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The purpose of this article is to generalize a remarkable result on Markov 
processes due to R. Chacon and B. Jamison, and to examine some of its 
consequences. Our treatment is somewhat simpler as well as more general than 
the original - we can eliminate their hypothesis of quasi-left continuity, for 
instance - but it is based on the main idea of [-3], and a good part  of the 
simplification comes from the fact that a delicate measure-theoretical point has 
already been generalized in [6]; with this point out of the way the proof  
naturally becomes more transparent. Accordingly, this should properly be 
considered as an expository article, and we have written it in that style. 

We will need to recall a number  of definitions in order to state the theorem 
rigorously, but we can give an informal explanation now. 

Let X={X~,  t>0}  be a strong Markov process. Suppose an observer is 
watching a film of its evolution. Unbeknownst  to him, however, the projector 
is running erratically, so that he sees, not X t but Xg(t), where g is a continuous 
increasing function with g(0)=0.  According to the Chacon-Jamison theorem, 
he can, after observing a single sample path, determine the function g and so 
readjust the projector to run correctly. 

Let us illustrate this with two examples. Suppose first that X is a standard 
Brownian motion. The quadratic variation of X t up to t ime t o is exactly to, so 
that the quadratic variation of Xg(r ) up to time t o is exactly g(to). Thus the 
observer can determine g by calculating the quadratic variation of the observed 
process. 

Next, suppose that X is a process of stationary independent increments 
with an infinite L6vy measure v. Let N~(t) be the number  of jumps of X of 
magnitude at least e which occur before t. Then N~(t) is Poisson with parame- 
ter tv{x: Ixl>~}, so that if e.--+O quickly enough, (v{x: Ixl>en})-lg~.(t)--.t for 
all t and, in particular, (v{x: Ixl>e.})-lN~.(g(t))--.g(t). Thus the observer can 
again recover g, this time by counting the jumps of Xg(t ). 

The above argument breaks down when the L6vy measure is finite, and if 
X has holding points, the observer cannot recover g(t). Indeed, if X is the 
simplest of all processes, the constant process, then X~m=X0,  so there is no 
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hope of recovering g from observations of Xg(t ). Thus we will need to make 
one assumption: X has no traps or exponential holding points. Apart from 
minimal regularity assumptions, this is the only restriction we need to place on 
X. 

We will prove the basic theorem in section one. We sharpen it and show 
how it is connected with additive functionals and time-changes in section two. 
The sharpest version is given there, in Theorem 2.1. We will give some 
applications in section three, and in particular, we will show how the 
Blumenthal-Getoor-McKean theorem follows. 

For  a different point of view see [9], where Y. LeJan  has recast the 
theorem entirely in terms of additive functionals. His proof, based on the 
theory of potentials of additive functionals, is considerably shorter than ours, 
but does not give quite as sharp a result. 

1. The Basic Theorem 

Let E be a Lusin space [10], that is, E is a Borel subset of a compact separable 
metric space /~. Adjoin a point 6 (the cemetary) to E as an isolated point. Let 
d(x, y) be the metric o n / ~  6, and suppose for convenience that d(6, E )>  1. Let 
f2 be the set of all functions from [0, oo) to /~u6 which are right continuous, 
admit left limits at all t < oo and have a (possibly infinite) lifetime ~. Let ~? c f2 
be the set of coef~ such that co(t)~Eu6 for all t. Let 2 be the a-field on f] 
induced by the coordinate functions, and let ~ be the trace of # on f2. 

Two functions co and co' are equivalent (denoted co ~ co') if there are positive 
increasing right continuous functions f and g such that co = co'of and co'--co o g. 
Let d- be the a-field of all A e 2  with the property that co~co'~Ia(co)=IA(co' ). 
The atoms of g- are the equivalence classes. Each equivalence class is called a 
trajectory and J" is called the a-field of spatial events. We say that coco is 
nowhere constant if it is not constant on any open sub-interval of [0, ~(co)). Of 
course co is constant on [~(co), co), for it equals 6 there. 

Now (f2, Y)  is a Lusin space [10-1 and g is a separable sub a-field of 2 
[6] (this is half of the technical result we mentioned above) so by a theorem of 
Blackwell [1], if P is a probabilit_y measure on 2,  there exists a regular 
conditional probability P#-(co, A) on ~,  that is 

(a) for co~f~, P~-(co,-) is a probability measure on 2 ;  

(b) for each A e 2 ,  P#-(., A) is a version of P{AI ~d-}. 

We are really interested in E, not /~, so let o ~ and ~- be the traces of ~,~ 
and J -  respectively on f2. Note that coef2 and co'~co~co'ef2, so that all atoms 
of 3- are also atoms of ~.  Now f2 is a universally measurable subset of O - in 
fact it is the complement of an analytic set [10] - so that if A6~-, Ac~f2e2*  
where 2 "  is the universal completion of ~ Thus P#-(co, A c~ O) makes sense and 
the restriction of Pj ( . ,  Ac~f2) to ~ is measurable with respect to the universal 
completion of ~.  

We now turn our attention to E and t?. /~ and t~ will remain in the 
background for moral support, but their main function was to establish the 
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existence of Ps(co, A) for coef2 and A s ~  In particular, 'Borel measurable '  
below means measurable with respect to the topological Borel field g of E, and 
'universally measurable '  means measurable with respect to the universal com- 
pletion g* of & 

Let X be a strong Markov process with state space E u 6  whose sample 
paths are right continuous, have left limits, and admit a lifetime ~. We assume, 
as we may, that X is canonically defined on f2: X~(co)=co(t). Let f i t = a { X s ,  
s<t}  be the natural filtration on f2 and let fit* and ~ *  be the usual right- 
continuous completions of fit and Y [2, p. 27]. 

-a 

We can summarize our hypotheses on X as follows: 

(H1) X is canonically defined on ~2; 

(H2) �9 for each x s E u 6  there is a probability distribution px on (s2, ~-*) such 
that if Ae~,, x ~ P X { A }  is universally measurable; 
(H3) for each (fit*)-stopping time T, xeE,  and A ~ Y :  

P~{OT i AIY*}--PXT{A} P~ a.s., 

where 0 t is the usual translation operator  on (2. 
As usual, W denotes the measure SPX(.)#(dx) on ([2,~*). We can now 

state the Chacon-Jamison Theorem. 

Theorem 1.1. Let # be a probability measure on E. Suppose X has no traps or 
holding points. Then for Wa.e. co, the regular conditional probability P~-(co, .) is a 
point mass which sits on {co': co'~co}. 

Remark. This may appear far removed from the informal explanation in the 
introduction, but consider the observer who sees a sample path of Xg(0, say 
Xg(0 = co(t). Now co is necessarily equivalent to the true, non-time-changed path 
coo, for co(t)=coo(g(t)). To determine g, he calculates Pj-(co, .) which, by the 
theorem, must put its mass on a single path, namely coo. Once he knows both 
co and coo, he determines g uniquely from the equation co=COoog; g is uniquely 
determined because coo is nowhere constant. 

Before proving the theorem, let us define a family (r~) of stopping times, 
where n = 1 , 2  . . . .  and J=J l  . . .J ,  is a multi-index. Let d be the metric on E 
inherited f rom/~ and define: 

~1~0  ' 1 = i n f { t > v J :  d(Xt, X @ > I / 2 } A ~ ,  j = 0 , 1 , 2 ,  "c j +  i . --" 

and for n = 2 and i > 0: 

2 _ 1 r /~+~=inf{t>z2:  d(X~ ,X@>I /4}ATi  T'iO~'"Ci' i "  i+l, j = 0 ,  1,2, ... 

and, in general, for n >  1 and i~ . . . . .  i, positive integers: 

n + l  - -  n 
T i t  . . .  i n O  - -  7]ii . . ,  in  ~ 

and (1.1) 
z "+l = i n f { t > z , +  1 "d(Xt,  X , + i  )>2-n-1}A'cinl...i.+l 

i l  . . .  in  j +  1 i l  . . .  in  j "  

il  . . . i n j  

Notice that at the n +  1 st stage we interpolate a sequence of stopping times 
between each pair of successive times from the n th stage. 
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Let us introduce some notation for multi-indices. If J=Jl  ""J , - l Jn ,  define j 
+ l = j l  . . . j , _ l ( j , +  1). We also define j - l :  i f j , > l ,  j - l = j l  ...jn_x(jn--l), and 
i f j , = 0 ,  we set j - l = j .  For an 
length of j. Thus, if j =257 and 
= 258. 

We have constructed the z~ 

integer k, let j k = j l  . . . j ,k .  We let [j[ denote the 
k=9,  then [j[=3, j k=2579, j - 1 = 2 5 6  and j + l  

so that for each k 

. <  . + 1 <  . (1 .2)  Tj ~Tjk =Tj+I"  

Note that the upper index n is redundant: it always equals the length of j. We 
can drop it from our notation in the following, writing zj instead of z~. 

There is a natural order, namely lexicographic order, on the multi-indices 
such that ifj<__k in this order, then Zj<Zk' This can be seen by induction from 
(1.2), but a more intuitive way to see it is to compare the ordering of the 
stopping times with the decimal fractions: these can be constructed by first 
marking off the points 0.1 <0.2 <0.3 < .... then further dividing each interval by 
points, say 0.2=0.20<0.21 < . . .<0 .29<0 .3  and so on. In our case we divide 
the interval [z2,%-] by infinitely many (not necessarily distinct) points z2 
=Z2o<__z21< ... <z  3, but the principle is the same. Thus, informally, to see if j 
<k,  with j and k as "decimals": j__<k iff O.ja . . . j ,<O.k 1 ... k n. 

For example, z257 is less than or equal to both z263~ and %, while it 
dominates both zj732 and z2. We should point out that if ]j[=m and if n>m, 
we can write z j=z  k, where Ik[-n.  Indeed, "c25 ~--T250="c2500 . . . . .  

A stopping time T is intrinsic if co-co' and co=co'of imply T(co')<_f(T(co)). 
These times were defined in [6] and most of their basic properties were given 
in Prop. 1.1 there. These are stopping times which can be defined in terms of 
the trajectory, rather than the path. Hitting times are primary examples. So are 
the zj above. Two properties we shall need are these: if T is intrinsic and 
co'~co, then co(T(co))=co'(T(co')). Consequently, if Tis ~--measurable, co(T(co)) is 
~---measurable by Blackwell's Theorem. Then we have: 

Lemma i.2. Under the hypotheses of Theorem 1.1 

(i) there is a total order on the multi-indices such that if i__<j in this order, 
then "ci(co)<zj(co ) for all cost2; 

(ii) the zj are ~-measurable intrinsic times, and for PU-a.e. co the family 
{zj(co)} is dense in [0, ((co)). 

(iii) Let J,=o-{X~j: [Jl =n}. Then ~c~-~+1 and J - =  ~/ J ,  up to PU-null-sets. 
n 

Proof (i) follows from (1.2). To see (ii), note that the zj are successive hitting 
times of open sets, hence o~-measurable, and they are intrinsic by [6]. Now 
d ( X % l , X @ > l / 2  on {X#+ <(},  so that z ) ~ (  as j ~ o e ,  for if not the path 
would fail to have a left limit at limz). For the same reason, there are only 
finitely many k in (1.2) for which there is strict inequality. The density of the zj 
then follows from the fact that the paths are pu a.s. nowhere constant (an 
immediate consequence of the hypothesis that there are no holding points). (iii) 
Note that {zj: I j [=n}c{zj :  I j l = n + l }  so 3 - ~ . ~ +  1. It then follows from Theo- 
rem 2.1 of [6] and Remark 3 ~ following it that ~ - = V  ~-]~. (The auxiliary 

n 
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variables Q,j of Theorem 2.1 are PU-a.s. zero since the paths of X are nowhere 
constant. This is the second half of the technical result we spoke of in the 
introduction.) QED 

Proof of Theorem 1.1. Let A zj = z j - z j _  1. Then for each j~J  

"Cj = ~ A T  i .  ( 1 . 3 )  

i,i--<i l 
Two remarks are in order here. First, the sum is only over those i for which 

[i[ =[j[, not over li] <lJl, since the lower order indices are in fact included in the 
higher order ones: if lil <lJl, then k = i 0  ... 0 is an index for which [ki--Ijl and 
Zk=Z i. Next, suppose J=Jl  . . . j ,0.  Then j - l = j  by definition, so that Azj=O. 
This is the correct value, for although j has no immediate predecessor, there 
exists some m such that zj1..4no(~O)=zjl...(j _1)re(co), so that the increment pre- 
ceeding zj is already in the sum. 

Let IJl=l.  By the strong Markov property, the process {X(~j+~)^~j+ 1, t_>0} 

is conditionally independent of the processes {Xt^ ~ , t>0} and {X~ § t>0} 
�9 j = . . j + l  = 

given X~ and X~ (Informally" what happens on (z , r § 1) is independent of 
j j + l '  " . J J 

what happens on the complement given X~j and X~j+I. ) Thus it is still con- 

ditionally independent given the larger a-field ~ .  If Ijl=n, the definition of 
zj+ 1 depends on information in ~-~, but the strong Markov property again 
shows that the two processes are conditionally independent given ~-~. It follows 
that if j l . . . .  , j, are multi-indices of length n, 

E{exp(-q~__12qAZj~ ) ~ }  =q=~ E{exp( -  2q A~j~), ~} .  

I f p > n  and IJl=n 

Az j=  ~ Az i. (1.4) 
j - - l < i ~ j  

lil=p 

The sums in (1.4) are disjoint for different j so that the dzi, Ijl=n, are 
independent given ~ for each p>__n. If we put Yq=exp(-2qA~j~) and Y 
= Ya... Y~, then r 

E { YIG} = ~[ E { YqI@}. 
q=l 

Let p ~ o e  and use Lemma 1.2(iii): 

r 

E {YI~--} = I~E{Yql:-}, 
q = l  

or, if Pa~ is the regular conditional probability, 

r 

Pf(co, Y)= I~ Pf(o), Yq) (1.5) 
q=l 

for P"-a.e. co. This is true simultaneously for all rational 2q > 0 so that for a.e. co 
the dzi~ are independent - not just conditionally independent - under the 
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measure Pj~"(co, .). But ifp>lJl ,  then by (1.3) and (1.4) 

z j= ~ A h. (1.6) 

Now the paths are a.s. nowhere constant, so sup{A-ci: i<j, lil=p}---,0 as 
p~oo.  By Proposition A of the appendix, zj is a.e. constant, i.e. for P'-a.e. co 
there exists a constant tj such that Par ") puts its mass on the set {co': zi(co' ) 
=tj}. On the other hand, co'--~co'(zi(d)) is J -measurable  [6] so it is easily seen 

r t that P~(co, ") also puts its mass on {co': co (zi (co )) = co (zi (co)), Vj} (which is the set 
{co': co'~co} by Theorem 2.1 of [6]). 

Putting these two together, we see that there exist t i>0  and xi~Ek)(~ such 
that P2 puts all its mass on 

{co': zi(co')=t j, co'(ti)=xj, Vj}. 

But the tj are dense so this set is evidently a singleton, hence P~(co, .) is a point 
mass which sits on {co': co'~co}. QED 

2. Additive Functionals and Time Changes 

Theorem 1.1 in its present form is not sufficiently sharp for many applications. 
One problem is that the regular conditional probabilities P~ are only de- 
termined up to a null set, and this null set may depend on #. This can be 
gotten around as in [4] by defining a measurable version p~ simultaneously for 
all x~E,  but it still leaves a somewhat subtler problem: finding a version of 
Par ") which works not only for coo, but for 0tco, all t>0 .  This is exactly 
analogous to the problem of finding a perfect version of an additive functional. 
We will show in this section that it is possible to construct a 'perfect' version 
of Pa~-. In the process of doing this, we will make the connection between 
Theorem 1.1, additive functionals, and time changes explicit. The key step is to 
construct a perfect version of a certain additive functional. We retain the 
hypotheses of Theorem 1.1. 

Theorem 2.1. There exists a J*-measurable  map p: ~?~f2 such that for each 
probability measure # on E 

(i) P"{co: co=p(co)}=l; 
(ii) Pr {p(co)})= 1 for PU-a.e. co. 

Furthermore, there exists a set Fe~-*,  an (~*)-adapted continuous additive 
functional A t defined on F, and its right continuous inverse T t such that 

(iii) P~{F} =1 for all # and O t F c F  for all t; 

(iv) p(co)(t)=co(Ttco ) and p(co)~co for coeF; 
(v) A is perfect, i.e. if coeF and s,t__>O, then 

A~+t(co ) = As(co ) + At(O s co). (2.1) 
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Remarks. This theorem is our  translat ion of the main theorem of [4]. We 
should point  out  that  a l though the paths of X are nowhere-constant ,  there will 
be equivalent paths which do have flat spots. This complicates the proof:  T t is 
in general only right continuous,  for instance, rather  than continuous.  The 
reader will find that  if he simply assumes that  all the paths are nowhere-  
constant,  so that  the functions Tt, ~ ,  A t and A~ appearing below are con- 
t inuous and strictly increasing, he can eliminate a good third (or a bad third) 
of the proof. 

Let  us give another  expression for the stopping times zj of (1.1). Suppose ]jl 
= n. For  each p < n  there is an index ip of length p such that  iv< j Nip § 1. Let  i. 
=j .  Then  

zj + 1 = inf{t > zj: d ( X .  X%) > 2 -p, some p = 1 . . . .  , n}. 

Define a stopping t ime by 

o-.(x 1 . . . . .  x.) = inf{t > zj: d(Xt, Xp) > 2-P,some p = 1 . . . . .  n} 

and let, for e>0 ,  

f ,~(x,y;x 1 . . . .  , x ,  1)=E~{a , (x l  . . . .  ,X._l,X) A~lX~.(~ ........... ):y}.  

The condit ional  distribution px of X is universally measurable  so that, by an 
argument  of Doob,  one can choose a version of the condit ional  expecta- 
t ion which is universally measurable in (x, y, Xl, ..., x ,_  0. 

For  the index j above, set 

Ft: fne(Xt j_ l ,  Xzj; X ~ i l ,  . . . ,  X,:i n 1). (2.2) 

Now as in the proof  of Theorem 1.1, Azj is condit ionally independent  of 
given X~j_I, X~,  and X ~ ,  ..., X:in_ , so 

E~{zl 'r j  A e l ~ }  = ~  ~ . 

We also saw that the Azj, IJ[ = n  were condit ionally independent  given ~-~,, so 
from (1.3), (1.4) and Proposi t ion B of the appendix, we have pu a.s. for all j ~ J  
that 

z j = i n f { l i m i n f  ~, F1/m(ik)}. (2.3) 
m n~co  ]i]= n--1 

ik_--<j 

Accordingly, define for each o)~2:  

a i (co)=inf{ l iminf  ~ Fum(ik)}. 
m n~eo  Ill= n _ l  

i kNj  

If we trace through the measurability, we can see that  a i is ~* -measurab le .  If 
T is intrinsic and ~ ' ,  then X r ( ~ ) - - X r ( ~ '  ) [6]. The zj are intrinsic, so that  
from (2.2), 

f [ (~ ' )  = f[(co), hence a j (~ ' ) - -  o-j(~). 
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Thus o.j is 5"*-measurable. In fact, notice that F[ only depends on X~i for 
i < j  so that, if ~-~* is the o.-field generated by events of the form {XaEA } where 

�9 J . 
i< j ,  and A c E is universally measurable, we have 

a) o.j ~ ~ *  c ~_~j*', 

b) i < ] ~ o . i < % ;  
c) P~{O.j=zj}=I, Vp. 

Definition. ~(09) = inf{zj (co): o.j (09) > t} ; 

At(co) = inf{s: ~(09) > t}. 

Notice that At is ~*-measurable  since 

{A,<s} = ~ { ~ < t -  1/n} = ~ {09: 0.j(09) > s; z j (09)<t -  i/n} 
n n,j  

which is in ~t*. 

Definition. t2o= {09ef2: t~09(t) is nowhere constant}. 

~0 : { (D(- -~0 :  O ' j ( ( D ) =  Tj((D), Vj}. 

Lemma 2.2. Let p be an initial distribution. Then 

(i) O oe~ ,  F o e ~ *  , and F1E~-'*; 
(ii) P'(Fo)= P"(F~)= 1; 

(iii) /f 09eFo, ~(09)=A(09)=t, all t<((09). 

Now suppose coeI" 1. Then 

(iv) /f c0~09', then c0(~(09))=09'(~(09')), all t; 
(v) /f 09"(t)=09(~(09)), t>=O, then co"eF o and 09(t)=09"(At(09)). In particular, 

09"~09. Moreover, 09" is the unique element in F 0 which is equivalent to 09. 
(vi) t~Jt(09 ) is continuous, t -~ (09)  is strictly increasing, and supS(09) 

= ~ ( 0 9 ) .  , 

(vii) /f s<t,  then/'[s(09) =Jr(09) iff u~09(u) is constant on (s, t]. 

Proof. (i) Clearly ~2oe~, so FoeY* because zj and o.j are ff*-measurable.  It 
then follows that Fie3--*. (ii) P~(Fo)=I by (c) and F 1 ~ F  o. (iii) is clear. To see 
(iv) note that 

09(~(09))= lim 09(zj(09)). 

N o w  o . j ( o ) ) ~ o . j ( ( D  ~) by (a) and 0)(Tj(O)))=(LIf("Cj  O)f)) by [63 so 

= lim cs 
aj (~ ' )$  t 

f 
= 09 (T , (09 ) ) .  
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Now there exists co'eF o such that co',,~co. ~(co ' )=t  by (iii), so co(~(co))=co'(t). 
By equivalence there is an increasing g such that  co(t)=co'(g(t)), hence g must  
be the inverse of ~,  i.e. g ( t )= ] t ( co  ). To  see uniqueness, note  that  if co', co"e~?o, 
by (iii) and (iv) 

co'(t) = co'(~(co')) = co"(~(co")) = co"(t), i.e. co' = co". 

If coeF1, then co-co '  for some co'eF o. Since co' is nowhere  constant  and co'(t) 
= co(~), ~(co) must  be strictly increasing and its inverse At must  be continuous.  
If, now, t<((co),  then there exists j such that  t<zj(co)<((co)  (see Remark  2.5 
below); If ai(co)=s, T~(co)>t. Then  (vii) follows from (vi) and the equat ion co(u) 
= co'(A,(co)). Q E D  

We are next going to show that  .4 is an additive functional, at least at 
certain r andom times. For  this we will introduce a class of intrinsic times 
which are a bit easier to use than the zj. 

Fo r  each n, let B,1 ..... B,k" be a finite part i t ion of E into Borel sets of 
diameter  at most  1/n. We can do this since E is a subset of the compact  space 
/~. Let  D,k be the closed 1In - ne ighborhood  of B,k. Thus B,k~D,k. We will 
consider the 'upcrossings '  of  D,k--B,k. Fix n and k and define a sequence of 
stopping times by 

vgk=o, u~k=inf{t>O: XteB,g } 

v~k=inf{t> u~k: Xt~Dnk } 

and, for m > 2, set 

u~g=inf{t> Ynk_l: XteBnk } 

v~k=inf{t > u~,k: XteDng }. 

The V~ k, re=l, 2 . . . .  are the successive upcrossing times of D.k--B.k. Note  
that  d(Xvnk, Xv~k)>__l/n if v.~k<~, SO v.~kooo as m~o �9  otherwise the path 
would have oscillatory discontinuities. 

Let  
~ = { v ~ k :  all n,k,m>=O} 

~U+={v~k: all n,k>=O and m > l } .  

No te  that  if Ve~+, V>0 .  

L e m m a  2.3. (i) I f  Ve~U,, V is an intrinsic (~*)-stopping time; 
(ii) aj(Ovco)=zj(Ovco ) PU-a.s. for all VE~,, jeJ and #; 

(iii) for each co 

{s: s=t+ V(O, co) some t > 0 ,  V6~+} = {s: s =  V(co), some V~+}.  (2.4) 

Proof. (i) is immediate  since the V are successive hitting times of Borel sets, 
and (ii) follows from (c) and the strong Markov  property.  For  (iii), fix co and let 
W(O)) : t-t-vknJ(ot (D). Then W(co) is the t ime of the k th upcrossing of Dnj-Bnj 
after t. If there have been p previous upcrossings, then W(co) equals either 
v:Jp(co) or Vknjp_l_l((.O ). Q E D  



18 J.B. W a l s h  

If Acf2 ,  let us define a set A + by 

A+={co: OvcoeA, all Ve~+}= (~ OyZ(A). 
V ~ .u/'+ 

If A e J * ,  A + e J  -*, since there are only countably many VE~U+, and each is 
intrinsic. If A has the property that P" {A}--1 for all initial measures #, so does 
A § by the strong Markov property applied to each Ve~U+. 

Lemma 2.4. Let F 2 = {co~f2:3 co'~F 0 c~Fo + ~co' ~co}. Then 

(i) F z e J *  and P"{Fz} =1 for all initial #. 
(ii) I f  cosF2, V E ~  and t>0 ,  then 

Av + t(co) = Av(co) + At(Ov co). (2.5) 

Proof (i) follows from the preceeding remarks. Consider ~ and put co'(t) 
=co(~(co)). Then co'eF o (Lemma 2.2(v)); and, since co' is unique, evidently 
co'~Fo +, so O v d ~ F  o. V is intrinsic, so co~co '~  Ovco~Ovco'. By Lemma 2.2(iv) 
and (ii), 

hence 
Ov cd(t) = Ov co(~(Ov co)), 

co'(v(co') + t) = co(v(co) + ~(ov co)). 

Now co' is nowhere constant so the time-change from co to co' is unique, and 
we must have V(co)+~(Ovco)=Tv(~/)+t(co ). By Lemma 2.2(v), V(co')=.4v(co), 
giving us 

V(co) + Tt(Ov co) = T~t,~(~,) +,(co). (2.6) 

We get (2.5) by inverting (2.6), using Lemma 2.2(vii) to handle the situation in 
which co is constant on some interval. QED 

We must modify A in order to get a perfect additive functional. Let To(co ) 
=inf{V(co): Ve~+}. Then we define 

[liminfAt_v~o,)(0vco ) if t>To(co) 
At(co) = Iv+ To(~O) (2.7) / 0 V~r if t <  To(CO); 

Tt(CO ) = inf{s: As(co ) > t} ; (2.8) 

F =  Fz + c~ {co~f2: t -*A t is continuous}. (2.9) 

Remark 2.5. Let N be the set of co~f2 which have the property that 3s<t~co is 
constant on (s, t) but discontinuous at t. By [6], N ~ J ,  and, since N n f 2 o = 0 ,  N 
n F 2 = 0, so we can ignore N in what follows. We can also ignore the set 

M = {co: ~(co) = oo and 3 s~co is constant on (s, oo)} 

for the same reason. Note that if cof~NwM, each V ~ +  is a limit point of 
other Ur and in particular, 3 U, and V,~+~U,(co)$To(co ) and v, (co) T [ (co). 
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In addition, if co ~co', then ((co')< oe iff ((co)< oo (for ( is intrinsic [6]). We 
have ignored the t ime-change on (~, m), but  it is easily handled:  if t>~(co), set 
Tt(co ) = T~(co) + t -  ~(co) and At(co) = Ar + t -  ((co). 

Proof of Theorem 2.1. We must  verify that  the quantities A, T and F defined 
above satisfy the conclusions of the theorem U, V and W will represent 
elements of ~U+. 

If U(co)<V(co)<t, 3W~U+~V(co)=U(co)+W(Ove)) by (2.4), so if coeF, we 
apply (2.5): 

At_u(o,)(Ovco)=fiw(Ovco)+ At_v(~)(Ovco)> At_v(~)(Ovco). (2.10) 

Thus the lira inf as V(co)~ To(co)i in (2.7) is actually an increasing limit. The  limit 
is finite by definition of F. 

We now verify (2.1). There  are four cases, a l though if co is nowhere  con- 
stant, only case 4 occurs. 

Case 1. If To(co)>s+t, both  sides of (2.1) vanish. 

Case 2. O <_s < To(a)) < s + t. Then To(co)=s + To(O ~ co), and A~(co)=0 while 

At + s(co ) = lim At+~-v(o,)(Ov co). 
V 

Choose U such that  V(co)=s+ U(O~co) (by (2.4) again): 

= lira At_v(o~)(Ov 0 s co) =At(O ~ co). 
U 

Case3. To(co)<s, To(O~co)>t. 

Let  U(co)<s. Since To(O~co)>t, co is constant  on [s,t], hence Ova) is constant  
on [ s - U , s + t - U ] ,  so by Lemma  2.2(vii), A(Ovco ) is constant  on the same 
interval, and 

A t+s(co) = lim At+s- v(,o)(Ou co) 
U 

= lim ~ _  v(o,)(0v co) = As (co). 
U 

Since To(Osco)>t, At(O~co)=O and (2.1) follows. 

Case4. To(co)<s, To(Osco)<t. 

Choose U(co)<s < V(co)<s + t, and choose 
+ W'(O s co). Then 

W, W'~ V(co) = U(co) + W(Ov co) = s 

A~+t(co) =l imA~+t v(o,)(Ouco) 
U 

= lim Av(o, ) _ v(o,)(Ov co) + A~ +t- v(~o)(Ow Ov co) 
U 

where we have used the fact that OvcoeF 2 to apply (2.5). Now O,oOvco=Ow, O~co , 
SO 

= A v ( c o )  +-3,_w,(o~)(Ow, 02 (2)). 
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Let W'(Oso))~.T o (0so)). Then Av-*A s so: 

= As(o) ) + At(O~ o)), 
proving (v). 

Define p: g/-* t~ by 

p(o)) (t)= {~(E(o)))if o)er 
otherwise. 

If coaF2, At(o))=At(o) ) by (2.5) and (2.6). Inverting, Tt(o))=~(o) ). Now let 
co~o)'eF and V~F+. Then Ovo),-,Ovo)'aF2 so by Lemma 2.2 

ov o)'(~(ov d))= Ov o)(~(Ov o))) 
= o)(v(o)) + T~(O~ o))) 

= o)(TA~(o~+,(o))) 

which follows since (2.6) holds for T as well as T - one gets it by inverting 
(2.1). Doing the same for co', we see that o)'(Txv(o)+t(o)))=o)(TAv(o~)+t(o))). Let V 
decrease so that Av-*O. By right continuity, o)'(Tt(o)'))=o)(Tt(o))), i.e. p(o)) 
=p(o)'). But p is clearly o~* measurable, and constant on the atoms of ~-*, 
hence it is Y*-measurable. 

Returning to (2.10), notice that if s<t  and To(o))<V(o))<s, then At(o) ) 
-As(o))=At_v(~)(Ovo))-As_v(,o)(Ovo)). It follows from Lemma 2.2(vii) that 
As(o))=At(o) ) iff o) is constant on (s, t]. It is not hard to see that the same is 
true if To(o))>=s, too. 

To prove (iv), let o)'=p(o)), so o)'(t)=o)(Tt(o))). We claim that co(t) 
=co'(At(o))). If To(o))=O and T~ is continuous, this is clear, for ~ is then onto 
and A is its inverse. This remains true when T is discontinuous, for if 
Tt_(o))< Tt(o)), then A is constant on the interval [Tt_(o)), Tt(o))], hence so is co 
by the above remarks. Thus o)~ d ,  proving (iv). 

To prove (iii), note that by (2.1), if o)~F, t-*At(Oso) ) will be continuous if 
t-*At(o) ) is. Moreover, it follows from (2.4) that for any s and any V~V+, there 
is a We~+ such that Ov(Oso))=Owo), so OvFa+cF~OsF2+cF2 +. (iii) now 
follows from Lemma 2.4 and the remarks preceeding it. 

Next, note that P~(o), .) sits on Fon{o) '~o)  } by Lemma 2.2(ii). By Lemma 
2.2(v), this last set is the singleton {p(o))}. Thus Pjr p(o)))= 1 PU-a.e., proving 
(ii). Then (i) follows immediately. QED 

w 3. Applications to Time Changes 

Any process having right continuous paths with left limits in E u 6 and admit- 
ting a lifetime can be defined canonically on the space (f2, .~) of w 1. Let X be a 
strong Markov process satisfying (H1)-(H3), and suppose X is defined canoni- 
cally on (f2,~). Let A t and T r be the additive functional and its inverse 
described in Theorem 2.1. Then T t is a universal time-change for canonically 
defined processes in the following sense. 
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Theorem 3.1. Let Y be a process defined canonically on (f2, ~.~). Suppose X and Y 
have distributions P and Q respectively. I f  QIx=PIg-, then X is a time-change of 
Y in the sense that { Yrt, t >-_ 0} has the same distribution as {Xt, t >= 0}. 

Proof Let  p: f2- , f2  m a p  r Define 

; ? , (co)  = YT~(co) 
= co (TAco)) = p(co)  ( t) .  

N o w  if A~ff ,  A is a set in pa th  space, so {co: Js = p - ~ ( A )  makes  sense. 
Thus 

O.(X. ~A} = Q ( p - ~ ( A ) )  

= P ( p - I ( A ) }  

since p - I ( A ) E 3 - *  and Q=P on ~ hence on 3-*. But P sits on {co: p(co)=co}, 
so this is 

= P { p - l ( A ) ~  {p(co)-- co}} 

= P { A }  

=P{X .~A} .  Q E D  

Let  us define s topping t imes St, t >_ 0 by 

St(co)=inf{s>O: d(X s, X o ) > t } .  

Define t imes T,j in terms of the S t: if n__> 1 is an integer, set 

T,o=0,  Tnl=S 2 =, and Tnj+I=T,j+S2_.OOTnj. 
Here  is a useful cri terion for deciding whether  two measures  agree on 3Z. 

Proposi t ion 3.2. Let P and Q be probability measures on (0, o~) such that P{f2o} 
= Q { O o } = l .  A necessary and sufficient condition that P ] 9 - = Q b -  is that for 
each large enough n, each K, and each collection A s . . . . .  A K of open subsets of 
E u S ,  

P{XT,,k~Ak, k = 1,.. . ,  K} = Q {XT=~Ak, k = 1 . . . .  , K}. (3.2) 

Proof Let us abuse no ta t ion  and use two different letters to denote  the 
canonical  process on f2: X is the process whose dis tr ibut ion is P and Y the 
process whose dis tr ibut ion is Q. Write  X,k=Xr= ~ and Ynk= YT=k" By T h e o r e m  
2.1 of  [6], 3-  is genera ted - up to null sets - by the X~k. (The auxil iary 
variables Q,k vanish a.s. under  bo th  P and Q by our  hypothesis  - see R e m a r k  
(2.5).) N o w  (3.2) is clearly necessary. To  see it is sufficient, we must  show that  
for any M, the families {XTnk, n > O, k > 0} and { Y ,  n > 0, k > 0} have the same 
distribution. Wha t  we know f rom (3.2) is tha t  for each fixed n, {XT.k, k 
= 0, 1, 2, ...} and  { YT=~, k = 0, 1, 2, ...} have the same distribution. 

Fo r  each n, let 

ST(co) = inf{ rnj(~) : d (XTnj, Xo) > t }. 
a 

Let us establish some of the e lementary  propert ies  of the S~'. 
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1. Note that Xs~, is a function of the {XT~j, j = 0 ,  1,2, ...}, for if N = i n f { j :  
d(XT. ~, X0) > t}, then Xsr = XTn,,. 

2. S t<S'  ~ for all t > 0  and S']<St+ ~ if t > 0  and 2 - "<5 .  Indeed, the first state- 
ment is clear. For  the second, note that d (X , ,XTn j )<2-"<5  if T, j<v<T,+I ,  j, 
so that if St >= u, d(X, ,  Xo)< t + 5, hence St+ ~ >= u as well. 

3. Let (a,) be a sequence of positive reals converging to zero and let 
0 < 5 < t. Then for all large enough n, 

S t_~ (co) < a, + St(Oa, co) < S t +~ (co). 

To see the first inequality, note that d(Xan, X o ) ~ O  by right continuity of X r If 
St_~(co)>u, then for all v<u,  d ( X , , X o ) < t - 5 .  Thus d ( X ~ , X ~ ) < d ( X , , X o )  
+d(Xo ,  X J .  For large n, this is smaller than t, hence St (Oaco)>u-  G. This 
proves the first inequality, and the second follows by a similar argument. 

Fix N. We now approximate the times T~j by iterates of the S~' for n > N. 
Let 5~, e 2, ... be a sequence of strictly positive reals, and let t = 2  -N. Then define 

T" (Q)=S  ~ T"(q ,  e2)=S'~+~t + S'~_~ oO s , 

and, by induction, 

T"(51,...  , 5j+ 1) = Tn(51 . . . . .  ~;) q- St+ej +t o Or~ ( ........ J)" 

4. (i) lim ... lim lim T"(51 . . . .  ,5j)> TNj; 
~j-l~0 et~0n~c~ 

(ii) lira.., lim lim T"(51 . . . .  , 5 )  = TNj. 
ejJ, O ~t$O n~oo  

We will verify (i) and (ii) in the following form. 

(iii) There exist strictly positive functions nj and dj~ . . . .  , djj such that if 6 > 0 
and if n>=nj(Q . . . . .  ej), O<si<=dji(51+l) for i=1  . . . . .  j - I ,  and if O<sj<=djj(3), 
then 

TNj(co)--<_ T ~ %  . . . . .  5j; co) =< T~j(co) + ~. 

(The functions nj and dj~ depend on co, but we have suppressed this in the 
notation.) 

We will prove (iii) by induction. The case j - -1  follows from 2 and the right 
continuity of t -~S t. Suppose (iii) holds for j - -1  . . . .  , k. 

Let co'=OTNkco and let c5>0. By the right continuity of s ~ S , ,  there exists d 
=d(~5)>0 such that if 0 < 5 < d ,  then 

s~+ ~(co') =< st(co') + ~. 

Having chosen 5, we can apply 3 to choose ~ '=5 ' (5)>0 such that if 0_<a~b',  
then 

S,(co') < a + St+ ~(0 ~ co') G a + St+ a~(0~ co') G St+ 3~(co'). 

Now choose no=no(~ ) such that 2-"0<5. If n>=no, we have by 2 that 

s~§ ~') < sL~(oo co') < s~§ ~(oo ~'), 
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so that  by the previous inequalities 

St(co' ) < a + S~'+ ~(0~ co') < St(co' ) + 6. 

N o w  choose e I =<dkl(e2), ..., ek<dkk(6'(e)) and n>nk(e 1 . . . . .  ek). Then  by (iii), 
which holds for j = k by the induct ion hypothesis,  

TNk <= T"(e 1 . . . .  , ek)<= TNk +6'. 

Set ek+ 1 = e  and a= T"(e 1 . . . .  , ek)-- TNk. Then 

T"(el . . . .  , ea+ 1)= Tuk + a + S~+ . . . .  (0~ co'). 

N o w  TNk+I=TNk+St(CO'). M a k e  n larger if necessary, so that  n>no(e  ) to see 
tha t  (iii) holds for j = k + l  with the functions dk+l,k+~(f)=d(6); dk+l,k(e ) 
=dkk(b'(e)); dk+l,i(~;)=dki(e), l _ < i _ < k - 1 ;  and nk+l(e 1 . . . .  ,ek+O=max(no(ek+l),  

n ~ ( ~ l ,  . . . ,  ~)). 
But this implies the proposi t ion,  since by hypothesis  {XT.j, j = 0 ,  1, ...} and 

{YT.j, j = 0 ,  1 . . . .  } have the same distributions, hence XT. ( ....... ~j) and Yr-( ....... ~j) 
have the same distributions,  being functions of the XT, j and Yr,j respectively 
(see 1). By 4 and the right cont inui ty of  Xt, X r .  ~ ....... ~j)-oXr~,j and 
YT~ ..... ~j)-~Yr,,j as n ~  and the e i decrease to zero in the right order.  This 
implies that  for any bounded  cont inuous f, E{ f (XT~j )  } is the limit of 
E{f (Xr . (~  ~ ..... ~j))}. The  same holds for Y, so it follows that  XT~ j and YT~,j have 
the same distribution. We can do this s imul taneously  for N = I  . . . . .  M and j 
= 0  . . . .  ,M,  so that  we can conclude that  {Xr~,j: N , j = O  . . . . .  M} and {YT~,j: N , j  
= 0  . . . .  , M} have the same distribution. Q E D  

Not ice  that  the process Y of T h e o r e m  3.1 need not  be M a r k o v  and its 
paths need not  be nowhere  constant.  We can apply  it to a mar t inga le  to get 
the Dubins-Schwar tz  theorem as follows. 

Theorem 3.3 (Dubins-Schwartz) .  Let  {Mt, (fit, t ~ 0 }  be a continuous martingale 
whose paths are unbounded, such that M o =0.  Then M can be time-changed into 
a standard Brownian motion. 

Proof. Suppose  M and a s tandard  Brownian  mot ion  B are defined canonical ly 
on ~2 with distr ibutions Q and P respectively. The  paths of  M are unbounded  
so that  if T,k is the s topping t ime in t roduced above,  Q {T,k< oe} = 1 for each n 
and k. No te  tha t  for each n, MT.~ ,Mr .2 , . . .  is a symmetr ic  r a n d o m  walk on 
2 - " • .  Indeed, by cont inui ty  M r n j + l - M r . j =  ___2-" and by the s topping theo- 
rem 

Q {Mr, j  +~ - Mr,~ = 11 ~ - r J  = Q {MT,~ + ~ -- MT,j = -- l l ~ r J  = 1/2, 

so that  the differences MT, j+- -MTnj ,  j = l , 2  . . . .  are iid. The  same is t rue of  B, 
so that  L e m m a  3.2 implies that  Q = P  on ~ The  conclusion follows f rom 
T h e o r e m  3.1. Q E D  

Note. With hindsight one can see that  the main  idea in Dubins '  and Schwartz 's  
original p roof  was to prove  that  Q = P  on J,, using embedded  r a n d o m  walks. 
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They then use the quadratic variation to construct the time-change. This 
remains perhaps the most interesting, though not the shortest, proof of this 
theorem I-7]. 

Following [3], we apply Theorem 3.1 to the case in which Y is itself a 
Markov process. One result of this is a general version of the Blumenthal- 
Getoor-McKean theorem. Since this theorem has recently been generalized by 
J. Glover [8-1 to cover our approximate situation, we will only prove the 
special case in which the processes have no traps or holding points, which is a 
rather direct consequence of Theorem 3.1. 

We should point out, however, that the general case can be reduced to this. 
We will indicate how after the proof. 

Definition. If B is Borel in E, let TB(co)=inf{t: ~o(t)eB}. For  a strong Markov 
process X, define 

7ZB(X , A) = px {XT ~A}.  

Theorem 3.4. Let  X and Y be strong Markov  processes on E w 5 having no traps 
or holding points in E, and which satisfy (H1)-(H3). Suppose that they both have 
the same hitting probabilities 7t B and the same initial distribution. Then there 
exists a perfect continuous additive functional A t whose inverse T~ is also con- 
tinuous, such that the process { Yr~, t > 0} has the same distribution as { X  t, t > 0}. 

Proof  Suppose X and Y are canonically defined on (f2, ~ )  with distributions P 
and Q respectively. We need only show that P = Q  on 3- and then apply 
Theorem 3.1. Both X and Y have nowhere-constant paths, so the time change 
is necessarily continuous and strictly increasing, as is A t (see e.g. Lemma 
2.2 (v)). 

To show P = Q  on J,, consider T ~ I < T , 2 < . . . < T , k  and let D ( x , r ) = { y :  
d(x, y)>r}.  If A 1 . . . . .  A k are Borel, 

P:' {XT.  SA;, j = 1, . . . ,  k} = E x {XT.  j e A;, j = 1 . . . .  , k - 1 ; P {XTnkeA k I gT.k_ 1} }. 

But T,k is the first time after T,k_ 1 that X hits D(XT.~_I ,2-"  ) SO by the strong 
Markov property 

= E x {XTneA; ,  j = 1 . . . . .  k - 1, 7rO(Xr . . . .  ,2 -')(Ak)} 

= ~"" ~ TeD(x,, 2 ")(Xl' dx2) '"  Ir'D(xk-l,2 -~)(Xk-1, Ak)" 

Since X and Y have the same hitting probabilities: 

=QX{ YT~yAj,  j =  I . . . .  , k}. 

Now apply Lemma 3.2 to see that P = Q  on ~. QED 

Remark  1. Suppose X has holding points. If x is a holding point for X, it, is a 
holding point for Y, since then HE_x(x,  {x})=0. Now X holds at x for an 
exponential time with parameter, say, 2(x); the holding time for Y is also 
exponential, with parameter, say, #(x). To time-change Y to X, we must use an 

additive functional of the form dA t = 2(x)dt  when Yt=x. Thus, make a prelimi- 
#(x) 
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nary time-change which affects only the holding points: d A t = ~ d t  if Y~=x 

and x is a holding point, and dAt=dt  otherwise. One must check that A t is 
finite, which is true through not immediate. 

After this change, X and Y have the same holding points with the same 
parameters but are otherwise unchanged. Now let a(t, X t ) = t - s u p { s < t :  
Xs=t=Xt} be the age of the state occupied by X~, and consider the pair 
(X t, a(t, Xt) ) as a process on E u 3 x N+ .  It is still strongly Markov, and it has 
the same hitting probabilities - in E w 6  xlR+ - as (Yt, a(t, Yt)). (For a = 0  when 
the process is not at a holding point, and the processes are identical on the 
holding points thanks to the time-change.) Moreover  they have nowhere- 
constant paths since a(t, Xt) increases when the process is at a holding point, 
so that Theorem 3.4 now applies. 

Remark 2. It is not necessary to know the hitting probabilities of X and Y for 
all Borel sets. It is enough to have them equal for sets of the form D(x, r) for 
small enough r, for these are all that enter the proof. 

Y need not be strongly Markov. It is enough that its hitting distributions 
depend only on the state [5]. More exactly: 

Corollary 3.5. Let X be as in Theorem 3.4 with hitting probabilities rc~. Suppose 
Y is a process defined canonically on (g2, •)  with distribution Q, and that Q {f2o} 
= 1. Suppose further that for each pair of Borel sets A and B, and each stopping 
time T, if z = T+ TBoOT, then 

P { Y~A I ~T} =~R( YT, A). 

I f  X and Y have the same initial distribution, then there exists a perfect 
continuous additive functional whose inverse T, is continuous, such that {Yr~, 
t__> 0} has the same distribution as {X~, t__> 0}. 

Note  that there is nothing new to prove here, for the proof  of Theorem 3.4 
is still valid. We might point out that this extension is non-trivial, for the 
Dubins-Schwartz theorem is a special case of Cor. 3.5, but not of Theorem 3.4. 

Appendix 

We will prove two related results which are needed in sections one and two. 
The first one is a part  of the folklore of the subject. We were unable to find an 
exact reference so we have provided a short and elementary proof. The second 
may be new. 

Proposition A. Let X and gn j ,  n = 1, 2 . . . .  , j  = 1, 2 . . . .  be positive random variables 
such that 

(i) sup Ynj~O in probability as n~oo;  
J 

(ii) for each n, Y~I, Y~2 . . . .  are independent; 

(iii) for each n, X = ~ Y,j. 
J 

Then X is a constant. 
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Proof. Fix 0 < e < 1 and set Z.j  = e/x Y.j and X .  = ~ Z.j. Then  
J 

E{e -X , }=  ~I E{e-Z,,}.  
J 

Let ~ = i - a / 2 .  a,j<=a so e -Z" ;<l -o~Z , j ,  and 

O<E {e-X"} = ~I (i - c t E  {Z.j}). 
J 

It  follows tha t  E {X.} = ~ E {Z.;} < oe. But 
J 

log ( I~  (1 - c~ E { Z . j } ) ) =  Z log  (1 - c~ E {Z . j } )  < - c~ E { X . }  
J J 

so tha t  
E {e-X"} < e -=~{x.}. 

N o w  X , < X ,  and X,--+X as n-+oo;  indeed, P { X , ~ X } = P { s u p Y ,  j>e}--+O. 
J 

Thus  by bounded  convergence  and Fa tou ' s  l emma:  

E {e-X} < e-=E{x}. 

The  left hand  side is strictly posit ive so E{X}  < oo. Let  e--+0, so that  c ~ l ,  and 
use Jensen 's  inequali ty:  

e-E{x} < E {e-X} < e-~{x}. 

Thus  there is equality,  but  this can happen  only if X = E  {X} a.s. Q E D  

We now extend Propos i t ion  A to a s ta tement  involving condi t ional  p rob-  
abilities. 

Proposi t ion B. Let X and Ynl, Yn2 . . . .  be positive random variables, and let .,~ c 
J22 c . . .  be ~-fields such that 

(i) sup Y,j~O a.e. as n-+oo; 
J 

(ii) for each n, Y,,1, Y,2 . . . .  are conditionally independent given o~; 

(iii) for each n, X = ~ Y,q. 
J 

Then X is measurable with respect to Yoo = ~/ J~, and if X~ = ~ e/x Y.j, then 
n j 

X = lira [ l im E {X.~ I o~}] (1) 
8 ~ 0  n~OO 

where we let e--+O through any sequence. 

Note.  We  do not  claim that  either X .  or  X is integrable,  but  that  E{X~lY.} is 
defined and finite. 

Proof. Set Z.j  = e/x Y.j. Then  X~ = ~ Z.j,  and 
J 

E { e - X ~ l ~  } = 1-[ E {e-Z- ' lJ~}.  
J 
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Let e = l - e / 2 .  0 < Z , j < e  so that e-Z"J<l-c~Z,q. Thus 

O<E{e-X~lW,)<I-[(1 -eE{Z, j lW,}) .  (2) 
J 

The product is strictly positive, so E{X,~I~} = ~ , E { Z , ~ [ ~ }  must be finite a.s. 
J 

Now log(1 - e E { Z , ~ [ ~ } ) <  - eE{Z,j[~@,} so 

and (2) becomes 

l o g  F[ (1 - ~ E { Z . ~ I ~ } )  =< - = E { X ; I ~ )  
J 

E {e-Xa] ~,} < e-=<x~l ~.} (3) 

Let n~oo. X ~ X ;  indeed P{X~4=X}=P{sup Y,q>e} which tends to zero. By 
J 

Hunt's lemma 

E{e-X'~l~}~E{e-XL~}. 

Similarly, if M > 0 

E {X,~I ~,~} >E{M/x XZI~} ~E{M/x XlYoo}. 

Thus lim infE {X~]~} > E {Xl ~}  so that (3) becomes 
n ~ o o  

E{e-Xl~o~} <__e-~E{Xl~} (4) 

The left-hand side is strictly positive, so that E { X [ ~ }  <oe a.s. Now let e ~ 0  

so that c ~ l ,  and apply Jensen's inequality: 

e -~{x I~=} < E {e -x [ ~oo } < e -~{x I ~=}. (5) 

Thus there is equality in (5). This can happen only if X=E{X]~o~}, i.e. if X is 

Wo~-measurable. 

To prove (1), go back to (3) and use (5): 

o r  

e -E{Xl~~ ~ e - ~ l i m  supE{Xg[o~n} 

1 
lim sup E {X, [~}  < 

n ~ o o  

Thus with probability one 

E {Xl ~ }  < lim infE {X~[ ~ }  
n ~ o o  

( __<lira supE{X~lo~}__< 1 -  E{XlY~}. 
n ~ o o  

Let e ~ 0  through any sequence to get (1). QED 
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