# On the Limiting Behavior of Normed Sums of Independent Random Variables 

M.J. Klass ${ }^{1 \star}$ and R.J. Tomkins ${ }^{2}{ }^{\boldsymbol{\star} \star}$<br>${ }^{1}$ Departments of Mathematics \& Statistics, University of California, Berkeley, California, 94720, USA<br>${ }^{2}$ Department of Mathematics \& Statistics, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada

## 1. Introduction

Consider a sequence $X_{1}, X_{2}, \ldots$ of independent random variables (rv); define $S_{n}=\sum_{i=1}^{n} X_{i}$. This paper is concerned with determining upper and lower bounds on the (almost surely (a.s.) constant) value of $\limsup S_{n} / C_{n}$, where $C_{n} \uparrow \infty$ is a real sequence.

When $E\left(X_{n}^{2}\right)<\infty$ for every $n$, it is natural to consider a norming sequence of the form $C_{n}=\left(2 s_{n}^{2} \log \log s_{n}^{2}\right)^{1 / 2}$, where $s_{n}^{2}=\operatorname{Var}\left(S_{n}\right)$; indeed, the law of the iterated logarithm (LIL) is said to hold in its classical form if

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}-E\left(S_{n}\right)}{\left(2 s_{n}^{2} \log \log s_{n}^{2}\right)^{1 / 2}}=1 \text { a.s. }
$$

But strong limit theorems such as the LIL depend (in principle) on probabilities rather than moments. This fact is borne out by a number of published results, among which are those of Feller [7], Klass [10] and [11], Klass and Teicher [12] and Kesten [9] in the independent, identically distributed (i.i.d) case, and those of Martikainen and Petrov [14] and Tomkins [20] in the general independent case. As an illustration, consider a rv $X$ with $P\left[X= \pm k^{k}\right]$ $=A k^{-3}$ for $k \geqq 1$, where $A=\left(2 \sum_{k=1}^{\infty} k^{-3}\right)^{-1}$. Let $\left\{X_{n}\right\}$ be independent rv such that $X_{n}$ has the same distribution as $X I\left(|X| \geqq n^{n}\right)$, where $I(E)$ denotes the indicator function of an event $E$. It is easy to see that $E\left|X_{n}^{r}\right|=\infty$ for every $n \geqq 1$ and every $r>0$. But $P\left[X_{n} \neq 0\right]=P\left[|X| \geqq n^{n}\right]=2 A \sum_{k=n}^{\infty} k^{-3}=O\left(n^{-2}\right)$, so $P\left[X_{n} \neq 0\right.$ i.o.] $=0$ by the Borel-Cantelli lemma (as usual, "i.o." means "infinitely often").

[^0]Therefore $S_{n}$ converges a.s., notwithstanding the fact that all moments are infinite, so $S_{n} / C_{n} \rightarrow 0$ a.s. for every sequence $C_{n} \uparrow \infty$.

It is helpful to consider the case in which $X_{n} / d_{n} \rightarrow 0$ a.s. for some real sequence $d_{n}$; by the Borel-Cantelli lemma this is tantamount to assuming $\sum_{n=1}^{\infty} P\left[\left|X_{n}\right|>\varepsilon d_{n}\right]<\infty$ for every $\varepsilon>0$. Since $\sum_{n=1}^{\infty} X_{n} I\left(\left|X_{n}\right|>\varepsilon d_{n}\right)$ converges a.s., the choice of $\left\{C_{n}\right\}$ should depend only on $\left\{Y_{j}=X_{j} I\left(\left|X_{j}\right| \leqq \varepsilon d_{j}\right)\right\}$. Thus it seems preferable to consider $C_{n}=\left(2 g_{n}^{2} \log \log g_{n}^{2}\right)^{1 / 2}$, where $g_{n}^{2}=\operatorname{Var}\left(\sum_{j=1}^{n} Y_{j}\right)$, instead of $\left(2 s_{n}^{2} \log \log s_{n}^{2}\right)^{1 / 2}$. The difficulty with using $s_{n}$ instead of $g_{n}$ stems from the fact that expectations can overinflate the effects of events of low probability, perhaps to the point where $s_{n} / g_{n} \rightarrow \infty$. For instance, suppose $P\left[X_{n}=1\right]=1-\frac{1}{n^{2}}$ and $P\left[X_{n}=-n^{2}+1\right]=1 / n^{2}$ for $n \geqq 1$. Then $E\left(X_{n}\right)=0, E\left(X_{n}^{2}\right)=n^{2}-1$ so $s_{n}^{2} \sim n^{3} / 3$ (we will write " $a_{n}^{*} \sim a_{n}$ " when $a_{n}^{*} / a_{n} \rightarrow 1$ ). Moreover, $P\left[X_{n} \neq 1\right.$ i.o. $]=0$, so $S_{n} / n \rightarrow 1$ a.s. But then $S_{n} /\left(2 s_{n}^{2} \log \log s_{n}^{2}\right)^{1 / 2} \sim S_{n} /\left((2 / 3) n^{3} \log \log n\right)^{1 / 2} \rightarrow 0$ a.s. Notice that $X_{n} / d_{n} \rightarrow 0$ a.s. for every sequence $d_{n} \uparrow \infty$ in this example.

The main results of the paper will be stated in Sects. 2 and 3, and proved in Sect. 4. These theorems, which assume nothing about the existence of any moments of the $X_{n}$ 's, present hypotheses involving only properties of the individual $X_{n}$ 's (rather than those of $S_{n}$, as in [20]) under which the value of $\limsup \left|S_{n}\right| / C_{n}$ or $\limsup S_{n} / C_{n}$ may be ascertained.

## 2. Two-Sided Limit Theorems

This section addresses the problem stated at the beginning of the paper by presenting hypotheses under which bounds on $\limsup _{n \rightarrow \infty}\left|S_{n}\right| / C_{n}$ can be determined. These hypotheses involve only properties of each $X_{n}$, but do not require any moments of $X_{n}$ to be finite. All theorems of this section will be proved in Sect. 4.

The following theorem was motivated by a theorem of Teicher [16].
Theorem 2.1. Let $X_{1}, X_{2}, \ldots$ be a sequence of independent $r v$ and suppose $0<B_{1} \leqq B_{2} \leqq \ldots \uparrow$ is a real sequence. For $n \geqq 1$, define $S_{n}=\sum_{i=1}^{n} X_{i}, \quad b_{n}^{2}$
$=2 \log \log B_{n}^{2}$ and, for $\varepsilon>0$,

$$
\begin{equation*}
T_{n}(\varepsilon)=B_{n}^{-2} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i, \varepsilon}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
X_{n, \varepsilon} \equiv\left(X_{n} \vee\left(-\varepsilon B_{n} b_{n}^{-1}\right)\right) \wedge\left(\varepsilon B_{n} b_{n}^{-1}\right), \quad n \geqq 1 . \tag{2.2}
\end{equation*}
$$

Define the non-negative numbers $T-$ and $T+$ by

$$
\begin{equation*}
T_{-}^{2}=\lim _{\varepsilon \downarrow 0} \liminf _{n \rightarrow \infty} T_{n}(\varepsilon), \quad T_{+}^{2}=\lim _{\varepsilon \downarrow 0} \limsup _{n \rightarrow \infty} T_{n}(\varepsilon) . \tag{2.3}
\end{equation*}
$$

Let $\left\{a_{n}\right\}$ be a positive real sequence. Assume $a_{n}=O\left(B_{n} b_{n}\right)$,

$$
\begin{gather*}
\sum_{n=1}^{\infty} P\left[\left|X_{n}\right|>a_{n}\right]<\infty,  \tag{2.4}\\
\left(B_{n} b_{n}\right)^{-1} \sum_{k=1}^{n} E\left\{X_{k} I\left(\left|X_{k}\right| \leqq a_{k}\right)\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(B_{n} b_{n}\right)^{-2 \beta} E\left\{X_{n}^{2 \beta} I\left(\varepsilon B_{n} b_{n}^{-1}<\left|X_{n}\right| \leqq a_{n}\right)\right\}<\infty \quad \text { for every } \varepsilon>0 \tag{2.6}
\end{equation*}
$$

and some $\beta>0$. If $\beta>1$, assume moreover, that

$$
\sum_{k=1}^{\infty}\left(B_{n_{k}} b_{n_{k}}\right)^{-2 \beta}\left(\sum_{n_{k} \leqq n<n_{k}+1} E\left\{X_{n}^{2} I\left(\varepsilon B_{n} b_{n}^{-1}<\left|X_{n}\right| \leqq a_{n}\right)\right\}\right)^{\beta}<\infty
$$

for every $\varepsilon>0$ and some integral sequence $\left\{n_{k}\right\}$ obeying $n_{k+1}=\min \left\{n: B_{n} \geqq c B_{n_{k}}\right\}$ for some $c>1$ and all $k \geqq 1$. Then

$$
\begin{equation*}
T_{-} \leqq \limsup _{n \rightarrow \infty} \frac{S_{n}}{B_{n} b_{n}} \leqq T_{+} \quad \text { a.s. } \tag{2.7}
\end{equation*}
$$

and, if $T_{+}<\infty$,

$$
\begin{equation*}
S_{n} /\left(B_{n} b_{n}\right) \xrightarrow{P} 0 . \tag{2.8}
\end{equation*}
$$

(Here, " $\xrightarrow{P} "$ denotes convergence in probability). If, moreover,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} B_{n+1} / B_{n}<\infty \tag{2.9}
\end{equation*}
$$

then this theorem remains true with $T_{n}(\varepsilon)$ replaced by

$$
\begin{equation*}
T_{n}^{\prime}(\varepsilon)=B_{n}^{-2} \sum_{i=1}^{n} \operatorname{Var}\left(\left(X_{i} \vee\left(-\varepsilon B_{n} b_{n}^{-1}\right)\right) \wedge \varepsilon B_{n} b_{n}^{-1}\right) . \tag{2.10}
\end{equation*}
$$

With $a_{n}=B_{n} b_{n}$ and $\beta=1$, (2.4) and (2.5) and the definitions of $T_{-}$and $T_{+}$ are, in a sense, reminiscent of the Degenerate Convergence Criterion ([13], p. 317). In fact, Theorem 2.1 has the following partial converse.

Theorem 2.2. Let $X_{n}, S_{n}, B_{n}, b_{P^{n}}$ and $T_{n}(\varepsilon)$ be as given in Theorem 2.1; define $T_{-}$ and $T_{+}$by (2.3). If $S_{n}\left(\left(B_{n} b_{n}\right) \xrightarrow{P_{n}} 0\right.$ and $\Lambda \equiv \limsup \left|S_{n}\right| /\left(B_{n} b_{n}\right)<\infty$ a.s., then (2.4) and (2.5) hold with $a_{n}=\delta B_{n} b_{n}$ for any $\delta>\Lambda$. If, moreover, (2.6) holds for some $\beta>0$ and (2.6) holds if $\beta>1$, then (2.7) is also true.

Remark. 1. Theorems 2.1 and 2.2 clearly remain valid for the sequence $\left\{-X_{n}\right\}$.
2. If a sequence $C_{n} \uparrow \infty$ is given with a view to finding the value of $\limsup S_{n} / C_{n}$, one might test the hypotheses of Theorem 2.1 using $B_{n}$ $={ }_{C}^{n \rightarrow \infty}\left(2 \log \log C_{n}^{2}\right)^{-1 / 2}$.
3. Theorems 2.1 and 2.2 give some clues in the search for an appropriate choice of the sequence $\left\{B_{n}\right\}$. One approach is to define $B_{n}$ by the equation $T_{n}(1)=1$ or (cf. (2.10)) $T_{n}^{\prime}(1)=1$.
4. Theorem 2.1 uses the truncation $X_{n, \varepsilon}$ defined by (2.2) instead of the simpler truncation $X_{n} I\left(\left|X_{n}\right| \leqq \varepsilon B_{n} b_{n}^{-1}\right)$ because, unlike $\operatorname{Var}\left(X_{n} I\left(\left|X_{n}\right| \leqq \varepsilon B_{n} b_{n}^{-1}\right)\right.$ ), $\operatorname{Var}\left(X_{n, \varepsilon}\right)$ is a non-decreasing function of $\varepsilon>0$ by Corollary 4 of [1] and, hence, so is $T_{n}(\varepsilon)$. This fact is crucial to our proof of Theorem 2.1. It will be clear from their proofs (see Sect. 4) that Theorems 2.1 and 2.2 remain true with $T_{n}(\varepsilon)$ replaced throughout by

$$
T_{n}^{*}(\varepsilon)=B_{n}^{-2} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i} I\left(\left|X_{i}\right| \leqq \varepsilon B_{i} b_{i}^{-1}\right)\right)
$$

if $T_{n}^{*}$ is non-decreasing in $\varepsilon$ (in particular, if the $X_{n}{ }^{\text {'s }}$ are all symmetrically distributed).

## 3. Some Asymmetrical Strong Limit Theorems

Theorem 2.1, as noted earlier, applies equally to the sequences $\left\{-X_{n}\right\}$ and $\left\{X_{n}\right\}$; therefore, its usefulness is limited to circumstances in which $\lim \sup \left|S_{n}\right| /\left(B_{n} b_{n}\right)<\infty$ a.s. However, Klass and Teicher [12] have shown that it is possible for $\limsup _{n \rightarrow \infty}^{n \rightarrow \infty} S_{n} / C_{n}=1$ a.s. and $\limsup _{n \rightarrow \infty}-S_{n} / C_{n}=\infty$ a.s., even for i.i.d. rv with zero means. The results in this section establish sufficient conditions for $\lim \sup S_{n}\left(\left(B_{n} b_{n}\right)<\infty\right.$ a.s., without making any implications about the limiting behavior of $\left\{-S_{n}\right\}$.

Theorem 3.1. Let $X_{1}, X_{2}, \ldots$ be independent $r v$ and $S_{n}=\sum_{i=1}^{n} X_{i}$. Let $a_{n} \uparrow \infty$ and $B_{n} \uparrow \infty$ be real sequences and let $b_{n}^{2}=2 \log \log B_{n}^{2}$. For any $\eta>0$, define the constants $C(\eta)$ and $\alpha_{+}(\eta) \geqq 0$ as follows:

$$
C(\eta)=\underset{n \rightarrow \infty}{\lim \sup }\left(B_{n} b_{n}\right)^{-1} \sum_{i=1}^{n} E\left\{\left(X_{i} \vee\left(-\eta B_{i} b_{i}^{-1}\right)\right) I\left(X_{i} \leqq a_{i}\right)\right\},
$$

and

$$
\alpha_{+}(\eta)=\lim _{\varepsilon \downarrow 0} \limsup _{n \rightarrow \infty} B_{n}^{-2} \sum_{i=1}^{n} \operatorname{Var}\left(\left(X_{i} \vee\left(-\eta B_{i} b_{i}^{-1}\right)\right) I\left(X_{i} \leqq \varepsilon B_{i} b_{i}^{-1}\right)\right) .
$$

Suppose $a_{n}=O\left(B_{n} b_{n}\right)$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(X_{n}>a_{n}\right)<\infty \tag{3.1}
\end{equation*}
$$

and, for some $\beta>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(B_{n} b_{n}\right)^{-2 \beta} E\left\{X_{n}^{2 \beta} I\left(\varepsilon B_{n} b_{n}^{-1}<X_{n} \leqq a_{n}\right)\right\}<\infty \quad \text { for every } \varepsilon>0 \tag{3.2}
\end{equation*}
$$

If $\beta>1$, then assume, moreover, that

$$
\sum_{k=1}^{\infty}\left(B_{n_{k}} b_{n_{k}}\right)^{-2 \beta}\left(\sum_{n_{k} \leqq n<n_{k+1}} E\left(X_{n}^{2} I\left(\varepsilon B_{n} b_{n}^{-1}<X_{n} \leqq a_{n}\right)\right)^{\beta}<\infty \quad \text { for every } \varepsilon>0\right.
$$

where $n_{k+1}=\min \left\{n: B_{n} \geqq c B_{n_{k}}\right\}$ for some $c>1$ and all $k \geqq 1$. Then

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup } S_{n} /\left(B_{n} b_{n}\right) \leqq 2^{-1 / 2} K_{\gamma}^{*} \alpha_{+}(\eta)+C(\eta) \quad \text { a.s. } \tag{3.3}
\end{equation*}
$$

where $\gamma=\eta /\left(2^{1 / 2} \alpha_{+}(\eta)\right)$ and

$$
\begin{equation*}
K_{\gamma}^{*}=\min _{b>0}\left(\left(1+\left(e^{\gamma b}-1-\gamma b\right) / \gamma^{2}\right) / b\right) \tag{3.4}
\end{equation*}
$$

$$
\begin{align*}
& \text { If, moreover, } \alpha_{+} \equiv \lim _{\eta \downarrow 0} \alpha_{+}(\eta)<\infty \text { or } C \equiv \\
& \qquad \lim _{\eta \downarrow 0} C(\eta)>-\infty, \text { then }  \tag{3.5}\\
& \limsup _{n \rightarrow \infty} S_{n} /\left(B_{n} b_{n}\right) \leqq \alpha_{+}+C \quad \text { a.s. }
\end{align*}
$$

A more standard formulation may be desirable. Modifying Theorem 3.1 slightly, simpler truncation conditions can be obtained.
Theorem 3.2. Assume $X_{1}, X_{2}, \ldots$ are independent $r v$ and $S_{n}=\sum_{i=1}^{n} X_{i}$. Let $a_{n} \uparrow \infty$ and $B_{n} \uparrow \infty$ be real sequences and define $b_{n}=\left(2 \log \log B_{n}^{2}\right)^{1 / 2}$. Assume $a_{n}=O\left(B_{n} b_{n}\right)$, (3.1) holds, that (2.6) holds for some $\beta>0$, and, if $\beta>1$, that (2.6) holds. For any $\eta>0$, define the constants

$$
C^{*}(\eta)=\underset{n \rightarrow \infty}{\limsup }\left(B_{n} b_{n}\right)^{-1} \sum_{i=1}^{n} E\left\{X_{i} I\left(-\eta B_{i} b_{i}^{-1} \leqq X_{i} \leqq a_{i}\right)\right\}
$$

and
$\alpha_{++}(\eta)=\lim _{\varepsilon \downarrow 0} \limsup _{n \rightarrow \infty} B_{n}^{-2} \sum_{i=1}^{n} E\left\{X_{i}^{2} I\left(-\eta B_{i} b_{i}^{-1}<X_{i} \leqq \varepsilon B_{i} b_{i}^{-1}\right)\right\}$,
where $B_{n}$ is a real sequence such that $B_{n} \uparrow \infty$, and $b_{n}=\left(2 \log \log B_{n}^{2}\right)^{1 / 2}$.
If $C^{*}(\eta)>-\infty$ or $\alpha_{++}(\eta)<\infty$ then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} S_{n}\left(B_{n} b_{n}\right) \leqq 2^{1 / 2} \alpha_{++}(\eta) K_{\gamma}^{*}+C^{*}(\eta) \tag{3.6}
\end{equation*}
$$

where $\gamma=\eta /\left(2^{1 / 2} \alpha_{++}(\eta)\right)$ and $K_{\gamma}^{*}$ is defined by (3.4). If, in addition, $C^{*} \equiv \lim _{n \downarrow 0} C^{*}(\eta)>-\infty$ or $\alpha_{++} \equiv \lim _{\eta \downarrow 0} \alpha_{++}(\eta)<\infty$, then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} S_{n}\left(B_{n} b_{n}\right) \leqq \alpha_{++}+C^{*} \quad \text { a.s. } \tag{3.7}
\end{equation*}
$$

## 4. Proofs of the Theorems

The following lemmas are presented for ease of reference.
Lemma 4.1 (Egorov [3]). Let $\left\{a_{n}(\varepsilon), n \geqq 1\right\}$ be a sequence of non-negative functions defined for all $\varepsilon>0$. If $\sum_{n=1}^{\infty} a_{n}(\varepsilon)<\infty$ for every $\varepsilon>0$, then there exists a sequence $\left\{\varepsilon_{n}\right\}$ such that $\varepsilon_{n} \downarrow 0$ and $\sum_{n=1}^{\infty} a_{n}\left(\varepsilon_{n}\right)<\infty$.

Lemma 4.2 (Tomkins [21]). Let $\left\{a_{n}(\varepsilon)\right\}$ be a sequence of non-negative functions, defined for all $\varepsilon>0$. Define $a^{*}=\liminf _{\varepsilon \perp 0} \liminf _{n \rightarrow \infty} a_{n}(\varepsilon)$. Then there exists a sequence $\left\{\varepsilon_{n}\right\}$ such that $\varepsilon_{n} \downarrow 0$ and $\liminf _{n \rightarrow \infty} a_{n}\left(\varepsilon_{n}\right) \geqq a^{*}$. Moreover, if $a_{n}(\varepsilon)$ is a non-decreasing function of $\varepsilon$ for each $n \geqq 1$, then $\liminf _{n \rightarrow \infty} a_{n}\left(\delta_{n}\right) \leqq a^{*}$ for every real sequence $\left\{\delta_{n}\right\}$ satisfying $\delta_{n} \downarrow 0$.
Lemma 4.3 (Tomkins [21]). Let $\left(M_{n}, F_{n}, n \geqq 1\right)$ be a submartingale and let $\left\{\alpha_{n}\right\}$, $\left\{B_{n}\right\}$ and $\left\{c_{n}\right\}$ be positive real sequences. Suppose $B_{n} \uparrow \infty$ and define $\alpha=\underset{n \rightarrow \infty}{\lim \sup } \alpha_{n}$, $\gamma=\limsup _{n \rightarrow \infty}\left(\log \log B_{n}^{2}\right)^{1 / 2} c_{n}$, and $g(x)=x^{-2}\left(e^{x}-1-x\right)$. Assume $\alpha<\infty$ and $\stackrel{n \rightarrow \infty}{\gamma<\infty}$.

If positive numbers $C, N$ and $T$ exist such that

$$
\begin{equation*}
E \exp \left\{t M_{n} /\left(\alpha_{n} B_{n}\right)\right\} \leqq C \exp \left\{t^{2} g\left(t c_{n}\right)\right\} \tag{4.1}
\end{equation*}
$$

whenever $n \geqq N$ and $0 \leqq t c_{n}<T$, then

$$
\limsup _{n \rightarrow \infty} \frac{M_{n}}{\left(B_{n}^{2} \log \log B_{n}^{2}\right)^{1 / 2}} \leqq \alpha K_{\gamma} \quad \text { a.s. }
$$

where

$$
\begin{equation*}
K_{0}=2^{1 / 2} \quad \text { and } \quad K_{\gamma}=\min _{0<b \leqq \gamma T^{-1}}\left(b^{-1}+b g(\gamma b)\right) \quad \text { for } \gamma>0 \tag{4.2}
\end{equation*}
$$

Lemma 4.4. Let $X_{1}, X_{2}, \ldots$ be independent $r v$ with zero means. Suppose $\left\{\alpha_{n}\right\}$, $\left\{B_{n}\right\}$, and $\left\{c_{n}\right\}$ are real sequences such that, for $n \geqq 1, \sum_{i=1}^{n} E\left(X_{i}^{2}\right) \leqq\left(\alpha_{n} B_{n}\right)^{2}$ and $X_{n} \leqq c_{n} \alpha_{n} B_{n}$ a.s. Then (4.1) holds with $C=N=1, M_{n}=\sum_{i=1}^{n} X_{i}$ and every $T>0$.
Proof. Let $s_{n}^{2}=\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)$ and $c_{n}^{*}=c_{n} \alpha_{n} B_{n} / s_{n}$. By dint of Lemma 1 (i) of
Teicher [18],

$$
E \exp \left\{t M_{n} / s_{n}\right\} \leqq \exp \left\{t^{2} g\left(t c_{n}^{*}\right)\right\}
$$

for all $t>0$ and $n \geqq 1$. Replacing $t$ by $t s_{n} /\left(\alpha_{n} B_{n}\right)$,

$$
\begin{aligned}
E \exp \left\{t M_{n} /\left(\alpha_{n} B_{n}\right)\right\} & \leqq \exp \left\{t^{2} s_{n}^{2} \alpha_{n}^{-2} B_{n}^{-2} g\left(t c_{n}\right)\right\} \\
& \leqq \exp \left\{t^{2} g\left(t c_{n}\right)\right\}
\end{aligned}
$$

as required.
Lemma 4.5. Let $\left\{X_{n}\right\}$ be a sequence of independent $r v$ and let $a_{n} \uparrow \infty$ be a real $\underset{\substack{\text { sequence. If } \\ \rightarrow 0}}{ } \sum_{n=1}^{\infty} P\left[\left|X_{n}\right|>a_{n}\right]<\infty$ and $\sum_{i=1}^{n} X_{i} / a_{n} \xrightarrow{p} 0$ then $a_{n}^{-1} \sum_{i=1}^{n} E\left(X_{i} I\left(\left|X_{i}\right| \leqq a_{i}\right)\right)$

Proof. Let $X_{n}^{*}=X_{n} I\left(\left|X_{n}\right| \leqq a_{n}\right)$. Then the hypotheses and the Borel-Cantelli lemma imply $a_{n}^{-1} \sum_{i=1}^{n} X_{i}^{*} \xrightarrow{P} 0$. But then

$$
a_{n}^{-1} \sum_{i=1}^{n} E\left(X_{i}^{*}\right)=a_{n}^{-1} \sum_{i=1}^{n} E\left(X_{i}^{*}\left(\left|X_{i}^{*}\right| \leqq a_{n}\right)\right) \rightarrow 0
$$

by the Degenerate Convergence Criterion ([13], p. 317).
The following strong law of large numbers will be used repeatedly.
Lemma 4.6. Let $Y_{1}, Y_{2}, \ldots$ be independent rv with finite means and define $T_{n}$ $=\sum_{i=1}^{n} Y_{i}$. Let $B_{n} \uparrow \infty$ and $b_{n} \uparrow$ be real sequences and suppose that $\sum_{n=1}^{\infty}\left(B_{n} b_{n}\right)^{-2 \beta} E\left|Y_{n}\right|^{2 \beta}<\infty$ for some $\beta>0$.

If (i) $\beta<1 / 2$ and $\left|Y_{n}\right| \leqq K B_{n} b_{n}$ a.s. for some $K>0$, or (ii) $1 / 2 \leqq \beta \leqq 1$ or (iii) $\beta>1$ and $\sum_{k=1}^{\infty}\left(B_{n_{k}} b_{n_{k}}\right)^{-2 \beta}\left(E\left(T_{m_{k+1}}-T_{m_{k}}\right)^{2}\right)^{\beta}<\infty$, where $n_{k}$ is any integral sequence such that $n_{k+1}=\min \left\{n: B_{n} \geqq c B_{n_{k}}\right\}$ for some $c>1$ and all $k \geqq 1, m_{k}=n_{k}-1$, and $b_{m_{k+1}} \sim b_{n_{k}}$ as $k \rightarrow \infty$, then $\left(T_{n}-E\left(T_{n}\right)\right) /\left(B_{n} b_{n}\right) \rightarrow 0$ a.s.
Proof. Under the assumptions of (i), $E\left|Y_{n}\right| /\left(B_{n} b_{n}\right) \leqq K^{1-2 \beta} E\left|Y_{n}\right|^{2 \beta} /\left(B_{n} b_{n}\right)^{2 \beta}$; clearly, then, $\sum_{n=1}^{\infty}\left(B_{n} b_{n}\right)^{-1} E\left|Y_{n}\right|<\infty$ so the hypotheses of (ii) hold with $\beta=1 / 2$ when the assumptions in (i) hold. But the desired result follows when $1 / 2 \leqq \beta \leqq 1$ by a result of Loève ([13], p. 214). It remains only to consider part (iii).

If $\beta>1$, then $E\left|Y_{n}-E\left(Y_{n}\right)\right|^{2 \beta} \leqq 2^{2 \beta} E\left|Y_{n}\right|^{2 \beta}$ by the $c_{r}$-inequality and the Hölder's inequality. Since $E\left(Y_{n}-E\left(Y_{n}\right)\right)^{2} \leqq E\left(Y_{n}^{2}\right)$, it is evident that the hypotheses of part (iii) hold with $Y_{n}-E\left(Y_{n}\right)$ in place of $Y_{n}$. Therefore, it can and will be assumed that $E\left(Y_{n}\right)=0$ in the remainder of the proof.

For brevity, let $I_{k}=\left\{n: n_{k} \leqq n<n_{k+1}\right\}, k \geqq 1$. Then, for any $\varepsilon>0$,

$$
\begin{aligned}
P_{k} & \equiv P\left[\max _{n \in I_{k}}\left|T_{n}-T_{m_{k}}\right| \geqq \varepsilon B_{n_{k}} b_{n_{k}}\right] \\
& \leqq\left(\varepsilon B_{n_{k}} b_{n_{k}}\right)^{-2 \beta} E\left|T_{m_{k+1}}-T_{m_{k}}\right|^{2 \beta} \quad \text { by Doob's inequality ([2], p. 314) } \\
& \leqq C_{\beta}\left(\varepsilon B_{n_{k}} b_{n_{k}}\right)^{-2 \beta}\left\{\sum_{n \in I_{k}} E\left|Y_{n}\right|^{2 \beta}+\left(\sum_{n \in I_{k}} E\left(Y_{n}^{2}\right)\right)^{\beta}\right\}
\end{aligned}
$$

for some constant $C_{\beta}$ (depending only on $\beta$ ) by an inequality of Rosenthal [15]. Since $B_{n_{k}}>B_{n} / c$ for $n \in I_{k}$ and $b_{m_{k+1}} / b_{n_{k}} \rightarrow 1$ by hypothesis, it is clear from (i) and (ii) that $\sum_{k=1}^{\infty} P_{k}<\infty$. Consequently, the Borel-Cantelli lemma ensures the existence of an integer-valued rv $L$ such that

$$
\begin{equation*}
\max _{n \in I_{k}}\left|T_{n}-T_{m_{k}}\right|<\varepsilon B_{n_{k}} b_{n_{k}} \quad \text { for all } k \geqq L . \tag{4.3}
\end{equation*}
$$

Notice that $B_{n k} \geqq c B_{n_{k}-1} \geqq \ldots \geqq c^{k-i} B_{n_{i}}$ for all $i \leqq k$, so

$$
\begin{equation*}
\sum_{i=1}^{k} B_{n_{i}} \leqq B_{n k} \sum_{i=1}^{k} c^{i-k} \leqq c B_{n_{k}} /(c-1) \tag{4.4}
\end{equation*}
$$

Now, for $n \in I_{k}$, where $k \geqq L$,

$$
\begin{aligned}
\left|T_{n}\right| & =\left|T_{m_{L}}+\sum_{i=L}^{k-1}\left(T_{m_{i}+1}-T_{m_{i}}\right)+T_{n}-T_{m_{k}}\right| \\
& \leqq\left|T_{m_{L}}\right|+\sum_{i=L}^{k} \varepsilon B_{n_{i}} b_{n_{i}} \quad \text { by (4.3) } \\
& \leqq\left|T_{m_{工}}\right|+\varepsilon c B_{n_{k}} b_{n_{k}} /(c-1) \quad \text { by (4.4). }
\end{aligned}
$$

It follows readily that $\limsup \left|T_{n}\right| /\left(B_{n} b_{n}\right) \leqq \varepsilon c /(c-1)$ a.s. for every $\varepsilon>0$. The desired conclusion is established.
Proof of Theorem 2.1. Lemmas 4.1 and 4.2 ensure the existence of real sequences $\left\{\varepsilon_{n, 1}\right\},\left\{\varepsilon_{n, 2}\right\}$ and $\left\{\varepsilon_{n, 3}\right\}$, where $\varepsilon_{n, i} \downarrow 0$ as $n \rightarrow \infty$ for $i=1,2,3$, such that

$$
\begin{gather*}
\limsup _{n \rightarrow \infty} T_{n}\left(\varepsilon_{n, 1}\right)=T_{-}^{2},  \tag{4.5}\\
\sum_{n=1}^{\infty}\left(B_{n} b_{n}\right)^{-2 \beta} E\left\{X_{n}^{2 \beta} I\left(\varepsilon_{n, 2} B_{n} b_{n}^{-1}<\left|X_{n}\right| \leqq a_{n}\right)\right\}<\infty, \tag{4.6}
\end{gather*}
$$

and, if $\beta>1$,

$$
\sum_{k=1}^{\infty}\left(B_{n k} b_{n k}\right)^{-2 \beta}\left(\sum_{n k \leqq n<n_{k+1}} E\left\{X_{n}^{2} I\left(\varepsilon_{n, 3} B_{n} b_{n}^{-1}<\left|X_{n}\right| \leqq a_{n}\right)\right\}\right)^{\beta}<\infty
$$

in view of hypotheses (2.3), (2.6) and (2.6). Corollary 4 of Chow and Studden [1] shows that, for each $n \geqq 1, T_{n}(\varepsilon)$ is a non-decreasing function of $\varepsilon>0$; by dint of Lemma 4.2, therefore, (4.5) remains true with $\varepsilon_{n} \equiv \max _{1 \leq i \leq 3}\left(\varepsilon_{n, i}\right)$ in place of $\varepsilon_{n, 1}$. Moreover, the series in (2.6) and (2.6) are clearly non-increasing functions of $\varepsilon$, so (4.6) and (4.6) are also still valid with $\varepsilon_{n, 2}$ and $\varepsilon_{n, 3}$ replaced by $\varepsilon_{n}$.

Now, following Teicher [16], define $w_{n}=\varepsilon_{n} B_{n} b_{n}^{-1}, X_{n}^{\prime}=X_{n} I\left(\left|X_{n}\right| \leqq w_{n}\right), X_{n}^{\prime \prime \prime}$ $=X_{n} I\left(\left|X_{n}\right|>a_{n}\right), X_{n}^{\prime \prime}=X_{n}-X_{n}^{\prime}-X_{n}^{\prime \prime \prime}$ and $X_{n}^{*}=X_{n, \varepsilon_{n}}$ (cf. (2.2)). Let $\left\{S_{n}^{\prime}\right\},\left\{S_{n}^{\prime \prime}\right\}$ and $\left\{S_{n}^{\prime \prime \prime}\right\}$ be the respective partial sums of the sequences $\left\{X_{n}^{\prime}\right\},\left\{X_{n}^{\prime \prime}\right\}$ and $\left\{X_{n}^{\prime \prime \prime}\right\}$, and let $S_{n}^{*}=\sum_{k=1}^{n} X_{k}^{*}$.

Since (2.4) holds, the Borel-Cantelli lemma implies $P\left[X_{n}^{\prime \prime \prime} \neq 0\right.$ i.o. $]=0$. Therefore, trivially,

$$
\begin{equation*}
\frac{S_{n}^{\prime \prime \prime}}{B_{n} b_{n}} \rightarrow 0 \quad \text { a.s. as } \quad n \rightarrow \infty \tag{4.7}
\end{equation*}
$$

Note that (2.5) is tantamount to

$$
\begin{equation*}
\frac{E\left(S_{n}^{\prime}+S_{n}^{\prime \prime}\right)}{B_{n} b_{n}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{4.8}
\end{equation*}
$$

Observe that $B_{n_{k}} \leqq B_{m_{k+1}}<c B_{n_{k}}$, whence it follows that $b_{n_{k}} / b_{m_{k+1}} \rightarrow 1$. So, in light of (4.6) and (4.6), Lemma 4.6 implies

$$
\begin{equation*}
\left(S_{n}^{\prime \prime}-E\left(S_{n}^{\prime \prime}\right)\right) /\left(B_{n} b_{n}\right) \rightarrow 0 \quad \text { a.s. } \tag{4.9}
\end{equation*}
$$

Now let $Y_{n}=X_{n}^{*}-X_{n}^{\prime}=w_{n}\left(I\left(X_{n}>w_{n}\right)-I\left(X_{n}<-w_{n}\right)\right), Y_{n}^{\prime \prime}=Y_{n} I\left(\left|X_{n}\right|>a_{n}\right)$ and $Y_{n}^{\prime}=Y_{n}-Y_{n}^{\prime \prime}$. Since $P\left[Y_{n}^{\prime \prime} \neq 0\right.$ i.o. $]=P\left[\left|X_{n}\right|>a_{n}\right.$ i.o. $]=P\left[X_{n}^{\prime \prime \prime} \neq 0\right.$ i.o. $]=0$, obviously $\left(B_{n} b_{n}\right)^{-1} \sum_{k=1}^{n} Y_{k}^{\prime \prime} \rightarrow 0$ a.s. Moreover, applying Kronecker's lemma to the series in (2.4), $\left(B_{n} b_{n}\right)^{-1} \sum_{k=1}^{n} B_{k} b_{k} P\left[\left|X_{k}\right|>a_{k}\right] \rightarrow 0$ from which it follows readily that $\left|\sum_{k=1}^{n} E\left(Y_{k}^{\prime \prime}\right)\right| \leqq \sum_{k=1}^{n} \varepsilon_{k} B_{k} b_{k}^{-1} P\left[\left|X_{k}\right|>a_{k}\right]=o\left(B_{n} b_{n}\right) \quad$ Furthermore, $\quad Y_{n}^{\prime}$ $=Y_{n} I\left(w_{n}<\left|X_{n}\right| \leqq a_{n}\right)$ so $\left|Y_{n}^{\prime}\right| \leqq w_{n} \leqq B_{n} b_{n}$. In view of (4.6) and (4.6'), Lemma 4.6 yields

$$
\begin{equation*}
\frac{S_{n}^{*}-S_{n}^{\prime}-E\left(S_{n}^{*}-S_{n}^{\prime}\right)}{B_{n} b_{n}}=\frac{\sum_{i=1}^{n}\left(Y_{i}-E\left(Y_{i}\right)\right)}{B_{n} b_{n}}=0 \quad \text { a.s. } \tag{4.10}
\end{equation*}
$$

In light of (4.7), (4.8), (4.9) and (4.10), it remains only to prove that

$$
\begin{equation*}
\frac{S_{n}^{*}-E\left(S_{n}^{*}\right)}{B_{n} b_{n}} \xrightarrow{P} 0 \text { if } T_{+}<\infty \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{-} \leqq \limsup _{n \rightarrow \infty} \frac{S_{n}^{*}-E\left(S_{n}^{*}\right)}{B_{n} b_{n}} \leqq T_{+} \quad \text { a.s. } \tag{4.12}
\end{equation*}
$$

Let $v_{n}^{2}=\operatorname{Var}\left(S_{n}^{*}\right)$. For any $\varepsilon>0$, an integer $m=m(\varepsilon)$ exists such that $\varepsilon_{k}<\varepsilon$ if $k \geqq m$. Again using Corollary 4 of Chow and Studden [1], it follows that, for $n \geqq m$,

$$
\begin{aligned}
v_{n}^{2} & \leqq \sum_{i=1}^{m-1} \operatorname{Var}\left(X_{i, \varepsilon_{i}}\right)+\sum_{i=m}^{n} \operatorname{Var}\left(X_{i, \varepsilon}\right) \\
& =\sum_{i=1}^{m-1}\left\{\operatorname{Var}\left(X_{i, \varepsilon_{i}}\right)-\operatorname{Var}\left(X_{i, \varepsilon}\right)\right\}+B_{n}^{2} T_{n}(\varepsilon) .
\end{aligned}
$$

Therefore, since $m$ and $\varepsilon$ are fixed,

$$
\underset{n \rightarrow \infty}{\limsup } v_{n}^{2} / B_{n}^{2} \leqq \limsup _{n \rightarrow \infty} T_{n}(\varepsilon) .
$$

Now let $\varepsilon \downarrow 0$ to get $\limsup _{n \rightarrow \infty} v_{n} / B_{n} \leqq T_{+}$, so, by virtue of (4.5),

$$
\begin{equation*}
0 \leqq T_{-}=\liminf _{n \rightarrow \infty} v_{n} / B_{n} \leqq \limsup _{n \rightarrow \infty} v_{n} / B_{n} \leqq T_{+} \tag{4.13}
\end{equation*}
$$

In the case when $T_{-}=0$, it is possible that $v_{n}$ converges. But then $S_{n}^{*}-E\left(S_{n}^{*}\right)$ converges a.s. by the Kolmogorov Convergence Theorem ([13], p. 236). Therefore, since $B_{n} \uparrow \infty,\left(S_{n}^{*}-E\left(S_{n}^{*}\right)\right) /\left(B_{n} b_{n}\right) \rightarrow 0$ a.s., so (4.11) and (4.12) both hold if $v_{n}$ converges.

For the rest of the proof, assume that $v_{n} \rightarrow \infty$. By Čebyšev's inequality and (4.13), for every $\eta>0$,

$$
P\left[\left|S_{n}^{*}-E\left(S_{n}^{*}\right)\right| \geqq \eta B_{n} b_{n}\right] \leqq v_{n}^{2} /\left(\eta B_{n} b_{n}\right)^{2} \leqq T_{+}^{2} /\left(\eta b_{n}\right)^{2}
$$

so (4.11) is clear. The right-hand inequality of (4.12) is trivial if $T_{+}=\infty$, so suppose $T_{+}<\infty$. For $n \geqq 1$, define $\alpha_{n}=\sup _{k \geqq n} v_{k} / B_{k}$ and $c_{n}=2 \varepsilon_{n} /\left(b_{n} \alpha_{n}\right)$. Since $\mid X_{n}^{*}$ $-E\left(X_{n}^{*}\right) \mid \leqq 2 w_{n}=c_{n} \alpha_{n} B_{n}$, Lemma 4.4 shows that (4.1) holds for every $T>0$ with $N=C=1$ and $M_{n}=S_{n}^{*}-E\left(S_{n}^{*}\right)$. Since $\alpha \equiv \limsup \alpha_{n} \leqq T_{+} \quad$ by (4.13) and $\gamma \equiv \limsup _{n \rightarrow \infty} 2^{-1 / 2} b_{n} c_{n}=0$, Lemma 4.3 implies

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}^{*}-E\left(S_{n}^{*}\right)}{B_{n} b_{n}} \leqq T_{+} \quad \text { a.s. }
$$

It remains to prove the left-hand inequality of (4.12). Define $u_{n}$ $=\left(2 \log \log v_{n}^{2}\right)^{1 / 2}$. Then $\left(S_{n}^{*}-E\left(S_{n}^{*}\right)\right) /\left(v_{n} u_{n}\right) \xrightarrow{P} 0$ by Čebyšev's inequality, whence it follows that $\limsup _{n \rightarrow \infty} \frac{S_{n}^{*}-E\left(S_{n}^{*}\right)}{v_{n} u_{n}} \geqq 0$ a.s. Since $B_{n} b_{n}>0$ for all large $n$, (4.12) is true if $T_{-}=0$.

Now suppose $T_{-}>0$. Define $f(x)=\left(2 \log \log x^{2}\right)^{1 / 2} / x$, and note that $f$ is decreasing on the interval $(3, \infty)$. If $n$ is so large that $v_{n}>\left(T_{-} / 2\right) B_{n}>3$, then $u_{n} / v_{n}=f\left(v_{n}\right)<f\left(B_{n} T_{-} / 2\right)$ and, hence

$$
\frac{u_{n}\left|X_{n}^{*}-E\left(X_{n}^{*}\right)\right|}{v_{n}} \leqq 2 u_{n} w_{n} / v_{n} \leqq 2 f\left(B_{n} T_{-} / 2\right) w_{n} \sim 4 \varepsilon_{n} / T_{-}=0\left(\varepsilon_{n}\right)
$$

Since $v_{n} \rightarrow \infty$, Kolmogorov's law of the iterated logarithm yields

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}^{*}-E\left(S_{n}^{*}\right)}{v_{n} u_{n}}=1 \quad \text { a.s. }
$$

The left-hand part of (4.12) now follows from (4.13).
Now define $T_{-}^{\prime}$ and $T_{+}^{\prime}$ by replacing $T_{n}(\varepsilon)$ by $T_{n}^{\prime}(\varepsilon)$ in (2.3). The proof of Theorem 2.1 will be completed by showing that $T_{-}^{\prime}=T_{-}$and $T_{+}^{\prime}=T_{+}$under (2.9).

Since $y=x /\left(\log \log x^{2}\right)^{1 / 2}$ is increasing on the interval $(3, \infty)$, there is no harm in assuming that $d_{j} \leqq d_{j+1}$, where $d_{j} \equiv B_{j} / b_{j}$. For $n \geqq i \geqq 1$ and $\varepsilon>0$, define $X_{i, n, \varepsilon}=\left(X_{i} \vee\left(-\varepsilon B_{n} b_{n}^{-1}\right)\right) \wedge \varepsilon B_{n} b_{n}^{-1}$. Then it is clear from Corollary 4 of [1] that $T_{n}(\varepsilon) \leqq T_{n}^{\prime}(\varepsilon)$ and, hence, that $T_{-} \leqq T_{-}^{\prime}, T_{+} \leqq T_{+}^{\prime}$.

In view of (2.9), a constant $A$ exists such that $\lim \sup B_{n+1} / B_{n}<A<\infty$. Let $0<\delta<1$. Choose an integer $N$ so large that $B_{1} \leqq \delta B_{N}^{n \rightarrow \infty}$ and $B_{n+1}<A B_{n}$ for all $n \geqq N$. For $n \geqq N$, let $j_{n}=\min \left\{i \mid d_{i}>\delta d_{n}\right\}$; clearly $j_{n} \rightarrow \infty$. Note that, for every $\varepsilon>0$,

$$
B_{n}^{-2} \sum_{i=1}^{N-1} \operatorname{Var}\left(X_{i, n, \varepsilon}\right) \leqq B_{n}^{-2} \varepsilon^{2} d_{n}^{2}(N-1)=O\left(b_{n}^{-2}\right) \rightarrow 0
$$

Therefore, using Corollary 4 of [1] again, if $j_{n}>N$

$$
\begin{aligned}
T_{n}(\varepsilon) & \geqq B_{n}^{-2} \sum_{i=j_{n}+1}^{n} \operatorname{Var}\left(X_{i, \varepsilon}\right) \\
& \geqq B_{n}^{-2} \sum_{i=j_{n}+1}^{n} \operatorname{Var}\left(X_{i, n, \varepsilon \delta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =T_{n}^{\prime}(\varepsilon \delta)-B_{n}^{-2} \sum_{i=N}^{j_{n}} \operatorname{Var}\left(X_{i, n, \varepsilon \delta}\right)+o(1) \\
& \geqq T_{n}^{\prime}(\varepsilon \delta)-B_{n}^{-2} B_{j_{n}}^{-2} T_{j_{n}}^{\prime}(\varepsilon)+o(1) \\
& \geqq T_{n}^{\prime}(\varepsilon \delta)-\left(B_{j_{n}-1}^{2} / B_{n}^{2}\right)\left(B_{j_{n}}^{2} / B_{j_{n}-1}^{2}\right) T_{j_{n}}(\varepsilon) .
\end{aligned}
$$

Consequently,

$$
\limsup _{n \rightarrow \infty} T_{n}^{\prime}(\varepsilon \delta) \leqq \limsup _{n \rightarrow \infty} T_{n}(\varepsilon)+\delta^{2} A^{2} \underset{n \rightarrow \infty}{\limsup } T_{j_{n}}^{\prime}(\varepsilon) .
$$

Letting $\varepsilon \downarrow 0$ yields $T_{-}^{\prime} \leqq T_{-}+\delta^{2} A^{2} T_{-}^{\prime}$ and $T_{+}^{\prime} \leqq T_{+}+\delta^{2} A^{2} T_{+}^{\prime}$. Now let $\delta \downarrow 0$ to complete the proof.
Proof of Theorem 2.2. Since $\Lambda<\infty$ and $S_{n} /\left(B_{n} b_{n}\right) \xrightarrow{P} 0$, it follows from Theorem 2(ii) of Tomkins [20] that (2.4) holds with $a_{n}=\delta B_{n} b_{n}$ for any $\delta>A$. But then (2.5) holds by dint of Lemma 4.5. Finally, (2.7) results under (2.6) and (2.6) from an application of Theorem 2.1.
Proof of Theorem 3.1. Let $\eta>0$. There is no loss of generality in assuming that $\alpha_{+}(\eta)<\infty$ when proving (3.3). For $\varepsilon>0$ and $n \geqq 1$, define $d_{n}=B_{n} b_{n}^{-1}, X_{n}^{\prime}$ $=\max \left(X_{n},-\eta d_{n}\right) I\left(X_{n} \leqq \varepsilon d_{n}\right)$ and $X_{n}^{\prime \prime}=X_{n} I\left(\varepsilon d_{n}<X_{n} \leqq a_{n}\right)$.

Now let $\alpha_{n}^{2}=\sup _{k \geqq n} B_{k}^{-2} \sum_{i=1}^{k} \operatorname{Var}\left(X_{i}^{\prime}\right)$ and $c_{n}=(\varepsilon+\eta) /\left(b_{n} \alpha_{n}\right)$ for $n \geqq 1$. Since $X_{n}^{\prime}$ $-E\left(X_{n}^{\prime}\right) \leqq(\varepsilon+\eta) d_{n}=c_{n} \alpha_{n} B_{n}$, Lemma 4.4 ensures the validity of the hypotheses of Lemma 4.3 with $\quad M_{n}=\sum_{j=1}^{n}\left(X_{j}^{\prime}-E\left(X_{j}^{\prime}\right)\right), \quad C=N=1, \quad$ any $\quad T>0, \quad \alpha=\alpha(\varepsilon)$ $=\limsup _{n \rightarrow \infty} \alpha_{n}$ and $\gamma=\gamma(\varepsilon)=\underset{n \rightarrow \infty}{\lim \sup } 2^{-1 / 2} b_{n} c_{n}=(\varepsilon+\eta) /\left(2^{1 / 2} \alpha\right)$. Consequently, by Lemma 4.3,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{i=1}^{n}\left(X_{i}^{\prime}-E\left(X_{i}^{\prime}\right)\right) /\left(B_{n} b_{n}\right) \leqq 2^{-1 / 2} \alpha K_{\gamma} \quad \text { a.s. } \tag{4.14}
\end{equation*}
$$

where $K_{\gamma}$ is given by (4.2). Since any $T>0$ may be used to determine $K_{\gamma}$, it is clear that $K_{\gamma}$ may be replaced in (4.14) by $K_{\gamma}^{*}$, as defined by (3.4).

It follows from (3.2), (3.2'), and Lemma 4.6 that

$$
\begin{equation*}
\sum_{i=1}^{n}\left(X_{i}^{\prime \prime}-E\left(X_{i}^{\prime \prime}\right)\right) /\left(B_{n} b_{n}\right) \rightarrow 0 \quad \text { a.s. } \tag{4.15}
\end{equation*}
$$

By virtue of (3.1) and the Borel-Cantelli Lemma,

$$
\limsup _{n \rightarrow \infty} S_{n} /\left(B_{n} b_{n}\right)=\underset{n \rightarrow \infty}{\limsup } \sum_{i=1}^{n} X_{i} I\left(X_{i} \leqq a_{i}\right) /\left(B_{n} b_{n}\right) .
$$

But $X_{n} I\left(X_{n} \leqq a_{n}\right) \leqq X_{n}^{\prime}+X_{n}^{\prime \prime}$ so, using (4.14) and (4.15),

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} S_{n} /\left(B_{n} b_{n}\right) \leqq 2^{-1 / 2} \alpha K_{\gamma}^{*}+\limsup _{n \rightarrow \infty} E\left(X_{n}^{\prime}+X_{n}^{\prime \prime}\right) /\left(B_{n} b_{n}\right) \tag{4.16}
\end{equation*}
$$

for every $\varepsilon>0$. But $\alpha \rightarrow \alpha_{+}$and $\gamma \rightarrow \eta /\left(2^{1 / 2} \alpha_{+}\right)$as $\varepsilon \downarrow 0$, so, keeping the definition of $C(\eta)$ in mind, (3.3) follows by letting $\varepsilon \downarrow 0$ in (4.16).

Moreover, $\gamma \downarrow 0$ and, hence, $K_{\gamma}^{*} \rightarrow K_{0}^{*}$ as $\eta \downarrow 0$, so (3.5) obtains by letting $\eta \downarrow 0$ in (3.3).
Proof of Theorem 3.2. For $\eta>0, \varepsilon>0$ and $n \geqq 1$, define $d_{n}=B_{n} b_{n}^{-1}, X_{n}^{\prime}$ $=X_{n} I\left(-\eta d_{n} \leqq X_{n} \leqq \varepsilon d_{n}\right)$ and $X_{n}^{\prime \prime}=X_{n} I\left(\varepsilon d_{n}<X_{n} \leqq a_{n}\right)$. Note that $X_{n} I\left(X_{n} \leqq a_{n}\right)$ $\leqq X_{n}^{\prime}+X_{n}^{\prime \prime}$.

There is no loss of generality in assuming that $\alpha_{++}(\eta)<\infty$. Let $\alpha_{n}$ $=\sup _{k \geqq n} B_{k}^{-2} \sum_{i=1}^{k} \operatorname{Var}\left(X_{i}^{\prime}\right)$ and $c_{n}=(\varepsilon+\eta) /\left(b_{n} \alpha_{n}\right)$. But $X_{n}^{\prime}-E\left(X_{n}^{\prime}\right) \leqq \alpha_{n} B_{n} c_{n}$, so, by Lemmas 4.3 and 4.4,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(B_{n} b_{n}\right)^{-1} \sum_{i=1}^{n}\left(X_{i}^{\prime}-E\left(X_{i}^{\prime}\right)\right) \leqq \alpha(\varepsilon) K_{\gamma}^{*} 2^{-1 / 2} \quad \text { a.s. } \tag{4.17}
\end{equation*}
$$

where $\alpha(\varepsilon)=\lim _{n \rightarrow \infty} \alpha_{n}, \gamma=\gamma(\varepsilon)=\limsup _{n \rightarrow \infty} 2^{-1 / 2} b_{n} c_{n}=(\varepsilon+\eta) /\left(2^{1 / 2} \alpha\right)$, and $K_{\gamma}^{*}$ is defined by (3.4).

Moreover, by dint of (2.6), (2.6') and Lemma 4.6,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(B_{n} b_{n}\right)^{-1} \sum_{j=1}^{n}\left(X_{j}^{\prime \prime}-E\left(X_{j}^{\prime \prime}\right)\right)=0 \quad \text { a.s. } \tag{4.18}
\end{equation*}
$$

Therefore, in view of (3.1), (4.17) and (4.18),

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} S_{n} /\left(B_{n} b_{n}\right)=\limsup _{n \rightarrow \infty} \sum_{i=1}^{n} X_{i} I\left(X_{i} \leqq a_{i}\right) /\left(B_{n} b_{n}\right) \\
& \quad \leqq \limsup _{n \rightarrow \infty} \sum_{i=1}^{n}\left(X_{i}^{\prime}+X_{i}^{\prime \prime}\right) /\left(B_{n} b_{n}\right) \\
& \quad \leqq \alpha(\varepsilon) K_{\gamma}^{*} 2^{-1 / 2}+\limsup _{n \rightarrow \infty} \sum_{i=1}^{n} E\left(X_{i}^{\prime}+X_{i}^{\prime \prime}\right) /\left(B_{n} b_{n}\right)
\end{aligned}
$$

for every $\varepsilon>0$. Letting $\varepsilon \downarrow 0$ yields (3.6) which, in turn, yields (3.7) when $\eta \downarrow 0$.
Remarks 1. Let $X_{1}, X_{2}, \ldots$ be independent rv with zero means and finite variances. Define $S_{n}=X_{1}+\ldots+X_{n}, s_{n}^{2}=E\left(S_{n}^{2}\right)$ and $t_{n}=\left(2 \log \log s_{n}^{2}\right)^{1 / 2}$; assume $s_{n} \rightarrow \infty$. Since $S_{n} /\left(s_{n} t_{n}\right) \rightarrow 0$ in probability by Čebyšev's inequality, (2.5) holds with $a_{n}=\delta s_{n} t_{n}$, for any $\delta>0$, by the Degenerate Convergence Criterion ([13], p. 217). If (2.4) and (2.6) hold with $\beta=1, B_{n}=s_{n}$ and $b_{n}=t_{n}$, then $T_{-} \leqq \limsup _{n \rightarrow \infty} S_{n} /\left(s_{n} t_{n}\right) \leqq T_{+} \leqq 1$ a.s. by Theorem 2.1.

Under these circumstances, it might be expected that the function $T_{n}(\varepsilon)$ could be replaced by something simpler. In fact, defining $H_{n}(\varepsilon)$ $=s_{n}^{-2} \sum_{i=1}^{n} E\left(X_{i}^{2} I\left(\left|X_{i}\right| \leqq \varepsilon S_{i} t_{i}^{-1}\right)\right.$ ), it is not hard to show that $T_{-}$and $T_{+}$may be respectively replaced by $H_{-}$and $H_{+}$, defined using $H_{n}$ in lieu of $T_{n}$ in (2.3), provided $s_{n}^{-2} \sum_{i=1}^{n}\left\{E\left(\left|X_{i}\right| I\left(\left|X_{i}\right| \geqq \varepsilon s_{i} t_{i}^{-1}\right)\right)\right\}^{2} \rightarrow 0$. In the case where $H_{-}=H_{+}=1$, this modifed result yields a theorem of Teicher [16]. This result also shows that $H_{-} \leqq \lim \sup S_{n} /\left(s_{n} t_{n}\right) \leqq H_{+}$a.s. under the sole condition that $\sum_{n=1}^{\infty} P\left[\left|X_{n}\right| \geqq \varepsilon s_{n} t_{n}^{-1}\right]<\infty$ for every $\varepsilon>0$; this theorem is due to Tomkins [21].

Notice the direct relationship between $H_{n}(\varepsilon)$ and the Lindeberg function $L_{n}(\varepsilon)=s_{n}^{-2} \sum_{i=1}^{n} E\left(X_{i}^{2} I\left(\left|X_{i}\right|>\varepsilon s_{i}\right)\right)$. While the connection between the Lindeberg functions and the Central Limit Theorem has been known for more than half a century, only recently has the relationship between these functions and the law of the iterated logarithm been studied by several authors, including Egorov [3$6]$, Teicher $[16,17]$ and Tomkins [19, 21].
2. Suppose $Y_{1}, Y_{2}, \ldots$ are i.i.d. rv with $E\left(Y_{1}\right)=0$. Let $\left\{\sigma_{n}, n \geqq 1\right\}$ be nonnegative numbers; define $A_{n}=\sum_{i=1}^{n} \sigma_{i}$ and assume that $A_{n} \rightarrow \infty$ and $n \sigma_{n} / A_{n}$ $=0\left(\left(\log \log A_{n}\right)^{\beta}\right)$ for some $\beta \geqq 0$. Theorem 3.1 of Fernholz and Teicher [8] shows that $\sum_{j=1}^{n} \sigma_{j} Y_{j} /\left(A_{n}\left(\log _{2} A_{n}\right)^{\beta}\right) \rightarrow 0$ a.s. To see that this result follows readily from Theorem 2.1, let $a_{n}=A_{n}\left(\log \log A_{n}\right)^{\beta}, X_{n}=\sigma_{n} Y_{n}$ and define $B_{n}$ according to the equation $B_{n} b_{n}=A_{n}\left(\log \log A_{n}\right)^{\beta}$. Then (2.4) holds because $E\left(Y_{1}\right)=0$, (2.5) follows easily from the Toeplitz lemma, while (2.6) holds with $\beta=1$ (cf. p. 769 of [8]). Moreover, $E X_{n}^{2} I\left(\left|X_{n}\right| \leqq \varepsilon B_{n} / b_{n}\right) \leqq\left(\varepsilon \sigma_{n} B_{n} / b_{n}\right) E\left|Y_{1}\right|$ so that $T_{n}(\varepsilon) \leqq \varepsilon E\left|Y_{1}\right| A_{n} B_{n} / b_{n}$. It is now easy to show that $\limsup _{n \rightarrow \infty} T_{n}(\varepsilon)=O(\varepsilon)$ and, hence, that $T_{+}=0$. Theorem 2.1 now yields the desired result.
3. Corollary 2.6 of [8] follows quite readily from Theorem 3.2. However, Theorem 2.5 of [8] does not seem to be a consequence of any of the theorems in this article, in spite of some obvious similarities.

## References

1. Chow, Y.S., Studden, W.J.: Montonicity of the variance under truncation and variations of Jensen's inequality. Ann. Math. Statist. 40, 1106-1108 (1969)
2. Doob, J.L.: Stochastic processes. New York: Wiley 1953
3. Egorov, V.A.: On the law of the iterated logarithm. Theor. Probability Appl. 14, 693-699 (1969)
4. Egorov, V.A.: On the strong law of large numbers and the law of the iterated logarithm for sequences of independent random variables. Theor. Probability Appl. 509-514 (1970)
5. Egorov, V.A.: Some theorems on the strong law of large numbers and the law of the iterated logarithm. Theor. Probability Appl. 17, 86-100 (1972)
6. Egorov, V.A.: Some sufficient conditions for the law of the iterated logarithm. Theor. Probability Math. Statist. 3, 61-67 (1974)
7. Feller, W.: An extension of the law of the iterated logarithm to variables without variance. J. Math. Mech. 18, 343-355 (1968)
8. Fernholz, L.T., Teicher, H.: Stability of random variables and iterated logarithm laws for martingales and quadratic forms. Ann. Probability 8, 765-774 (1980)
9. Kesten, H.: Sums of independent random variables - without moment conditions. Ann. Math. Statist. 43, 701-732 (1972)
10. Klass, M.J. Toward a universal law of the iterated logarithm, Part I. Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 165-178 (1976)
11. Klass, M.J.: Toward a universal law of the iterated logarithm, Part II. Z. Wahrscheinlichkeitstheorie verw. Gebiete 39, 151-165 (1977)
12. Klass, M., Teicher, H.: Iterated logarithm laws for asymmetric random variables barely with or without finite mean. Ann. Probability 5, 861-874 (1977)
13. Loève, M.: Probability theory (3rd ed.). Princeton: Van Nostrand 1963
14. Martikainen, A.I., Petrov, V.V.: On necessary and sufficient conditions of the law of the iterated logarithm. Theor. Probability Appl. 22, 16-23 (1977)
15. Rosenthal, H.P.: On the sequences of $L^{p}(p>2)$ spanned by sequences of independent random variables. Israel J. Math. 8, 273-303 (1970)
16. Teicher, H.: On the law of the iterated logarithm. Ann. Probability 2, 714-728 (1974)
17. Teicher, H.: A necessary condition for the iterated logarithm law. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31, 343-349 (1975)
18. Teicher, H.: Generalized exponential bounds, iterated logarithm and strong laws. Z. Wahrscheinlichkeitsthcoric verw. Gebiete 48, 293-307 (1979)
19. Tomkins, R.J.: Some iterated logarithm results related to the central limit theorem. Trans. Amer. Math. Soc. 156, 185-192 (1971)
20. Tomkins, R.J.: Limit theorems without moment hypotheses for sums of independent random variables. Ann. Probability 8, 314-324 (1980)
21. Tomkins, R.J.: Lindeberg functions and the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Gebiete 65, 135-143 (1983)

Received September 4, 1982


[^0]:    * The work of this author was supported in part by NSF grant \# MCS-80-04022
    ** The work of this author was supported by a grant from the Natural Sciences and Engineering Research Council of Canada

