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The purpose of this article is to generalize a remarkable result on Markov
processes due to R. Chacon and B. Jamison, and to examine some of its
consequences. Our treatment is somewhat simpler as well as more general than
the original - we can eliminate their hypothesis of quasi-left continuity, for
instance — but it is based on the main idea of [3], and a good part of the
simplification comes from the fact that a delicate measure-theoretical point has
already been generalized in [6]; with this point out of the way the proof
naturally becomes more transparent. Accordingly, this should properly be
considered as an expository article, and we have written it in that style.

We will need to recall a number of definitions in order to state the theorem
rigorously, but we can give an informal explanation now.

Let X={X,, t=0} be a strong Markov process. Suppose an observer is
watching a film of its evolution. Unbeknownst to him, however, the projector
is running erratically, so that he sees, not X, but X, where g is a continuous
increasing function with g(0)=0. According to the Chacon-Jamison theorem,
he can, after observing a single sample path, determine the function g and so
readjust the projector to run correctly.

Let us illustrate this with two examples. Suppose first that X is a standard
Brownian motion. The quadratic variation of X, up to time ¢, is exactly 7,, so
that the quadratic variation of X, up to time ¢, is exactly g(t,). Thus the
observer can determine g by calculating the quadratic variation of the observed
process.

Next, suppose that X is a process of stationary independent increments
with an infinite Lévy measure v. Let N,(¢) be the number of jumps of X of
magnitude at least ¢ which occur before ¢. Then N,(¢) is Poisson with parame-
ter tv{x: |x|=e}, so that if ¢,—0 quickly enough, (v{x: [x|=¢,})"' N, (t) > for
all ¢ and, in particular, (v{x: Ix]gsn})_lNan(g(t))—» g(t). Thus the observer can
again recover g, this time by counting the jumps of X .

The above argument breaks down when the Lévy measure is finite, and if
X has holding points, the observer cannot recover g(t). Indeed, if X is the
simplest of all processes, the constant process, then X, =X, so there is no
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hope of recovering g from observations of X . Thus we will need to make
one assumption: X has no traps or exponential holding points. Apart from
minimal regularity assumptions, this is the only restriction we need to place on
X.

We will prove the basic theorem in section one. We sharpen it and show
how it is connected with additive functionals and time-changes in section two.
The sharpest version is given there, in Theorem 2.1. We will give some
applications in section three, and in particular, we will show how the
Blumenthal-Getoor-McKean theorem follows.

For a different point of view see [9], where Y. LeJan has recast the
theorem entirely in terms of additive functionals. His proof, based on the
theory of potentials of additive functionals, is considerably shorter than ours,
but does not give quite as sharp a result.

1. The Basic Theorem

Let E be a Lusin space [10], that is, E is a Borel subset of a compact separable
metric space E. Adjoin a point § (the cemetary) to E as an isolated point. Let
d(x,y) be the metric on E U, and suppose for convenience that d(6, E)=1. Let
Q be the set of all functions from [0, ) to Eud which are right continuous,
admit left limits at all £ <oo and have a (possibly infinite) lifetime (. Let Q=@
be the set of weQ such that w(t)eEu for all . Let F# be the o-field on Q
induced by the coordinate functions, and let & be the trace of % on Q.

Two functions @ and @' are equivalent (denoted w~ ') if there are positive
increasing right continuous functions f and g such that w=w'of and w' =w-g.
Let 7 be the o-field of all Ae# with the property that o ~a' = I,(w)=1 ().
The atoms of J are the equivalence classes. Each equivalence class is called a
trajectory and F is called the o-field of spatial events. We say that weQ is
nowhere constant if it is not constant on any open sub-interval of [0, {(w)). Of
course ¢ i constant on [{(w), w), for it equals 6 there.

Now (@, #) is a Lusin space [10] and J is a separable sub ¢-field of #
[6] (this is half of the technical result we mentioned above) so by a theorem of
Blackwell [1], if P is a probability measure on %, there exists a regular
conditional probability P,(w, A) on Z, that is

(a) for weQ, P, (w, ) is a probability measure on & ;

(b) for each A€, P,(+, A) is a version of P{A|T}.

We are really interested in E, not E, so let & and 7 be the traces of &
and J respectively on Q. Note that weQ and o' ~w=w'e, so that all atoms
of 7 are also atoms of 7. Now € is a universally measurable subset of Q - in
fact it is the complement of an analytic set [10] - so that if Ae&F, ANQeF*
where * is the universal completion of & Thus P, (w, A~ Q) makes sense and
the restriction of P,(-, AnQ) to Q is measurable with respect to the universal
completion of £

We now turn our attention to E and Q. E and Q will remain in the
background for moral support, but their main function was to establish the



On the Chacon-Jamison Theorem 1

existence of Py(w,A) for weQ and AeZ. In particular, ‘Borel measurable’
below means measurable with respect to the topological Borel field & of E, and
‘universally measurable’ means measurable with respect to the universal com-
pletion &* of &.

Let X be a strong Markov process with state space Eud whose sample
paths are right continuous, have left limits, and admit a lifetime {. We assume,
as we may, that X is canonically defined on Q: X,(w)=w(t). Let #,=0{X,,
5=t} be the natural filtration on @ and let #* and #* be the usual right-
continuous completions of % and & [2, p. 27].

" We can summarize our hypotheses on X as follows:

(H1) X is canonically defined on Q;

(H2) - for each xeEwd there is a probability distribution P* on (Q, #*) such
that if Ae &, x— P*{A} is universally measurable;
(H3) for each (#,*)-stopping time T, xeE, and Ae % :

P07 A|F¥} = PX7{A} P* as.,

where 0, is the usual translation operator on Q.
As usual, P* denotes the measure |P*(-)u(dx) on (2, #*). We can now
state the Chacon-Jamison Theorem.

Theorem 1.1. Let p be a probability measure on E. Suppose X has no traps or
holding points. Then for P*a.e. w, the regular conditional probability Pi(w,*) is a
point mass which sits on {@': o' ~w}.

Remark. This may appear far removed from the informal explanation in the
introduction, but consider the observer who sees a sample path of X, say
X, n=w(t). Now o is necessarily equivalent to the true, non-time-changed path
g, for w(t)=w,(g(t)). To determine g, he calculates P (w,*) which, by the
theorem, must put its mass on a single path, namely w,. Once he knows both
o and o, he determines g uniquely from the equation w=wm,0g; g is uniquely
determined because w, is nowhere constant.

Before proving the theorem, let us define a family (z}) of stopping times,
where n=1,2,... and j=j;...j, is a multi-index. Let d be the metric on E
inherited from E and define:

16=0, 1, =inf{r>1}: d(Xt,Xr;_)>1/2}/\C, j=0,1,2, ...

J

and for n=2 and i=0:

thsEt,  the=inf{r>1}: Ad(X,, X ) > 18} Atipy, j=0,1,2, ...

and, in general, for n=1 and i,, ..., i, positive integers:
n+1 —ah
T eiin0 = Vig iy
and (1.1)
n+1 . n+1 —n—1 n
T e =1nf{t>1p 7 d(Xt,XTHl )>2 PATL

i ing

Notice that at the n+ 1% stage we interpolate a sequence of stopping times
between each pair of successive times from the n™ stage.
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Let us introduce some notation for multi-indices. If j=j, ...j,_,Jj,, define j
+1=j,...j,_1(,+1). We also define j—1:ifj, =1, j—1=j;...j,_,(,—1), and
if j,=0, we set j—1=j. For an integer k, let jk=j, ... j k. We let |j| denote the
length of j. Thus, if j=257 and k=9, then |j|=3, j k=2579, j—1=256 and j+1
=258.

We have constructed the } so that for each k

=t S, - (1.2)

Note that the upper index »n is redundant: it always equals the length of j. We
can drop it from our notation in the following, writing t; instead of }.

There is a natural order, namely lexicographic order, on the multi-indices
such that if j<k in this order, then t;<t,. This can be seen by induction from
(1.2), but a more intuitive way to see it is to compare the ordering of the
stopping times with the decimal fractions: these can be constructed by first
marking off the points 0.1 <02<0.3<..., then further dividing each interval by
points, say 0.2=0.20<021<...<0.29<0.3 and so on. In our case we divide
the interval [t,,75] by infinitely many (not necessarily distinct) points 7,
-rzogrns ..£15, but the principle is the same. Thus, informally, to see if j
<k, with j and k as “decimals™: j<k iff 0j,...j, <0k, ... k,

For example, 7,5, is less than or equal to both 7,45, and 5, while it
dominates both 7,,5, and 7,. We should point out that if |j|=m and if n>m,
we can write 7,=r1,, where |k|=n. Indeed, T25=T250=Ta500=

A stoppmg time T is intrinsic if w~w' and w=w'of 1mply T(a) V= f(T ().
These times were defined in [6] and most of their basic properties were given
in Prop. 1.1 there. These are stopping times which can be defined in terms of
the trajectory, rather than the path. Hitting times are primary examples. So are
the 7; above. Two properties we shall need are these: if T is intrinsic and

' ~®, then o(T(w))= o' (T(w)). Consequently, if Tis #-measurable, w(T(w)) is
J -measurable by Blackwell’s Theorem. Then we have:

Lemma 1.2. Under the hypotheses of Theorem 1.1

(i) there is a total order on the multi-indices such that if 1<j in this order,
then t,(w)<1,(w) for all weQ;

(i) the t; are & -measurable intrinsic times, and for P"-a.e. w the family
{r;(w)} is dense in [0, {(w)).

(i) Let 7 —a{X ljl=n}. Then J,cZ, ., and T = \/ . up to P*-null-sets.
Proof. (i) follows from (1.2). To see (ii), note that the t; are successive hitting
times of open sets, hence & -measurable, and they are intrinsic by [6]. Now
d(Xa,,, Xa)21/2 on {Xu <}, so that 1j—{ as j—oo, for if not the path
would fail to have a left limit at lim rJ For the same reason, there are only
finitely many & in (1.2) for which there is strict inequality. The density of the t;
then follows from the fact that the paths are P*a.s. nowhere constant (an
immediate consequence of the hypothesis that there are no holding points). (iii)
Note that {r;: |jl=n} = {z;: ljl=n+1} so F,= 7, . It then follows from Theo-
rem 2.1 of [6] and Remark 3° following it that 9 =V 7, (The auxiliary

n
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variables Q,; of Theorem 2.1 are P*-a.s. zero since the paths of X are nowhere
constant. This is the second half of the technical result we spoke of in the
introduction.) QED

Proof of Theorem 1.1. Let At;=1;—7,_,. Then for each jeJ

7= Z A1, (1.3)
w=til

Two remarks are in order here. First, the sum is only over those i for which
lil =|jl, not over [i| £]j|, since the lower order indices are in fact included in the
higher order onmes: if li| <|j|, then k=i0...0 is an index for which |k|=]j] and
7, =7;. Next, suppose j=j;...j,0. Then j—1=j by definition, so that 47;=0.
This is the correct value, for although j has no immediate predecessor, there
exists some m such that 7; ; o(@w)=1; ; _1)m(®), so that the increment pre-
ceeding 7, is already in the sum.

Let |j|=1. By the strong Markov property, the process {X @ +DAT 41 t=0}
is conditionally independent of the processes {X Entp t=0} and 1O S t=0}
given X, and X . (Informally: what happens on (5, 70 1) 18 mdependent of

what happens on the complement given X o and X +1) Thus it is still con-

ditionally independent given the larger o-tield 7. If ljl=n, the definition of
7;,+; depends on information in 7,, but the strong Markov property again
shows that the two processes are condltlonally independent given J,. It follows
that if j,, ..., j, are multi-indices of length n,

E {exp (~ zl/lq Arjq)
q=

If p>n and |j|=n

z}=ﬁﬂ{exp(—zqqu>|9;}.

g=1

Adv,= Y  Ar,. 1.4)
i

The sums in (1.4) are disjoint for different j so that the At;, |jl=n, are
independent given J, for cach p=n. If we put Y,=exp(—4,47;) and Y
=Y, ...Y, then : ,
E{Y|7;} =] E{Y, 17}

gq=1
Let p— oo and use Lemma 1.2 (iii):
E{Y|T}=]]E{Y,|7},
g=1
or, if P is the regular conditional probability,

P, Y)= ]—[ P, Y) (1.5)

for P#-a.e. w. This is true simultaneously for all rational 4,>0 so that for a.e. @
the Ar; are independent - not just conditionally independent - under the
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measure Bf(w, *). But if p>|j|, then by (1.3) and (1.4)

= ) At (1.6)

HE

Now the paths are a.s. nowhere constant, so sup{At;: i<j, li|=p} >0 as
p—o. By Proposition A of the appendix, t; is a.e. constant, i.e. for P*-a.e. ®
there exists a constant t; such that Pf(w, ) puts its mass on the set {®": 7,(w")
=1;}. On the other hand, o' —o'(7;(®)) is F -measurable [6] so it is easily seen
that P2 (w, -) also puts its mass on {@": o'(r;(w"))=w(r;(w)), Vj} (which is the set
{w': o' ~w} by Theorem 2.1 of [6]).

Putting these two together, we see that there exist ¢;=0 and x;e EuLd such
that P? puts all its mass on

{o': t()=t;, &' (t;)=x;, Vj}.

But the ¢; are dense so this set is evidently a singleton, hence P}(w, *) is a point
mass which sits on {w": &' ~w}. QED

" 2. Additive Functionals and Time Changes

Theorem 1.1 in its present form is not sufficiently sharp for many applications.
One problem is that the regular conditional probabilities Pf are only de-
termined up to a null set, and this null set may depend on g This can be
gotten around as in [4] by defining a measurable version P} simultaneously for
all xeE, but it still leaves a somewhat subtler problem: finding a version of
Pf(w, -) which works not only for w, but for 8,w, all t=0. This is exactly
analogous to the problem of finding a perfect version of an additive functional.
We will show in this section that it is possible to construct a ‘perfect’ version
of Pr. In the process of doing this, we will make the connection between
Theorem 1.1, additive functionals, and time changes explicit. The key step is to
construct a perfect version of a certain additive functional. We retain the
hypotheses of Theorem 1.1.

Theorem 2.1. There exists a F *-measurable map p: Q—Q such that for each
probability measure y on E

() P*{o: o=p(@)}=1;

(ii) P(o, {p(w)})=1 for P*-a.e. .
Furthermore, there exists a set I'e T *, an (F*)-adapted continuous additive
Sunctional A, defined on I, and its right continuous inverse T, such that

(i) P*{I'y=1 for all yand 6,I' T for all t;

(iv) plo)®)=w(T,w) and p{w)~w for wel;

(v) A is perfect, i.e. if wel and s,t =0, then

Ay (@)= A (w) + 4,0, ). 2.1
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Remarks. This theorem is our translation of the main theorem of [4]. We
should point out that although the paths of X are nowhere-constant, there will
be equivalent paths which do have flat spots. This complicates the proof: 7, is
in general only right continuous, for instance, rather than continuous. The
reader will find that if he simply assumes that all the paths are nowhere-
constant, so that the functions T,, 7,, 4, and A4, appearing below are con-
tinuous and strictly increasing, he can eliminate a good third (or a bad third)
of the proof.

Let us give another expression for the stopping times 7; of (1.1). Suppose [j|
=n. For each p<n there is an index i, of length p such that i, <j<i,+1. Let i,
=]. Then

T =inf{t>1;: d(Xt,Xtip)>2“’, some p=1,...,n}.

Define a stopping time by
0,(Xy, ..., x,)=inf{t>1;: d(X,,x,)>2""some p=1,...,n}
and let, for £>0,

SHx, Y %y e Xy )=E¥{a, (x4, ... x,_,X)n el X, im0 =V

The conditional distribution P* of X is universally measurable so that, by an
argument of Doob, one can choose a version of the conditional expecta-
tion which is universally measurable in (x, y,X;,...,%,_;)-

For the index j above, set

F, an(er_l’er§Xril’“"Xri,.,l)' 2.2)
Now as in the proof of Theorem 1.1, 41, is conditionally independent of 7,
given ij#l, th, and Xfi1’ e Xy >80

E*{At; el T} =F;.

We also saw that the Az, |jj=n were conditionally independent given 7,, so
from (1.3), (1.4) and Proposition B of the appendix, we have P* a.s. for all jeJ
that

ty=inf{liminf ) F,(ik)}. (2.3)

m n— 00 ]i|=n—1

Accordingly, define for each weQ:

a(co)—mf{hmlnf Y. Fi(ik)}.

n—00 |jj=n—1
k=]
If we trace through the measurability, we can see that o; is & *-measurable. If
T is intrinsic and w~a’, then X ;(w)= X (") [6]. The t; are intrinsic, so that
from (2.2),
ff@)=fw), hence o;(w)=0;(w).
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Thus g; is 7 *-measurable. In fact, notice that F{ only depends on X for

i<j so that, if ,7 * is the o-field generated by events of the form {X A} where
i<j, and AcE is un1versa11y measurable, we have

a) Jjeg;;k C%T?

b) ii=0;<0;;

¢) PHo;=1}=1,Vpu.
Definition. Tt(w)zinf{rj(a)): o;(@)>1};

-~

A (w)=inf{s: T(w)>1}.
Notice that 4, is %*-measurable since
{A,<s}={ (T,<t—1/n}= U {w: oy(@)>s; tj(@)<t—1/n}
W '
which is in F*.
Definition. Q,={weQ: t—>w(t) is nowhere constant}.
Ih={weQ,: oi(w)=1;(w), Vi}.

I ={weQ: 3w'eljz30 ~w}.

Lemma 2.2. Let y be an initial distribution. Then
(D) Qoes, IjeF*, and [LeT *;
(i) PX(T3)=PH(I) =1
(iil) if wely, Tt(a))zfi(a))=t, all t<{(w).
Now suppose wel. Then
(iv) if w~a', then o(T(w))=w (T("), all t;
) if o' ()= (T(w)), t=0, then w"el} and w(t)=w"(4,(w)). In particular,
" ~w@. Moreover, " is the unique element in I which is equivalent to .
(vi) t—A(w) is continuous, t—>Tt(a)) is strictly increasing, and sup T,(®)
={(). o ‘
(vii) if s<t, then A (w)=A4,(w) iff u—w(u) is constant on (s,t].
Proof. (i) Clearly Q.e#, so I,eF* because t; and g, are F *-measurable. It

then follows that ;€7 *. (ii) P"(FO) 1 by (c) and r :1:) (iii) is clear. To see
(iv) note that
o(T(@)= lim o(r;w).
zrj(co)lt

Now o(w)=0;(e’) by (a) and w(rj(w))=w'(r;w")) by [6] so

= lim o'(r;(®")
o'j(m’)lt

=o' (T)()).
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Now there exists w'el} such that o’ ~w. T(w')=1 by (iii), so o(T (o) =w'(t).
By equivalence there is an increasing g such that w(t)='(g()), hence g must
be the inverse of T, i.e. g(f)=A (). To see uniqueness, note that if o, w”eQ,,
by (iii) and (iv)

o' Q)= (T(@)=o"(T(0)=w"{), ie o=w".

If welj, then w~a' for some w'el;,. Since o' is nowhere constant and «'(t)
=w(T), T,(w) must be strictly increasing and its inverse A, must be continuous.
If, now, t<{(w), then there exists j such that <1, (co)<(:(co) (see Remark 2.5
below) If o;(w)=s5, T.(w)=t. Then (vii) follows from (vi) and the equation w(u)
—/(4,(@). QED

We are next going to show that A is an additive functional, at least at
certain random times. For this we will introduce a class of intrinsic times
which are a bit easier to use than the ;.

For each n, let B,,,...,B,, be a finite partition of E into Borel sets of
diameter at most 1/n. We can do this since E is a subset of the compact space
E. Let D, be the closed 1/n - neighborhood of B,,. Thus B,<=D,,. We will
consider the ‘upcrossings’ of D,,—B,,. Fix n and k and define a sequence of
stopping times by

Vg¥=0, Ur=inf{t>0: X,eB,}

Vik=inf{t>Ur*: X,¢D,,}
and, for m=2, set

Upk=inf{t>V"™ . X,eB,}

Vik=inf{t>U": X,¢D,,}.

The V¥, m=1,2, ... are the successive upcrossing times of D,, —B,,. Note

that d(X ype, Xy 2 1/n if Vi<, so V*—o0 as m—oo; otherwise the path
would have oscillatory discontinuities.

Let
¥ ={Vr*: all n,k,m=0}

¥, ={V¥: all n,k=0 and m=1}.
Note that if Vev , ¥'>0.
Lemma 2.3. (i) If Vev, V is an intrinsic (%*)-stopping time;
(i) 0,0y w)=1,(0, w) P*-a.s. for all Ve¥, jeJ and u;
(iil) for each w

{s: s=1+V(0,0) some t=20, Ve¥, }={s: s=V(w), some Ve¥,}. (2.4)

Proof. (i) is immediate since the V are successive hitting times of Borel sets,
and (i) follows from (c) and the strong Markov property. For (iii), fix & and let
W(w)=t+V¥(6,w). Then W(w) is the time of the k™ upcrossing of D,;

after ¢. If there have been p previous upcrossings, then W(w) equals elther
Vit (@) or VY (w). QED



18 J.B. Walsh

If AcQ, let us define a set A by

AT ={w: Oy wed,all Ve, }= () 0;'(A).
v

et +

If AeT* ATeT*, since there are only countably many Ve¥., and each is
intrinsic. If A has the property that P*{A}=1 for all initial measures y, so does
A* by the strong Markov property applied to each Ve?/,.
Lemma 2.4. Let L={weQ: Juv'elnIy 30 ~w}. Then
(1) L,ed* and P*{I,} =1 for all initial p.
(il) If wel;, Vet and t 20, then
Ay (@)= Ay (@) + 4,0y ). 25)

Proof.A (i) follows from the preceeding remarks. Consider T, and put w'(t)
=w(T(w)). Then w'el; (Lemma 2.2(v)); and, since ¢’ is unique, evidently
w'ely", so 0, w'ely. V is intrinsic, so w~w'= 0, w~0, . By Lemma 2.2(iv)
and (ii),

Oy ' (t)=0,, a)(T,(@V o)),
hence

@' (V(@) +1)=o(V(©)+ 1,0, ).

Now «' is nowhere constant so the time-change from o to o' is unique, and
we must have V(w)+1;(0y w)=T, ., (w). By Lemma 2.2(v), V(o)=A4,(»),
giving us

V(w)+ 0y ) =T, @ +:(@). (2.6)

We get (2.5) by inverting (2.6), using Lemma 2.2(vii} to handle the situation in
which w is constant on some interval. QED

We must modify 4 in order to get a perfect additive functional. Let T,(w)
=inf{V(w): Ve¥_}. Then we define

liminf A, _y ., 0y o) if t>Ty(o)

Afw)=1"I 2.7)
0 if t£T,(w);

T(w)=inf{s: A (w)>1}; (2.8)

I'=I,"n{weQ: t— A4, is continuous}. (2.9)

Remark 2.5. Let N be the set of weQ which have the property that ds<taw is
constant on (s, t) but discontinuous at ¢. By [6], Ne ¢, and, since NnQ,=¢, N
NI, =¢, so we can ignore N in what follows. We can also ignore the set

M={w: {{w)= o0 and Is2w is constant on (s, o0)}

for the same reason. Note that if g NUM, each Ve is a limit point of
other Ue7, and in particular, 3U, and V,ev  a3U, (w)] Ty(w) and V,(w)T{(w).
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In addition, if w~a’, then {(@')< o0 iff {(w)< oo (for { is intrinsic [6]). We
have ignored the time-change on ({, co), but it is easily handled: if > {{(w), set
Ti(w)=Tw)+t—{(w) and 4,(w)=A4 (@) +1—{(w).

Proof of Theorem 2.1. We must verify that the quantities A, T and I' defined
above satisfy the conclusions of the theorem U, V and W will represent
elements of 4.

If Ulw)<V(w)<t, 3AWe?, 3V(w)=U(w)+ W(lyw) by (2.4), so if wel, we
apply (2.5):

I‘It—U(w)(BU w)= "Z[W(HU o)+ At—V(m)(eV W)= I‘Iz)V(w)(GV o). (2.10)

Thus the liminf as V(w)| T,(w). in (2.7) is actually an increasing limit. The limit
is finite by definition of I

We now verify (2.1). There are four cases, although if @ is nowhere con-
stant, only case 4 occurs.

Case 1. If T, (w)=s-+t, both sides of (2.1) vanish.
Case 2. 0£s < Ty(w)<s+t. Then Ty(w)=s+ Ty(0,), and 4 (w)=0 while

At+s(w) =1111,'n /,[t—%s—V(w)(QV CO)

Choose U such that V(w)=s+ U(0, w) (by (2.4) again):

= ﬁlI]n “It—U(osw)(BU 0, ) =4,(0, ).

Case 3. Ty(w)<s, Ty(6,w)=t.

Let U(w)<s. Since Ty(0,w)=t, w is constant on [s,7], hence O, w is constant
on [s—U,s+t—U], so by Lemma 2.2(vii), A(f;®) is constant on the same
interval, and

At+s(w)=1ill;n A\t-}-s—U(m)(gu 0‘))

=lim A\S—U(a))(QU CO) ZAS(CO)
U

Since T,(0,w)=t, 4,(8,0)=0 and (2.1) follows.
Case 4. Ty(w)<s, Ty(0,w)<t.

Choose U(w)<s<V(w)<s+t, and choose W, W'sV(w)=U(w)+ W(l,w)=s
+ W'(0, w). Then

As+t(w) = hén ’as—&-th(w)(@U o)
:lién "Z[V(w)-» vy 0y @) +/Is+z—V(w)(9W 0y w)

where we have used the fact that 0, wel}, to apply (2.5). Now 8,0, 0="0y.0, v,
O

=Ay(w)+4, W ey (O O ).
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Let W(#,w)] T, (8,w). Then A, — A, so:

=A,(w)+ 4,00, w),
proving (v).
Define p: 2—Q by
_jo(T(w) if wel
p() (Z)—{é otherwise.

If wel,, A(w)=A4,(w) by (2.5) and (2.6). Inverting, T,(w)=T;(w). Now let
w~w'el and Ve?,. Then 8, w~8, w'el, so by Lemma 2.2

8y o' (T,(0, ) =0, 0(T,(6; w))
=w(V(w)+ T(0y )
= w(TAV(m)+t(w))

which follows since (2.6) holds for T as well as T - one gets it by inverting
(2.1). Doing the same for ', we see that @'(Ty, )+ @)= (T, (4. ). Let V
decrease so that A4,,—0. By right continuity, o'(T(@")=w(T(w)), ie. plw)
=p(w). But p is clearly #* measurable, and constant on the atoms of F*,
hence it is J *-measurable.

Returning to (2.10), notice that if s<z and T,(w)<V(w)<s, then A,(w)
—A@)= A4, _y )0y @)= A;_y Oy ). Tt follows from Lemma 22(vii) that
A (w)=A,(w) iff @ is constant on (s,t]. It is not hard to see that the same is
true if Ty(w)=s, too.

To prove (iv), let o' =p(w), so o' ({t)=w(T(w)). We claim that owf(f)
=w'(4,(®)). If To(w)=0 and T, is continuous, this is clear, for T, is then onto
and A is its inverse. This remains true when T is discontinuous, for if
T, _(w)<T,(w), then A is constant on the interval [T, _(w), T,(w)], hence so is w
by the above remarks. Thus w~ ', proving (iv).

To prove (iii), note that by (2.1), if weTl, t—A4,(0,w) will be continuous if
t— A () is. Moreover, it follows from (2.4) that for any s and any Ve’ there
is a Wev, such that 0,(0,w)=0yw, so 0,L" c"=0,I;" cI,*. (iii) now
follows from Lemma 2.4 and the remarks preceeding it.

Next, note that P£(w, *) sits on Iy {w ~®} by Lemma 2.2(ii). By Lemma
2.2(v), this last set is the singleton {p(w)}. Thus P#(w,p(w))=1 P*-a.e., proving
(i). Then (1) follows immediately. QED

§ 3. Applications to Time Changes

Any process having right continuous paths with left limits in Eué and admit-
ting a lifetime can be defined canonically on the space (@2, #) of §1. Let X be a
strong Markov process satisfying (H1)-(H3), and suppose X is defined canoni-
cally on (@, ). Let 4, and T, be the additive functional and its inverse
described in Theorem 2.1. Then T, is a universal time-change for canonically
defined processes in the following sense.
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Theorem 3.1. Let Y be a process defined canonically on (Q, ). Suppose X and Y
have distributions P and Q respectively. If Q| ,=P|,, then X is a time-change of
Y in the sense that {Yr, t 20} has the same distribution as {X,, t = 0}.

Proof. Let p: Q—Q map w(t)— o (T,(w)). Define
Xr(w): YT,(w)
=o(T(w)=p(w) (1.

Now if AeZ, A is a set in path space, so {w: X (w)eA}=p~1(A4) makes sense.
Thus
0(X.eA}=0(p~" ()
=Pp~1(A)}

since p~'(A4)e7* and Q=P on 7, hence on J* But P sits on {w: p(w)=w},
so this is

=P{p (A n{pl@)=w}}

=P{4}

=P{X eA}. QED

Let us define stopping times S,, t=0 by
S (@)=inf{s>0: d(X,, X,)>1t}.
Define times T,; in terms of the S,: if n>1 is an integer, set

T,,=0, T,=S,. and T,

nj+1—

=T+ 8,-no0r,,

Here is a useful criterion for deciding whether two measures agree on 7.

Proposition 3.2. Let P and Q be probability measures on (Q, F) such that P{Q,}
=Q{Q,}=1. A necessary and sufficient condition that P|,=Q|, is that for
each large enough n, each K, and each collection A,,...,Ax of open subsets of
Eusd,

P{X, €4, k=1,... ., K}=0Q{X, €4, k=1,...,K}. (3.2)

Progf. Let us abuse notation and use two different letters to denote the
canonical process on €: X is the process whose distribution is P and Y the
process whose distribution is Q. Write X,,=X; and Y, =Y, . By Theorem
2.1 of [6], 9 is generated - up to null sets - by the Xnk (The auxiliary
variables Q,, vanish a.s. under both P and Q by our hypothesis - see Remark
(2.5).) Now (3.2) is clearly necessary. To see it is sufficient, we must show that
for any M, the families {X; , n=0, k=0} and {Y ., n=0, k=0} have the same
distribution. What we know from (3.2) is that for each fixed n, {X T K
=0,1,2,...} and {Y, o k=0,1,2,...} have the same distribution.
For each n, let "’

St(w)=inf{T,(w): d(X7,, Xo)>1}.

Let us establish some of the elementary properties of the S”.
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1. Note that Xg is a function of the {X; , j=0,1,2, ...}, for if N=inf{j:
d(Xy,,, Xo)>t}, then X=X, .

2. 5,8} for all t=0 and S7<S,,, if t=0 and 27" <e. Indeed, the first state-
ment is clear. For the second, note that d(Xv,XTM,)§2‘"<e it T,=v<T, 4
so that if Y =u, d(X,, X;)<t+¢, hence S,, ,=u as well.

3. Let (a,) be a sequence of positive reals converging to zero and let
0<e<t. Then for all large enough n,

St—w:(a))é an +St(9anw) é St—|—s(w)'

To see the first inequality, note that d(X, , X,)—0 by right continuity of X,. If
S,_(@w)>u, then for all v=u, d(X,, X )=t—e Thus d(X,, X )=d(X,,X,)
+d(X,, X, ). For large n, this is smaller than ¢, hence §,(0, w)=u—a,. This
proves the first inequality, and the second follows by a similar argument.

Fix N. We now approximate the times Ty; by iterates of the S} for n>N.
Let ¢, ¢,,... be a sequence of strictly positive reals, and let t=2"". Then define

T"(81)=S:‘+£1, Tn(gl’82):S?+81+S;’+£2005?+81’
and, by induction,
Tn(81> LR 8j+ 1)= Tn(817 ey 8j)+S:l+8j+1°6T"(sl,.“,6j)'
4. () Lm .. lim lim T"(,, ..., &)= Ty;;
g-1,0 110 n-oo
(i) lim...lim lim T"(ey, ..., &)= Ty;-.
g0 £,0 n—so0
We will verify (i) and (ii) in the following form.
(iiiy There exist strictly positive functions n; and d;;, ..., d;; such that if 6>0
and if nzne,,...,¢), 0<g;=d;(e, ) for i=1,...,j—1, and if 0<e;£d;(9),

then
Ty @)= T"(ey, ..., &3 0) < Ty (@) +9.

(The functions n; and d;; depend on w, but we have suppressed this in the
notation.)

We will prove (iii) by induction. The case j=1 follows from 2 and the right
continuity of t—S,. Suppose (iii) holds for j=1, ..., k.

Let o' =0, o and let >0. By the right continuity of s—S,, there exists d
=d(6)>0 such that if 0 <e<d, then

Si13:(@) =S, (@)+0.

Having chosen &, we can apply 3 to choose 6'=06'(¢)>0 such that if Ogaéé/,
then
St(wl) é a-+ St+£(6a CO') é a+t St+ Ze(ea CL)’) é St+ 35((1),)'

Now choose ny,=n,(¢) such that 27" <. If n=n,, we have by 2 that

Si O, 0) S 87, (0,028, 5,(0,0),
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so that by the previous inequalities

S(@)=sa+87,,00,0)<S (@)+0.

t+e

Now choose &, =Zd,(85), --., 6, 5d,(0'(e)) and n=n(eq,...,&). Then by (iii),
which holds for j=k by the induction hypothesis,

T STMeq, oo 8) STy + 6
Set ¢, ,,=¢and a=T"(g,, ..., &) — Ty, Then

Ty, ooor &) =Ty +a+5; 6,).

ttee+1

Now Ty, =Ty, +S, (). Make n larger if necessary, so that n=ng(e) to see
that (iii) holds for j=k+1 with the functions d,,  ,.+,(0)=d(5); disy ,(e)
=di(0(9)); diy1,()=dy;(e), 1=isk—1; and m (e, ..., 4 ) =max(ny(e,, ),
M(Eys - ).

But this implies the proposition, since by hypothesis {X;, ,j=0,1,...} and
{Yr,,, i=0,1,...} have the same distributions, hence Xy, ., and Yy .,
have the same distributions, being functions of the X, ~and Yr  respectively
(see 1). By 4 and the right continuity of X,, Xy, . ,—Xr, and
Ynger, .. e~ Y1y, @8 n—c0 and the g; decrease to zero in the right order. This
implies that for any bounded continuous f, E{f(X;, )} is the limit of
E{f(Xtng,,....sp)s- The same holds for ¥, so it follows that X; =and Y,  have
the same distribution. We can do this simultaneously for N=1,..., M and j
=0, ..., M, so that we can conclude that {XTNJ_: N,j=0,...,M} and {YTNj: N,j
=0, ..., M} have the same distribution. QED

Notice that the process Y of Theorem 3.1 need not be Markov and its
paths need not be nowhere constant. We can apply it to a martingale to get
the Dubins-Schwartz theorem as follows.

Theorem 3.3 (Dubins-Schwartz). Let {M,, 4,, t=0} be a continuous martingale
whose paths are unbounded, such that My=0. Then M can be time-changed into
a standard Brownian motion.

Proof. Suppose M and a standard Brownian motion B are defined canonically
on @ with distributions @ and P respectively. The paths of M are unbounded
so that if T, is the stopping time introduced above, Q {T,, < o0} =1 for each n
and k. Note that for each n, M , M, ,... is a symmetric random walk on
27"Z. Indeed, by continuity My , —My =+2"" and by the stopping theo-
rem

Q{MTnj+1_MTy,j=]‘|'g7Tnj}=Q{M MTnj=—1|97TM,}=1/2,

Tuj+1

so that the differences My, —M; ., j=1,2,... are iid. The same is true of B,
so that Lemma 3.2 implies that Q=P on J. The conclusion follows from
Theorem 3.1. QED

Note. With hindsight one can see that the main idea in Dubins’ and Schwartz’s
original proof was to prove that Q=P on 7, using embedded random walks.
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They then use the quadratic variation to construct the time-change. This
remains perhaps the most interesting, though not the shortest, proof of this
theorem [7].

Following [3], we apply Theorem 3.1 to the case in which Y is itself a
Markov process. One result of this is a general version of the Blumenthal-
Getoor-McKean theorem. Since this theorem has recently been generalized by
J. Glover [8] to cover our approximate situation, we will only prove the
special case in which the processes have no traps or holding points, which is a
rather direct consequence of Theorem 3.1.

We should point out, however, that the general case can be reduced to this.
We will indicate how after the proof.

Definition. If B is Borel in E, let Ty(w)=inf{t: w(t)eB}. For a strong Markov
process X, define
ng(x, A)=P*{X €A}

Theorem 3.4. Let X and Y be strong Markov processes on EUd having no traps
or holding points in E, and which satisfy (H1)-(H3). Suppose that they both have
the same hitting probabilities wy and the same initial distribution. Then there
exists a perfect continuous additive functional A, whose inverse T, is also con-
tinuous, such that the process {Yy,, t =0} has the same distribution as {X,, t 20}.

Proof. Suppose X and Y are canonically defined on (2, #) with distributions P
and Q respectively. We need only show that P=Q on Z and then apply
Theorem 3.1. Both X and Y have nowhere-constant paths, so the time change
is necessarily continuous and strictly increasing, as is 4, (see e.g. Lemma
2.2 ().

To show P=Q on 7, comsider T, <T,,<..<T, and let D(x,r)={y:
dx,y)y>r}. If A, ..., A, are Borel,

P* (X, €Ay, j=1,...k}=E*{Xy €A, j=1,...k—1; P{Xy €Al % _}}

But T, is the first time after T,,_, that X hits D(X; _,27") so by the strong
Markov property

=E*{X;, €d4;j=1L .. k=Lmpy, -y (A}
= [ ey 2-m X, dX5) o T 2 mmy (i 15 A)-

Since X and Y have the same hitting probabilities:
=Q*{Y; €A, j=1,....k}.

Now apply Lemma 3.2 to see that P=Q on J. QED

Remark 1. Suppose X has holding points. If x is a holding point for X, it.is a
holding point for Y, since then IT;  (x, {x})=0. Now X holds at x for an
exponential time with parameter, say, A(x); the holding time for Y is also
exponential, with parameter, say, u(x). To time-change Y to X, we must use an

A o
additive functional of the form dAt=—(J—Cldt when Y,=x. Thus, make a prelimi-
U

(x)
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nary time-change which affects only the holding points: dAt=%%dt if ¥,=x
and x is a holding point, and dA,=dt otherwise. One must check that 4, is
finite, which is true through not immediate.

After this change, X and Y have the same holding points with the same
parameters but are otherwise unchanged. Now let a(f, X,)=t—sup{s<t:
X,+X,} be the age of the state occupied by X,, and consider the pair
(X,,a(t, X,)) as a process on Eud xR . It is still strongly Markov, and it has
the same hitting probabilities - in EUd xR, - as (¥, a(t, Y})). (For a=0 when
the process is not at a holding point, and the processes are identical on the
holding points thanks to the time-change) Moreover they have nowhere-
constant paths since a(t, X,) increases when the process is at a holding point,
so that Theorem 3.4 now applies.

Remark 2. Tt is not necessary to know the hitting probabilities of X and Y for
all Borel sets. It is enough to have them equal for sets of the form D(x,¥) for
small enough r, for these are all that enter the proof.

Y need not be strongly Markov. It is enough that its hitting distributions
depend only on the state [5]. More exactly:

Corollary 3.5. Let X be as in Theorem 3.4 with hitting probabilities mgz. Suppose
Y is a process defined canonically on (Q, ) with distribution Q, and that Q{Q,}
=1. Suppose further that for each pair of Borel sets A and B, and each stopping
time T, if t=T+ Tgoly, then

P{Y.eA|F} =ng(Yy, A).

If X and Y have the same initial distribution, then there exists a perfect
continuous additive functional whose inverse T, is continuous, such that {Yy,
t= 0} has the same distribution as {X,, t=0}.

Note that there is nothing new to prove here, for the proof of Theorem 3.4
is still valid. We might point out that this extension is non-trivial, for the
Dubins-Schwartz theorem is a special case of Cor. 3.5, but not of Theorem 3.4.

Appendix

We will prove two related results which are needed in sections one and two.
The first one is a part of the folklore of the subject. We were unable to find an
exact reference so we have provided a short and elementary proof, The second
may be new.

Proposition A. Let X and Y, n=12,..,j=1,2,... be positive random variables
such that ‘

1) supY, .—0 in probability as n—aoo,
p nj
J

(ii) for each n, Y, Y, ,, ... are independent;
(iii) for each n, X=Z Y,;.
J

Then X is a constant.
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Proof. Fix 0<e<1 and set Z,;=¢ A Y,; and X,,:ZZ,U.. Then

{e %} = HE{E Zns}
Let a=1—¢/2. Z,;<esoe “<1—aZ,, and

0<E{e*}=]](1-aE{Z,})
j
It follows that E{X,} =) E{Z,;} <co. But
j

log([[(1-aE{Z,}))=3 log(l—2E{Z,})< —0E{X}

so that
E {e—Xn} §e—mE{Xn}_

Now X,<X, and X,—»X as n—oo; indeed, P{X,*X}=P{sup ¥, ;>e} 0.
i
Thus by bounded convergence and Fatou’s lemma:
E{e_X} éefaE{X}.

The left hand side is strictly positive so E{X} < oo. Let ¢—0, so that a—1, and
use Jensen’s inequality:

e EN<E{e M} <e B,
Thus there is equality, but this can happen only if X =E{X} as. QED
We now extend Proposition A to a statement involving conditional prob-
abilities.

Proposition B. Let X and Y,,,Y,,, ... be positive random variables, and let F —
7, < ... be o-fields such that

(i) sup ¥,;,—0 a.e. as n—oo0;
J

(i) for eachn, Y,,,Y,,,... are conditionally independent given Z,;
(iii) for each n, X —Z i

Then X is measurable with respect to F,=\/ Z,, and if X;=Y e Y,;, then
j

n

X =lim[lim E{X?|%}] 6y

=0 n-ooo
where we let ¢—0 through any sequence.

Note. We do not claim that either X, or X is integrable, but that E{X;| %} is
defined and finite.

Proof. Set Z,,;=e A Y,;. Then X} = ZZ,U,

Efe | 7} =] E{e~%| %},
j
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Let a=1—¢/2. 0<Z, ;<¢so0 that e"®<1—aZ,;. Thus
0<E{e ™ Z}<[[(1 —2E{Z, | Z}. 2)
J

The product is strictly positive, so E{X:|Z}=) E{Z
Now log(1—a E{Z, .|Z) < —aE{Z

njl %) must be finite a.s.

il nil Za} 80
log [T(1— 2 E{Z,,| )< —o E{X}| %}

and (2) becomes J

E{e | Z} e tilo, ()
Let n— 0. X:i— X; indeed P{Xj#X}zP{sqp Y,;>¢} which tends to zero. By
Hunt’s lemma '

E{e ™| ) > E{e | 7).
Similarly, if M >0
E{X| Z)ZE{M AX| 7} >E{M A X|Z,)}.

Thus liminf E{X}|#} = E{X| %} so that (3) becomes

n—00

E{e| 7} S e eF01%), 4

The left-hand side is strictly positive, so that E{X| % } <o a.s. Now let ¢—>0
so that a—1, and apply Jensen’s inequality:

e EXIF < Flo~X| F ) < o EXIF), (5)

Thus there is equality in (5). This can happen only if X=E{X|&£ }, i.e. if X is
Z_-measurable.
To prove (1), go back to (3) and use (5):
e~ EX| %) ge—alim sup E{X§| .}
or

1
limsup E{X}| 7} <= E{X| 7}

n— 00

Thus with probability one

E{X|#.} <liminfE{X?| %)}

n—oo

oy —1
gumsupE{XM}g(l—;) E{X|Z.).

n-> o0

Let e—0 through any sequence to get (1). QED
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