (3.1), (4.17) and (4.18),

lim sup S,/(B, b,) =lim sup Z X, I(X,=a)/(B,b,)

n— © = j=1

<limsup ) (X;+X/)/(B,b,)

=0 =1

Soa(e) K¥2- 1/”-l—hmsupZE(X’ X)/(B,b,)

o0 =

for every £>0. Letting ¢|0 yields (3.6) which, in turn, yields (3.7) when
710. O

Remarks 1. Let X, X,,... be independent rv with zero means and finite
variances. Define S,=X,+...+X,, s2=E(S?) and 1,=(2loglogs.)"/?; assume
s,— . Since S,/(s,t )-—>0 in probablhty by Cebysevs inequality, (2.5) holds
W1th a,=ds,t,, for any >0, by the Degenerate Convergence Criterion ([13],
p.217). If (24) and (26) hold with =1, B,=s, and b,=t,, then
T_<limsupS,/(s,t,)<T, <1 as. by Theorem 2.1. '

n— oo

Under these circumstances, it might be expected that the function T,(g)
could be replaced by something simpler. In fact, defining H (¢

=577 Z E(X?I(X;|<es;t7 1Y), it is not hard to show that T_ and T, may
i=1

be respectively replaced by H_ and H., defined using H, in lieu of T, in
(2.3), provided s;?2 Z {E(X | I( X |=es;t71))}2—0. In the case where

H_=H, =1, this mod1fed result yields a theorem of Teicher [16]. This result
also shows that H_<limsupS,/(s,t,) <H . as. under the sole condition that

n— oo

Z P[IX,|=es,t; '] <co for every ¢>0; this theorem is due to Tomkins [21].

n=1
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Notice the direct relationship between H,(¢) and the Lindeberg function

L,(e)=s;?% E(X?I(IX,|>es;)). While the connection between the Lindeberg
=1
functions and the Central Limit Theorem has been known for more than half a
century, only recently has the relationship between these functions and the law
of the iterated logarithm been studied by several authors, including Egorov [3-
6], Teicher [16, 17] and Tomkins [19, 21].
2. Suppose Y,Y,,... are iid. rv with E(Y,)=0. Let {o,,n=1} be non-

negative numbers; define 4,=) o, and assume that 4,—~oc and no,/A,
i=1

=0((loglog 4,)/) for some Bz=0. Theorem 3.1 of Fernholz and Teicher
[8] shows that Y o;Y/(A4,(log, A,)")>0 as. To see that this result follows

j=1

readily from Théorem 2.1, let a,=A4,(loglog 4,)%, X,=0,Y, and define B, ac-
cording to the equation B,b,=A,(loglogA,)’. Then (2.4) holds because
E(Y;)=0, (2.5) follows casily from the Toeplitz lemma, while (2.6) holds with
B=1 (cf. p. 769 of [8]). Moreover, EX2 I(|X,|<&B,/b,) <(s0, B,/b,) E|Y;| so that
T,(e)<e¢E|Y,|A,B,/b,. It is now easy to show that limsup T (s)=0(e) and,
hence, that T, =0. Theorem 2.1 now yields the desired result.

3. Corollary 2.6 of [8] follows quite readily from Theorem 3.2. However,
Theorem 2.5 of [8] does not seem to be a consequence of any of the theorems

in this article, in spite of some obvious similarities.
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