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1. Introduction 

Consider a sequence X 1, X 2 . . . .  of independent random variables (rv); define 

S, = ~, X i. This paper  is concerned with determining upper and lower bounds 
i = l  

on the (almost surely (a.s.) constant) value of limsupS,/C n, where C, Tov is a 
n--+ oD real sequence. 

When E(X2)< ov for every n, it is natural to consider a norming sequence 
2=Var(S~); indeed, the law of the of the form C~=(2s 2 loglogs2) 1/2, where s, 

iterated logarithm (LIL) is said to hold in its classical form if 

sn -E(S~) 
lim sup 1/2 = 1 a.s. n ~  (2s210glogs 2) 

But strong limit theorems such as the LIL depend (in principle) on probabili- 
ties rather than moments. This fact is borne out by a number of published 
results, among which are those of Feller [7], Klass [10] and [11], Klass and 
Teicher [12] and Kesten [9] in the independent, identically distributed (i.i.d) 
case, and those of Martikainen and Petrov [14] and Tomkins [20] in the 
general independent case. As an illustration, consider a rv X with P [X = _+ k k] 

= A k  -3 for k > l ,  where A =  2 k -3 . Let {Xn} be independent rv such 
k = l  

that X n has the same distribution as XI(IXI>n~), where I(E) denotes the 
r _  >1  indicator function of an event E. It is easy to see that EIXnl-oo for every n 

and every r>0 .  But P[Xn~O]=P[IXI>nn]=2A ~ k-3=O(n-2), so P [ X n + 0  
k = n  

i.o.] = 0  by the Borel-Cantelli lemma (as usual, "i.o." means "infinitely often"). 
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Therefore S, converges a.s., notwithstanding the fact that all moments are 
infinite, so Sn/Cn~O a.s. for every sequence CnToo. 

It is helpful to consider the case in which Xn/dn~O a.s. for some real 
sequence d,; by the Borel-Cantelli lemma this is tantamount to assuming 

P[ lX . l>ed , ]<oo  for every a>0.  Since ~ X,I([Xnl>edn) converges a.s., 
n = l  n = l  

the choice of {Cn} should depend only on {Yj=Xjl([Xjl<=edj)}. Thus it seems 

preferable to consider Cn=(2g ~ loglogg,2) l/a, where g2 =Var  Yj , instead of 
j -  

(2s, 2 loglogs2) 1/2. The difficulty with using s n instead of gn stems from the fact 
that expectations can overinflate the effects of events of low probability, 

1 
perhaps to the point where sn/g,~ oo. For instance, suppose P[Xn= 1] = 1 n2 

and P [ X , = - n a + l ] - = - l / n  2 for n > l .  Then E(Xn)=0, E(Xa~)=n2-1 so 
s nz ~n3/3 (we will write "a  n* ~ a n" when an~anal ) . *  Moreover, P[Xn4:I  i.o.] =0,  
so SJn-+ 1 a.s. But then Sn/(2s 2 loglogsZ)l/z~sJ((2/3) n 3 log logn) l /2~0 a.s. 
Notice that X,/d  n ~ 0  a.s. for every sequence dnTov in this example. 

The main results of the paper will be stated in Sects. 2 and 3, and proved in 
Sect. 4. These theorems, which assume nothing about the existence of any 
moments of the Xn's, present hypotheses involving only properties of the 
individual Xn's (rather than those of S,, as in [20]) under which the value of 
lira sup [S,]/C, or lira sup Sn/C . may be ascertained. 

n ~ o o  n ~ o o  

2. Two-Sided Limit Theorems 

0 < B I < B 2 < . . . T o o  is a 
= 2 loglog B 2 and, for e > O, 

This section addresses the problem stated at the beginning of the paper by 
presenting hypotheses under which bounds on l imsuplS,[ /C,  can be deter- 

n ~  oo 

mined. These hypotheses involve only properties of each X,,  but do not 
require any moments of X n to be finite. All theorems of this section will be 
proved in Sect. 4. 

The following theorem was motivated by a theorem of Teicher [16]. 

Theorem 2.1. Let X 1, X 2 . . . .  be a sequence of independent rv and suppose 

real sequence. For n > l ,  define S ,=  ~, Xi, b 2 
i = l  

where 

T,(~) = B~- z ~ Var (Xl, ~) 
i=1  

X.,~-= (X. v ( - eB. b~- 1)) A (~B. b~- t), 

Define the non-negative numbers T -  and T +  by 

T_ 2 = lim lim inf T.(e), 
eJ, O n ~  

(2.1) 

n > 1. (2.2) 

T+ 2 = l im lim sup Tn(e ). 
e l o  n~oo 

(2.3) 
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Let {a,} be a positive real sequence. Assume a n = O(B, bn), 

P[IXnl > a . ]  < 0% (2.4) 
n = l  

(Bnb.) -1 ~, E{Xkl(IXkl<=ak)}--*O as n--*oo, (2.5) 
k = l  

and 

(B,b, ) -ZPE{XZ~I(eB,  b:  1 <lX,I <a,)} < oo 
n = l  

and some fl > O. I f  fl > 1, assume moreover, that 

for every e > 0 (2.6) 

(B,~ b,~)-2~( ~, E(XZI (eB ,  b ; l<]X,]<a, )} )~<oo (2.6') 
k =  1 n k < n < n k + l  

for every e>O and some integral sequence {nk) obeying nk+l=min {n: Bn>=eBn. } 
for some c > 1 and all k >= 1. Then 

T <l imsup S, < ,~oo B ,b ,=T+  a.s. (2.7) 

and, if T+ < oo, 
S./(B. b . ) ~  o. (2.8) 

(Here, " P ~" denotes convergence in probability). If, moreover, 

lira sup Bn+ 1/B, < ~ (2.9) 
n ~ o o  

then this theorem remains true with Tn(e ) replaced by 

& 
t _ _  - - 2  T , ( e ) - B ,  2., V a r ( ( X i v ( - e B ,  b;1))AeB, b;1). (2.10) 

i = 1  

With a , = B , b ,  and f i = l ,  (2.4) and (2.5) and the definitions of T_ and T+ 
are, in a sense, reminiscent of the Degenerate Convergence Criterion ([13], 
p. 317). In fact, Theorem 2.1 has the following partial converse. 

Theorem 2.2. Let X, ,  S,, B,, b, and T,( 0 be as given in Theorem 2.1; define T 
P and T+ by (2.3). I f  Sn/(B,b,)----~ 0 and A = h m  sup [S,[/(B,b,)< oo a.s., then (2.z~) 

n ~  oo 

and (2.5) hold with a , = b B ,  b, for any c~>A. If, moreover, (2.6) holds for some 
fl > 0 and (2.6') holds if fl > 1, then (2.7) is also true. 

Remark. 1. Theorems 2.1 and 2.2 clearly remain valid for the sequence { -X,} .  
2. If a sequence C,i"oo is given with a view to finding the value of 

l imsupS, /C, ,  one might test the hypotheses of Theorem2.1 using B, 
n ~ o o  

= C,(21oglog C, z) - 1/2. 
3. Theorems 2.1 and 2.2 give some clues in the search for an appropriate 

choice of the sequence {Bn}. One approach is to define B, by the equation 
T,(1)= 1 or (cf. (2.10)) T~'(1)= 1. 
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4. Theorem 2.1 uses the truncation X,, ~ defined by (2.2) instead of the sim- 
pler truncation X, I (IX. [ < eB, by t) because, unlike Var (X, I (IX,] < eB, b2 i)), 
Var(X,,,) is a non-decreasing function of e>0  by Corollary 4 of [1] and, 
hence, so is T,(s). This fact is crucial to our proof of Theorem 2.1. It will be 
clear from their proofs (see Sect. 4) that Theorems 2.1 and 2.2 remain true with 
T~(e) replaced throughout by 

T.* (e) = B~- 2 ~ Var (Xi I ([Xfl~ ~n~ b? 1)) 
i = 1  

if T,* is non-decreasing in e (in particular, if the X,'s are all symmetrically 
distributed). 

3. Some Asymmetrical Strong Limit Theorems 

Theorem 2.1, as noted earlier, applies equally to the sequences { - X . }  and 
{X.}; therefore, its usefulness is limited to circumstances in which 
lim sup ]S,I/(B,b,)< oo a.s. However, Klass and Teicher [12] have shown that it 

n--+ oo 

is possible for lira sup S , / C , = l  a.s. and lim sup - S , / C , =  oo a.s., even for i.i.d. 
n ~ 3  n ~ o o  

rv with zero means. The results in this section establish sufficient conditions for 
lim sup S,/(B, b,)< oe a.s., without making any implications about the limiting 

n ~ o o  

behavior of { -S,}.  

Theorem 3.1. Let X1, X 2 ,  . . .  be independent rv and S ,= ~ X i. Let a,'foo and 
i = 1  

b, z =2  B,~oo be real sequences and let loglogB 2. For any t/>0, define the 
constants C(tl) and c~+ (tl)> 0 as follows: 

C(q) = lim sup (B, b,) - 1 ~, E {(X~ v ( - tlB i b i- 1)) I (X i < a3}, 
n ~ c o  i = 1  

and 

c~+ (tl) =lira lim sup B 2 2 ~ Var ((X i v ( - t lBi  b i- 1)) i (Xi ~ eB i bi- 1)). 
e~.O n ~  i = 1  

Suppose a, = 0 (B, b,), 

and, for some fl > O, 

• P ( X . > a . ) <  oo (3.1) 
n = l  

(B,b,)-ZPE{Xg,~I(sB, b21 < X, =< a,)} < oo 
n = l  

I f  fl > 1, then assume, moreover, that 

(B.~ b.k)-ae( ~ E(X2I ( eB .b21<X.< a . ) )  ~<oo 
k =  i nk <=n<nk+ l 

for every e > 0. (3.2) 

for every e > 0 
(3.2') 
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where nk+ t = rain {n" B n > cB,~} for some c > 1 and all k > 1. Then 

lim sup Sn/(B n b,) < 2-1/2 K* e+ (t/) + C(t/) a.s., (3.3) 
n ~ o 9  

where ~ : q/(21/2 o:+ (q)) and 

K* = min ((1 + (e rb - 1 - ~ b)/TZ)/b). (3.4) 
b > 0  

If, moreover, c~+ = l i m  c%(t/)< oo or C - l i m  C(t/) > - o o ,  then 
n~o n~o 

l i m s u p S , / ( B , b , ) < 7 + + C  a.s. (3.5) 
n ~ o o  

A more  s tandard formulat ion may be desirable. Modifying Theorem 3.1 
slightly, simpler t runcat ion  condit ions can be obtained. 

Theorem 3.2. Assume XI ,  X 2 . . . .  are independent rv and Sn= ~ X i. Let an'[oo 
i = 1  

and B,~ oo be real sequences and define b n-= (2 loglog B, 2) 1/2. Assume a, = 0 (B, bn), 
(3.1) holds, that (2.6) holds for some f l>0 ,  and, if fl> 1, that (2.6') holds. For any 
t l > O, define the constants 

C*(q)=limsup(Bnb,)  -1 ~ E { X i I ( - t l B i b F l < X i < a l ) }  

and 

+ + (t/) = lira lim sup B~ 2 ~ E {X~ I ( - 11Bi b i- 1 < Xi < eB~ b i- 1)}, 
e~.O n ~ o o  i = 1  

where B. is a real sequence such that BnTo% and b . = ( 2  loglogB2) 1/z. 
I f  C*(r/)> - ~  or ~++(t / )<oo then 

lira sup Sn/(B . b.) < 2 ~/2 ~ + + (n) K * + C* (tl) 
n ~ o o  

where 7=r//(21/2c~++(t/)) and K* is defined by (3.4). If, in 
C* = lim C*(t/) > - ~ or c% + - l i m  c~+ + (r/) < 0% then 

n,L0 r / S 0  

(3.6) 

addition, 

lira sup S,/(B, b,) <- ~+ + + C* a.s. 
n ~ o o  

(3.7) 

4. Proofs of the Theorems 

The  following lemmas are presented for ease of reference. 

L e m m a  4.1 (Egorov [3]). Let {a,(~), n > l }  be a sequence of non-negative func- 

tions defined for all s>O. I f  ~ a , (e )<oo  for every e>O, then there exists a 
n = l  

sequence {e,} such that en~O and ~ an(e,) < oo. 
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Lemma 4.2 (Tomkins [21]). Let {a,(e)} be a sequence of non-negative functions, 
defined for all e>0. Define a * = l i m i n f  liminfa,(e). Then there exists a sequence 

e,~ O n ~  oz 

{8,} such that e,J,0 and lim infa.(e,)>a*. Moreover, if a,(e) is a non-decreasing 
n - - +  o o  

function of e for each n> l, then l iminfa , (6 , )<a* for every real sequence {c5} 
n ~  o o  

satisfying (5,,[0. 

Lemma 4.3 (Tomkins [-21]). Let (M.,  F,, n> 1) be a submartingale and let {%}, 
{B.} and {c,} be positive real sequences. Suppose B, T oo and define ~ = lim sup c~,, 

n ~  o o  

7=l im sup (loglog B.a) 1/2 c,, and g(x)= x-- 2 (e ~ - 1  - x). Assume c~ < oo and ~ < oo. 
n ~  o o  

I f  positive numbers C, N and T exist such that 

E exp {tm,/(~.  B.)} < C exp {t z g(tc,)} (4.1) 

whenever n> N and O<te,  < T, then 

M.  
lim,~oosup (B~ loglogB2) 1/2 __<~K~ a.s. 

where 
Ko=21/z and K~= rain (b-~ +bg(Tb)) for 7>0. (4.2) 

0<b__<yT -1  

Lemma 4.4. Let X~, X 2 . . . .  be independent rv with zero means. Suppose {c~,}, 

{B.}, and {c,} are real sequences such that, for n> l, L E(xZ)<(c~.B,) 2 and 
i=1 

X,<=c.c~,B. a.s. Then (4.1) holds with C = N = I ,  M . =  ~ X i and every T>0.  
i = i  

Proof. Let s2=Var  X i and c n*--c.c~.BJs.. By dint of Lemma 1(i) of 
Teicher [18], i_ 

E exp {tMn/s,} <= exp {t a g(tc*)} 

for all t > 0  and n>  1. Replacing t by tsJ(e.B,) ,  

E exp {tMJ(c% B,)} < exp { t  2 S 2 a n 2 B~- 2 g(tc,)} 

< exp {t 2 g(te,)} 
as required. [] 

Lemma 4.5. Let {X.} be a sequence of independent rv and let a, Too be a real 

sequence. If L P[IX.I>a.] <~176 and L Xila. ~ O  thena~l L e(x,l(IXd<=a,)) 
---~ O. n = l  i = 1  i = 1  

Proof. Let X * = X , I ( I X , I < a , ) .  Then the hypotheses and the Borel-Cantelli 

lemma imply a 21 ~ X* P_L+ 0. But then 
i = l  
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a; 1 Z E(X*)=a;' Z e(X*(IX*I 
i = 1  i = i  

by the Degenerate Convergence Criterion ([13], p. 317). [] 

The following strong law of large numbers will be used repeatedly. 

Lemma 4.6. Let Y1, Ya . . . .  be independent rv with finite means and define T, 

= ~', Yi. Let BnT~176 and b,T be real sequences and suppose that 
i = 1  

~ (B~b.)-2~ Ely.12~ <oo for some fl>0. 

I f  (i) f l < l / 2  and IY, I<=KB, b, a.s. for some K > 0 ,  or (ii) 1/2<fl_<_l or (iii) 

fl> 1 and ~ (B,kb,k)-2~(E(Tm~+~-Tm~)2)B < oo, where n k is any integral sequence 
k = l  

such that nk+l=min{n:Bn>cB,~}  for some c > l  and all k > l ,  mk=nk--1 , and 
b . . . .  ~b,~ as k ~  00, then (T , -E(T , ) ) / (B ,b , )~O a.s. 

Proof. Under the assumptions of (i), EIY,[/(B,b,)<__K1-2~EIy,]2~/(B,b,)2t3; 

clearly, then, ~ (B, b,)- 1 E IY, I < oo so the hypotheses of (ii) hold with fl = 1/2 
n = l  

when the assumptions in (i) hold. But the desired result follows when 
1/2<fl__<l by a result of Lo6ve ([13], p. 214). It remains only to consider part 
(iii). 

If f l > l ,  then ElY~-E(Y, )12~22~ElY,]  2p by the c~-inequality and the 
H61der's inequality. Since E(Y . -E(Y , ) )a<E(y2) ,  it is evident that the hy- 
potheses of part (iii) hold with Y , -E (Y , )  in place of I1,. Therefore, it can and 
will be assumed that E(Y,)=0 in the remainder of the proof. 

For brevity, let I k = {n: n k <= n < n k + 1 }, k > 1. Then, for any e > 0, 

Pk = P [max [T,-Tm~l>eB.kb,~] 
n~lk  

<(eB, b,~)-Z~E[T,.~+~-T,n~l 2~ by Doob's inequality ([2], p. 314) 

<=Cp(~B,~b,~)-2~{ ~ EIy, I2~+( ~ E(y,2)) ~} 
n~Ik neIk  

for some constant C~ (depending only on fl) by an inequality of Rosenthal 
[15]. Since B , > B , / c  for ncI  k and b,~+~/b,---, 1 by hypothesis, it is clear from 

(i) and (ii) that ~ Pk < oO. Consequently, the Borel-Cantelli lemma ensures the 
o 1 3  

k = l  

existence of an integer-valued rv L such that 

max[T,-T,,~l<eB.~b,~ for all k>L .  (4.3) 
n~Ik 

k - i  Notice that B,~ > cB,~_~ >.. .  > c B,, for all i < k, so 

k k 

~, B.~ <B,~ ~, d -k <cB,J(c  - 1). (4.4) 
i = 1  i = 1  
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Now, for nda, where k>L, 

= T~L+ k-1 T, IT,[ Z (T~+,-Tin , )+  --T,,k 
i = L  

k 

<JTmL[+ Z eB, b,, by (4.3) 
i = L  

<=JTmL[+ecB,~b,J(c--1 ) by (4.4). 

It follows readily that  lim sup[Tn[/(Bnb,)<~c/(c-1 ) a.s. for every e>0 .  The 

desired conclusion is established. [] 

Proof of Theorem 2.1. Lemmas  4.1 and 4.2 ensure the existence of real se- 
quences {e,,l} , {en, z} and {G,3}, where e,,i+0 as n ~  for i=1 ,2 ,3 ,  such that  

lira sup T,(G, 1) - T- 2, (4.5) 
n ~ o o  

(B n bn )-  2~ E {X, zB I(e,, 2 Bn b~- a < IXnJ _< an) } < c~, (4.6) 
n = l  

and, if fi > 1, 

(U,~ bn~)-2B( ~ E{X~I(G, 3Bnb~I<JXn]<a,)})~<~ (4.6') 
k =  l n k < n < n k + l  

in view of hypotheses (2.3), (2.6) and (2.6'). Corollary 4 of Chow and Studden 
[1] shows that, for each n > l ,  T,(e) is a non-decreasing function of e > 0 ;  by 
dint of L e m m a  4.2, therefore, (4.5) remains true with en = max (% ~) in place of 

1__<i=<3 

en, 1" Moreover,  the series in (2.6) and (2.6') are clearly non-increasing functions 
of e, so (4.6) and (4.6') are also still valid with en, 2 and G, 3 replaced by ~,. 

Now, following Teicher [16], define w n-- G B, b~- l, X', = X n I([Xn[ ___ wn) , X~" 
=XnI(]X,I>a,), X~,=Xn-X'~-X' ~' and X*=X . . . .  (cf. (2.2)). Let {S'n}, {S'~'} 
and {S~'} be the respective partial sums of the sequences {X'n} , {X~} and {X~'}, 

and let S, - X k . 
k = l  

Since (2.4) holds, 
Therefore, trivially, 

the Borel-Cantelli lemma implies P[X',"+O i .o . ]=0.  

It, 

S, * 0 a.s. as n--* oo. (4.7) 
B. b. 

Note that  (2.5) is t an tamount  to 

E(S"+S'~)~O as n ~ o o .  
B.b, 

Observe that  B,k<=Bmk+l <cB.k , whence it follows that  b,k/b,,k+ 1 
light of (4.6) and (4.6'), L e m m a  4.6 implies 

(4.8) 

1. So, in 

(S'-E(S'))/(B,b,)--*O a.s. (4.9) 
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Now let Y.= X* -X ' .=w. ( I (X .>w.) - I (X .  < -w.)), Y2'= Y. I(IX.I >G)  and 
Y2=Y.-Y2'. Since P[Y2':#O i.o.]=P[lX.l>a" i .o . ]=P[X." :~0  i.o.]=0, ob- 

viously (B. b.)-1 ~ Yk" ~ 0  a.s. Moreover, applying Kronecker's lemma to the 
k = l  

series in (2.4), (B. b.)- 1 ~ Bk bk p [iXk I > ak ] ~ 0 from which it follows readily 
k = l  

n 71 

that k~lE(Yk') ~k~=l,~kBkbklP[_lXkl>ak']=o(Bnbn). Furthermore, Y.' 

=Y~I(w.<lX.l<G) so IY'l<w.<B.b.. In view of (4.6) and (4.6'), Lemma 4.6 
yields 

(~-EG)) 
s ~  ' * ' -S . -E(S . -S . )=~=~ - 0  a.s. (4.10) 

B.b. B.b. 

In light of (4.7), (4.8), (4.9) and (4.10), it remains only to prove that 

s . - E ( S . )  p 
0 if T+ < ~ (4.11) 

B.b. 

s*. -E (S* )  < 
T <limsup.~oo ~ =T+ a.s. (4.12) 

For any e>0, an integer m=m(e) exists such that G < e  if 

and 

2 = Var(S*). Let v. 
k>m. Again using Corollary 4 of Chow and Studden [1], it follows that, for 

v.2 =< ~ Var (X i, ~,,) + Var (Xi, ~) 
i = 1  i = m  

m - - 1  

= ~, {Var (Xi, ~i)-Var (XI, ~)} +S 2 T.(s). 
i = 1  

Therefore, since m and s are fixed, 

lim sup 2 2 - G/B~ < h m  sup T.( 0. 
n ~ c o  n ~ o o  

Now let ~.~0 to get lim sup G/B. < T+, so, by virtue of (4.5), 
n ~ 3  

0 < T_ = lim inf v./B. < lira sup v./B. < T+. 
n--+ ~3 n ~ o o  

(4.13) 

In the case when T_ =0, it is possible that v. converges. But then S*-E(S*) 
converges a.s. by the Kolmogorov Convergence Theorem ([13], p. 236). There- 
fore, since B.T~, (S. -E(S.))/(B.b.)~O a.s., so (4.11) and (4.12) both hold if v. 
converges. 

For the rest of the proof, assume that v. ~ ~ .  By Ceby~ev's inequality and 
(4.13), for every t/> 0, 

P [IS. - E(S.)I ~ oS. b.] <= v2./(tlB~ b.)2 < T2+/(~ b.); 
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so (4.11) is clear. The right-hand inequality of (4.12) is trivial if T§ = ~ ,  so 
suppose T+ <oo. For n > l ,  define %=supvk/B k and cn=2G/(b,% ). Since IX* 

k>=n 

-E(X*)[ <2w,=GGB,,  Lemma 4.4 shows that (4.1) holds for every T > 0  with 
N = C = I  and M . -  * * - S . - E ( S . ) .  Since c~ - l i ms u p G< T+  by (4.13) and 
7=limsup2-1/2b.c.=O, Lemma 4.3 implies n-~ 

n ~ o o  

s *  - E ( S * . )  ~ 
lim sup B,b,  ~ 1+ a.s. 

It remains to prove the left-hand inequality of (4.12). Define u, 
= (2 loglog v2) 1/2. Then (S*-E(S*))/(vn u , ) ~  0 by Ceby~ev's inequality, whence 

it follows that lim sup S*-E(S*) >0 a.s. Since B,b,>O for all large n, (4.12) is 
n ~  m V n U n 

true i f T  =0. 
Now suppose T > 0 .  Define f(x)=(21oglogx2)l/2/x, and note that f is 

decreasing on the interval (3, oo). If n is so large that v,>(T_/2) B,> 3, then 
u,/v,=f(v,) <f(B, T_/2) and, hence 

u.IX. E(X.)I < 2u. w./v.<=2f(B. T_/2) w.~4%/T_ =0(%). 
V n 

Since v. ~ o% Kolmogorov's law of the iterated logarithm yields 

S* -E(S.*) 
lim sup = 1 a.s. 

n ~  co /)n U n  

The left-hand part of (4.12) now follows from (4.13). 
Now define T; and 7-) by replacing T,(e) by T,'(e) in (2.3). The proof of 

Theorem 2.1 will be completed by showing that T '  = T_ and T~ =T§ under 
(2.9). 

Since y=x/(loglogxa) ~/2 is increasing on the interval (3, oo), there is no 
harm in assuming that dj <_d j+ 1, where d~=B/bj. For n___ i_> 1 and e>0, define 

1 1 X i .... = ( X i v ( - e B ,  b 2 ))~eB, b 2 . Then it is clear from Corollary4 of [-1] 
that T,(e)<Td(e) and, hence, that T <T' ,  T§ <7?'+. 

In view of (2.9), a constant A exists such that lim sup B,+ ~/B,<A < oo. Let 
n ~ o o  

0 < 6 < 1 .  Choose an integer N so large that Bz<3B N and B,+~<ABn for all 
n>=N. For n>N, let j,=min{ildi>6d,}; clearly j ~ o v .  Note that, for every 
8>0, N-1 

B~ -2 ~ Var(X~ . . . .  )~Bf2~2d~(N-1)=O(bf2)---+O. 
i = 1  

Therefore, using Corollary 4 of [1] again, if j .  > N  

T.(e) ~ B~- 2 ~ Var (X.~) 
i = j n §  i 

>B22 ~ Var(X i .... a) 
i = j n +  l 
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Consequently,  

Jn 

= Tn(e5 ) - B 2  2 ~ Var(X~ . . . .  ~)+o(1) 
i=N 

, -2 Tj.(e) + o(1) >= T n (~6)--B n B~ 2 
> T. (e6)_(B 2_ 2 2 2 -- ~ 1/Bn)(BjJBj~- 1) Tjn(~)" 

l im sup T" (~ 6) < lim sup T,(e)+ 62 A2 lim sup Tj.(e). 

Lett ing e+0 yields T' _<T + 6 Z A 2 T  '_ and 7+ <T+ +62A2T'+. Now let 6+0 to 
complete  the proof. [ ]  

P Proof of Theorem 2.2. Since A < ~ and S,/(B, b,)--+ O, it follows from Theorem 
2(ii) of Tomkins  [-20] that  (2.4) holds with a ,=6B ,  b, for any 5 > A .  But then 
(2.5) holds by dint of Lemma  4.5. Finally, (2.7) results under (2.6) and (2.6') 
from an applicat ion of Theorem 2.1. [ ]  

Proof of Theorem 3.1. Let t l>0.  There is no loss of generality in assuming that  
~+(t l )<oo when proving (3.3). For  ~ > 0  and n > l ,  define dn=B, b21, X', 
= max (Xn, -- tld,) I (X n_-< ed,) and X" = X,  I (ed, < X n __< a,). 

k 

Now let (~n--2-- sup B/- 2 ~ Var (X'i) and c n = (e + tl)/(b n ~,) for n_> 1. Since X', 
k>=n i = 1  

- E (X'~) __< (e + t/) dn = c, c~ B,, L e m m a  4.4 ensures the validity of the hypotheses 

of L e m m a 4 . 3  with M = ~ ( X ) - E ( X ) ) ) ,  C = N = I ,  any T > 0 ,  c~=~(e) 
j = l  

-- lira sup ~, and 7 = 7(~) = lim sup 2-1/2 b, c, = (8 + t/)/(21/2 ~). Consequently,  by 
n ~ o o  n ~ o o  

Lem ma  4.3, 
t l  

lim sup ~ (X'~ -E(X'~))/(B~ b,) < 2-  l/a c~K~ a.s. (4.14) 
n--* oo i =  1 

where K s is given by (4.2). Since any T > 0 may be used to determine Ks, it is 
clear that  K s may  be replaced in (4.14) by K*, as defined by (3.4). 

It follows from (3.2), (3.2'), and Lemma  4.6 that  

(X ' / -E(X '{ ) ) / (B ,b , )~O a.s. (4.15) 
i = 1  

By virtue of (3.1) and the Borel-Cantell i  Lemma,  

n 
lim sup S ,/( B , b,) = lim sup ~ X ~ I ( X ~ < a~)/( B , b ,). 

n ~  O0 n ~  oO i =  1 

But X . I ( X n < a n ) < X ' ~ + X '  ~' so, using (4.14) and (4.15), 

lim sup S,/(B,b,) < 2-1/2 eK* + lim sup E(X', + X'~')/(B, b,) (4.16) 
n ~ o o  n ~ o o  

for every e>0 .  But c~c~+ and 7-*q/(21/2c~+) as e~0, so, keeping the definition 
of C(tl) in mind, (3.3) follows by letting e+0 in (4.16). 



1 1 8  M . J .  K l a s s  a n d  R . J .  T o m k i n s  

* * (3.5) obtains by letting t/S0 Moreover, y$0 and, hence, K~ ~ K  0 as 750, so 
in (3.3). [] 

Proof of Theorem 3.2. For 7>0,  e>0  and n > l ,  define d,=B, b21, X', 
=X,I ( -qd .<=X,<ed, )  and X"=X, I (ed ,<X,<a , ) .  Note that X,I (X ,<a , )  
__< x~ + x ; .  

There is no loss of generality in assuming that :~++(t/)<oo. Let a, 
k 

=supBk2~,Var(X'i)  and c.=(e+tl)/(b.=.). But X' , -E(X;)<a,B,c , ,  so, by 
k>-- n i =  1 

Lemmas 4.3 and 4.4, 

lim sup (Bn b~)- 1 ~, (X~ -E(X~))__< ~(e) K* 2-1/2 a.s. (4.17) 
n - - + ~  i = 1  

where c~(e) = lira ct,, ~ = ~(e) = lim sup 2-1/2 b, c, = (e + 7)/(21/2 ~ ) ,  and K* is de- 
n ~ o o  n - + o o  

fined by (3.4). 
Moreover, by dint of (2.6), (2.6') and Lemma 4.6, 

lira (B,b,)- * ~, (X~-E(Xy))=O a.s. (4.18) 
n~oO j = l  

Therefore, in view of (3.1), (4.17) and (4.18), 

lim sup SJ(B, b,) = lira sup ~, X, I (X i < al)/(B ~ b,) 
n ~  ~ n ~  m i =  1 

_-< lim sup ~ (X i' + Xi")/(B, b,) 
n ~  i = 1  

< ~ (e) K * 2-1/2 + lim sup ~ E (X' i + X'{)/(B, b,) 
n ~  m i =  1 

for every e>0. Letting el0 yields (3.6) which, in turn, yields (3.7) when 

750. [] 
Remarks 1. Let X1, X 2 .... be independent rv with zero means and finite 

s~=E(S,) and t, variances. Define S , = X I + . . . + X  ., 2 2 =(21oglogs2)l/2; assume 
s ~ o o .  Since S,/(s,t ,)~O in probability by Cebygev's inequality, (2.5) holds 
with a , = b s ,  t,, for any 6 >0, by the Degenerate Convergence Criterion ([13], 
p. 217). If (2.4) and (2.6) hold with f l = l ,  B,=s,  and b,=t,., then 
T <_limsupS,/(s,t.)<T+ =<1 a.s. by Theorem 2.1. 

n--+ oo 

Under these circumstances, it might be expected that the function T,(e) 
could be replaced by something simpler. In fact, defining H,(e) 

=s22~E(X[l([X~l<eszti-1)), it is not hard to show that T_ and T+ may 
i = 1  

be respectively replaced by H_ and H+, defined using H,  in lieu of T, in 

(2.3), provided s2 2 ~ {E(lXi[I(lXil>=~slt[i))}2--.O. In the case where 
i = 1  

H_ = H +  = 1, this modifed result yields a theorem of Teicher [16]. This result 
also shows that H_ <limsupS,/(s,t ,)<H+ a.s. under the sole condition that 

n - - *  co  

P[IX.I >es .  t21] < oo for every e >0;  this theorem is due to Tomkins [21]. 
n = l  
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Not i ce  the direct  re la t ionsh ip  be tween H,(e) and  the L indebe rg  funct ion 

L,(e) = s~- 2 ~ E(X2 I(IXil  > ~si)). Whi le  the connec t ion  be tween  the L indebe rg  
i=1 

funct ions and  the Cent ra l  L imi t  T h e o r e m  has been k n o w n  for more  than  half  a 
century,  only  recent ly  has the re la t ionsh ip  be tween these funct ions and  the law 
of the i t e ra ted  loga r i t hm been s tudied  by several  authors ,  inc luding Egorov  [-3- 
6], Teicher  [,-16, 17] and  T o m k i n s  [19, 21]. 

2. Suppose  Ya,Y2,... are  i.i.d, rv with E(Y1)=0.  Let  { o - , , n > l }  be non-  

negat ive  numbers ;  define A,= ~a~ and  assume tha t  A ~ o v  and  na,/A, 
i = 1  

=0(( log logAn)  ~) for some /3>0. T h e o r e m 3 . 1  of F e r n h o l z  and Teicher  

[-8] shows tha t  ~ o-j Yj/(A,(logaA,)~)~O a.s. To see tha t  this result  follows 
j = l  

readi ly  f rom T h e o r e m  2.1, let a,=A,(loglogA,)~, X,=a,  I1, and define B, ac- 
cord ing  to the equa t ion  B,b,=A,(loglogA,)~. Then (2.4) holds  because  
E(Y1)=0,  (2.5) follows easily f rom the Toepl i tz  lemma,  while (2.6) holds  with 
/3 = 1 (cf. p. 769 of  [8]). Moreover ,  EX 2 I(IXnl _-< eBn/b,) <__ (ea, B,/b,) E IYll so tha t  
T,(e)<eEIYllA, B,/b,. It  is now easy to show tha t  l i m s u p T , ( e ) = O ( e )  and,  

n ~ x 3  

hence, tha t  T§ =0 .  T h e o r e m  2.1 now yields the des i red  result.  
3. Coro l l a ry  2.6 of [8]  follows qui te  readi ly  f rom T h e o r e m  3.2. However ,  

T h e o r e m  2.5 of [8] does not  seem to be a consequence  of  any  of the theorems  
in this article,  in spite  of  some obvious  similari t ies.  
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